Measurement of Innovation-Driven Development Performance of Large-Scale Environmental Protection Enterprises Investing in Public–Private Partnership Projects Based on the Hybrid Method
Abstract
:1. Introduction
2. Literature Review
3. Methodology
3.1. Limitations Analysis of the Traditional DEA Method
3.2. Establishment of the Innovation-Driven Development Performance Evaluation Model Based on a Three-Stage DEA Method
3.2.1. The Three-stage DEA Model
3.2.2. Establishment of the framework of system
- (1)
- Preparation
- (2)
- Selection
- (3)
- Evaluation
4. Index System and Sample Data Sources
4.1. Construction of Index System
4.1.1. The Input Index of Innovation-Driven Development Performance of Environmental Protection Enterprises
4.1.2. The Output Index of Innovation-Driven Development Performance of Environmental Protection Enterprises
4.1.3. Exogenous Environmental Variables
- (1)
- Economic Value
- (2)
- Social Value
4.2. Selection of Sample Enterprises and Sample Data Sources
5. Results of Applications
5.1. The First Stage: Measuring and Analyzing the Innovation Efficiency of Original Input–Output Data
5.2. The Second Stage: Adjustment Analysis with the Stochastic Frontier Analysis (SFA)
5.3. The Third Stage: Measuring and Analyzing the Innovation Efficiency after Adjustment
6. Discussion
7. Conclusions and Recommendations
7.1. Conclusions
7.2. Recommendations
8. Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Santolaria, M.; Oliver-Sola, J.; Gasol, C.M.; Morales-Pinzón, T.; Rieradevall, J. Eco-design in innovation driven companies: Perception, predictions and the main drivers of integration. The Spanish example. J. Clean. Prod. 2011, 19, 1315–1323. [Google Scholar] [CrossRef]
- Sun, Y.N.; Wang, X.C.; Liu, Y. The Internal logic and practical orientation of adhering to innovation-driven development in the new era. J. Manag. 2019, 32, 1–8. (In Chinese) [Google Scholar]
- Sempere-Ripoll, F.; Estelles-Miguel, S.; Rojas-Alvarado, R.; Hervas-Oliver, J.L. Does technological innovation drive corporate sustainability? Empirical evidence for the european financial industry in catching-up and central and eastern europe countries. Sustainability 2020, 12, 2261. [Google Scholar] [CrossRef] [Green Version]
- Barbulescu, O.; Nicolau, C.; Munteanu, D. Within the entrepreneurship ecosystem: Is innovation clusters’ strategic approach boosting businesses’ sustainable development? Sustainability 2021, 13, 11762. [Google Scholar] [CrossRef]
- Jia, K.; Ou, C.Z. Innovative mechanism of PPP mode in promoting efficiency and upgrading of public investment: From the perspective of multiple objectives, negative externalities and Government scale. J. Financ. Account. 2020, 20, 3–8. (In Chinese) [Google Scholar]
- Antonelli, C. Innovation as a creative response a reappraisal of the schumpeterian legacy. Hist. Econ. Ideas 2015, 23, 99–118. [Google Scholar]
- Andries, P.; Stephan, U. Environmental Innovation and Firm Performance: How Firm Size and Motives Matter. Sustainability 2019, 11, 3585. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Zhou, X.Z.; Jung, S. China’s 40-year road to innovation. Chin. Manag. Stud. 2019, 14, 335–357. [Google Scholar] [CrossRef]
- Brogaard, L. Innovative outcomes in public-private innovation partnerships: A systematic review of empirical evidence and current challenges. Public Manag. Rev. 2021, 23, 135–157. [Google Scholar] [CrossRef]
- Lember, V.; Petersen, O.H.; Scherrer, W. Understanding the relationship between infrastructure public-private partnerships and innovation. Ann. Public Coop. Econ. 2019, 90, 371–391. [Google Scholar] [CrossRef]
- Hermans, F.; Geerling-Eiff, F.; Potters, J. Public-private partnerships as systemic agricultural innovation policy instruments-Assessing their contribution to innovation system function dynamics. NJAS-Wagening J. Life Sci. 2019, 88, 76–95. [Google Scholar] [CrossRef]
- Ferraris, A.; Santoro, G.; Papa, A. The cities of the future: Hybrid alliances for open innovation Check tor projects. Futures 2018, 103, 51–60. [Google Scholar] [CrossRef]
- Davies, A.; Salter, A. The great experiment: Public–private partnerships and innovation in design, production, and operation of capital goods in the UK. In Flexibility and Stability in the Innovating Economy; McKelvey, M.H.M., Ed.; Oxford University Press: Oxford, UK, 2006; pp. 73–95. [Google Scholar]
- Rangel, T.; Galende, J. Innovation inpublic-private partnerships(PPPs): The Spanish case of highway concessions. Public Money Manag. 2010, 30, 49–54. [Google Scholar] [CrossRef] [Green Version]
- Callens, C.; Verhoest, K.; Boon, J. Combined effects of procurement and collaboration on innovation in public-private-partnerships: A qualitative comparative analysis of 24 infrastructure projects. Public Manag. Rev. 2021. [Google Scholar] [CrossRef]
- Akintoye, A.; Hardcastle, C.; Beck, M.; Chinyio, E.; Asenova, D. Achieving best value inprivate finance initiative project procurement. Constr. Manag. Econ. 2003, 21, 461–470. [Google Scholar] [CrossRef]
- Shahbaz, M.; Raghutla, C.; Song, M.; Zameer, H.; Jiao, Z. Public-private partnerships investment in energy as new determinant of CO2 emissions: The role of technological innovations in China. Energy Econ. 2020, 86, 104664. [Google Scholar] [CrossRef] [Green Version]
- Khan, Z.; Ali, M.; Kirikkaleli, D. The impact of technological innovation and public-private partnership investment on sustainable environment in China: Consumption-based carbon emissions analysis. Sustain. Dev. 2020, 28, 1317–1330. [Google Scholar] [CrossRef]
- Li, C.L.; Memon, J.A.; Thanh, T.L. The Impact of Public-Private Partnership Investment in Energy and Technological Innovation on Ecological Footprint: The Case of Pakistan. Sustainability 2021, 13, 10085. [Google Scholar]
- Adebayo, T.S.; Genc, S.Y.; Castanho, R.A.; Kirikkaleli, D. Do Public-Private Partnership Investment in Energy and Technological Innovation Matter for Environmental Sustainability in the East Asia and Pacific Region? An Application of a Frequency Domain Causality Test. Sustainability 2021, 13, 3039. [Google Scholar] [CrossRef]
- Cheah, S.L.Y.; Yoneyama, S.; Ho, Y.P. Performance management of public-private collaboration in innovation. Creat. Innov. Manag. 2019, 28, 563–574. [Google Scholar] [CrossRef]
- Odei, S.A.; Stejskal, J.; Prokop, V. Revisiting the Factors Driving Firms’ Innovation Performances: The Case of Visegrad Countries. J. Knowl. Econ. 2021, 12, 1331–1344. [Google Scholar] [CrossRef]
- Awan, U.; Nauman, S.; Sroufe, R. Exploring the effect of buyer engagement on green product innovation: Empirical evidence from manufacturers. Bus. Strategy Environ. 2021, 30, 463–477. [Google Scholar] [CrossRef]
- Vrontis, D.; Basile, G.; Andreano, M.S. The profile of innovation driven Italian SMEs and the relationship between the firms’ networking abilities and dynamic capabilities. J. Bus. Res. 2020, 114, 313–324. [Google Scholar] [CrossRef]
- Xu, S.; Yue, Q.D.; Lu, B.B. Grey correlation analysis on the synergistic development between innovation-driven strategy and marine industrial agglomeration: Based on China’s coastal provinces. Grey Syst.-Theory Appl. 2022, 12, 269–289. [Google Scholar] [CrossRef]
- Zhang, S.J. Looking to the future: Innovation-driven green development. Green Energy Environ. 2017, 2, 1–2. [Google Scholar] [CrossRef]
- He, X.; Huang, S.Z.; Chau, K.Y.; Shen, H.W.; Zhu, Y.L. A study on the effect of environmental regulation on green innovation performance: A case of green manufacturing enterprises in Pearl River Delta in China. EKOLOJI 2019, 28, 727–736. [Google Scholar]
- Li, X.W.; Long, H.Y. Research Focus, Frontier and knowledge base of green technology in china: Metrological research based on mapping knowledge domains. Pol. J. Environ. Stud. 2020, 29, 3003–3011. [Google Scholar] [CrossRef]
- Li, W.; Wang, J.; Chen, R.; Xi, Y.; Liu, S.Q.; Wu, F.; Masoud, M.; Wu, X. Innovation-driven industrial green development: The moderating role of regional factors. J. Clean. Prod. 2019, 222, 344–354. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, Y. Research on the impact of environmental regulations on the green innovation efficiency of chinese industrial enterprises. Pol. J. Environ. Stud. 2021, 30, 1433–1445. [Google Scholar] [CrossRef]
- Wang, W.; Zhou, L.; Chen, W.; Wu, C. Research on the coordination characteristics and interaction between the innovation-driven development and green development of the Yangtze River Economic Belt in China. Environ. Sci. Pollut. Res. 2022, 29, 22952–22969. [Google Scholar] [CrossRef]
- Shin, J.; Kim, C.; Yang, H. The effect of sustainability as innovation objectives on innovation efficiency. Sustainability 2018, 10, 1966. [Google Scholar] [CrossRef] [Green Version]
- Bai, J.H.; Li, J. Regional innovation efficiency in China: The role of local government. Innov.-Organ. Manag. 2011, 13, 142–153. [Google Scholar] [CrossRef]
- Park, J.H. Open innovation of small and medium-sized enterprises and innovation efficiency. Asian J. Technol. Innov. 2018, 26, 115–145. [Google Scholar] [CrossRef]
- Fan, F.; Lian, H.; Wang, S. Can regional collaborative innovation improve innovation efficiency? An empirical study of Chinese cities. Growth Chang. 2020, 51, 440–463. [Google Scholar] [CrossRef]
- Yuan, B.L. Effectiveness-based innovation or efficiency-based innovation? Trade-off and antecedents under the goal of ecological total-factor energy efficiency in China. Environ. Sci. Pollut. Res. 2019, 26, 17333–17350. [Google Scholar] [CrossRef]
- Luo, X.; Zhang, W.Y. Green innovation efficiency: A threshold effect of research and development. Clean Technol. Environ. Policy 2021, 23, 285–298. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, S.H. Influence of marine industrial agglomeration and environmental regulation on marine innovation efficiency-From an innovation value chain perspective. Mar. Policy 2021, 134, 104807. [Google Scholar] [CrossRef]
- Shi, X.; Wu, Y.R.; Fu, D.H. Does University-Industry collaboration improve innovation efficiency? Evidence from Chinese Firms. Econ. Model. 2020, 86, 39–53. [Google Scholar] [CrossRef]
- Zhao, N.; Liu, X.J.; Pan, C.F. The performance of green innovation: From an efficiency perspective. Socio-Econ. Plan. Sci. 2021, 78, 101062. [Google Scholar] [CrossRef]
- Hernandez-Vivanco, A.; Cruz-Cazares, C.; Bernardo, M. Openness and management systems integration: Pursuing innovation benefits. J. Eng. Technol. Manag. 2018, 49, 76–90. [Google Scholar] [CrossRef]
- Long, X.L.; Sun, C.W.; Wu, C. Green innovation efficiency across China’s 30 provinces: Estimate, comparison, and convergence. Mitig. Adapt. Strateg. Glob. Chang. 2020, 25, 1243–1260. [Google Scholar] [CrossRef]
- Charnes, A.; Cooper, W.; Rhodes, E. Measuring the efficiency of decision making units. Eur. J. Oper. Res. 1978, 2, 429–444. [Google Scholar] [CrossRef]
- Aigner, D.; Lovell, C.K.; Schmidt, P. Formulation and estimation of stochastic frontier production function models. J. Econom. 1977, 6, 21–37. [Google Scholar] [CrossRef]
- Banker, R.D.; Charnes, A.; Cooper, W.W. Some models for estimating technical and scale inefficiencies in data envelopment analysis. Manag. Sci. 1984, 30, 1078–1092. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.J.; Wu, H.L.; Lin, B.W. Evaluating the development of high-tech industries: Tai wan’s science park. Technol. Cast. Soc. Chang. 2006, 73, 452–465. [Google Scholar]
- Fried, H.O.; Lovell, C.A.K.; Schmidt, S.S.; Yaisawarng, S. Accounting for environmental effects and statistical noise in data envelopment analysis. J. Product. Anal. 2002, 17, 157–174. [Google Scholar] [CrossRef]
- Liang, N.; Yao, C.Q.; Gao, Y.F. Innovation efficiency evaluation of listed enterprises in the environmental protection industry based on dea method. Sci. Technol. Manag. Res. 2019, 39, 45–50. (In Chinese) [Google Scholar]
- Sun, H.M.; Zhu, W.Q. The Synergistic Effect of Innovation Investment Output and Efficiency on Environmental Protection Industry. Shanghai Econmic Rev. 2015, 11, 20–27. (In Chinese) [Google Scholar] [CrossRef]
- Tsai, B.H. Exploring the influence of enterprise resource planning (ERP) implementation on corporate performance using a modified data envelopment analysis (DEA) approach. Afr. J. Bus. Manag. 2011, 5, 5435–5448. [Google Scholar]
- Frank, A.G.; Benitez, G.B.; Lima, M.F. Effects of open innovation breadth on industrial innovation input-output relationships. Eur. J. Innov. Manag. 2021. [Google Scholar] [CrossRef]
- Sajid, M.J.; Gonzalez, E.D.S. The role of labor and capital in sectoral CO2 emissions and linkages: The case of China, India and the USA. Ecol. Indic. 2021, 131, 108241. [Google Scholar] [CrossRef]
- Chen, K.H.; Kou, M.T.; Fu, X.L. Evaluation of multi-period regional R&D efficiency: An application of dynamic DEA to China’s regional R&D systems. Omega-Int. J. Manag. Sci. 2018, 74, 103–114. [Google Scholar]
- Dobrzanski, P.; Bobowski, S. The Efficiency of R&D Expenditures in ASEAN Countries. Sustainability 2020, 12, 2686. [Google Scholar]
- Wang, L.C.; Tsai, H.Y. Evaluation of highway maintenance performance using data envelopment analysis (dea) in taiwan. J. Mar. Sci. Technol. -Taiwan 2009, 17, 145–155. [Google Scholar] [CrossRef]
- Kumar, S.; Dhingra, A.K.; Singh, B. Application of lean- kaizen concept for improving quality system of manufacturing firms. Int. J. Ind. Eng. -Theory Appl. Pract. 2021, 28, 563–576. [Google Scholar]
- Wang, E.C.; Huang, W.C. Relative efficiency of R & D activities: A cross-country study accounting for environmental factors in the DEA approach. Res. Policy 2007, 36, 260–273. [Google Scholar]
- Shiraz, R.K.; Hatami-Marbini, A.; Emrouznejad, A. Chance-constrained cost efficiency in data envelopment analysis model with random inputs and outputs. Oper. Res. 2020, 20, 1863–1898. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Feng, R.T.; Yu., X. The ratio of patent granted, technology innovation and economic performance—an empirical test of patent contract theory. Soft Sci. 2013, 27, 9–13. (In Chinese) [Google Scholar]
- Dobrzanski, P. Innovation expenditures efficiency in central and eastern european countries. Zb. Rad. Ekon. Fak. U Rijeci-Proc. Rij. Fac. Econ. 2018, 36, 827–859. [Google Scholar]
- Bin, X. Evaluation of capital input and output efficiency of China’s ai enterprises based on DEA model. J. Intell. Fuzzy Syst. 2020, 38, 7033–7040. [Google Scholar] [CrossRef]
- Khan, I.U.; Karam, F.W. Intelligent business analytics using proposed input/output oriented data envelopment analysis DEA and slack based DEA models for US-airlines. J. Intell. Fuzzy Syst. 2019, 37, 8207–8217. [Google Scholar] [CrossRef]
- Wang, C.N.; Luu, Q.C.; Nguyen, T.K.L.; Day, J.D. Assessing bank performance using dynamic SBM model. Mathematics 2019, 7, 73. [Google Scholar] [CrossRef] [Green Version]
- Mansilla, P.; Vassallo, J.M. Innovative Infrastructure Fund to Ensure the Financial Sustainability of PPP Projects: The Case of Chile. Sustainability 2020, 12, 9965. [Google Scholar] [CrossRef]
- van den Hurk, M.; Hueskes, M. Beyond the financial logic: Realizing valuable outcomes in public-private partnerships in Flanders and Ontario. Environ. Plan. C-Politics Space 2017, 35, 784–808. [Google Scholar] [CrossRef]
- Caldwell, N.D.; Roehrich, J.K.; George, G. Social value creation and relational coordination in public-private collaborations. J. Manag. Stud. 2017, 54, 906–928. [Google Scholar] [CrossRef]
Investment Category | Variables | Description of Variables | Unit |
---|---|---|---|
Input | Allocation of finance | R&D funds | CNY |
Allocation of manpower | R&D manpower | Person | |
Quantity of capital | Operation cost | CNY | |
Output | Total output value | Main business income | CNY |
Economic benefit | Net profit | CNY | |
Intellectual property | Patents | Number | |
Environment Variables | Economic value | Current liabilities | CNY |
Social value | Employed employees | Person |
n | DMU | TE | PE | SE | Returns to Scale |
---|---|---|---|---|---|
1 | Daqian | 0.430 | 0.513 | 0.839 | Drs * |
2 | CSD | 0.569 | 0.656 | 0.867 | drs |
3 | Haixia | 0.558 | 0.618 | 0.903 | drs |
4 | Liantai | 1.000 | 1.000 | 1.000 | - |
5 | Tianyu | 0.751 | 0.814 | 0.923 | drs |
6 | Longma | 0.729 | 1.000 | 0.729 | drs |
7 | BGE | 0.482 | 0.962 | 0.501 | drs |
8 | Weiming | 0.903 | 1.000 | 0.903 | drs |
9 | Shanghai | 0.465 | 0.808 | 0.576 | drs |
10 | Tianjin | 1.000 | 1.000 | 1.000 | - |
11 | Huaguang | 0.45 | 0.961 | 0.468 | drs |
12 | Grandblue | 0.453 | 0.823 | 0.551 | drs |
13 | Yuanda | 0.381 | 0.665 | 0.572 | drs |
14 | Beijing | 1.000 | 1.000 | 1.000 | - |
15 | Lvyin | 1.000 | 1.000 | 1.000 | - |
16 | Lingnan | 0.410 | 0.815 | 0.503 | drs |
17 | Dongjiang | 0.582 | 1.000 | 0.582 | drs |
18 | Wangneng | 0.860 | 0.976 | 0.882 | drs |
19 | Infore | 0.480 | 1.000 | 0.48 | drs |
20 | CPEP | 0.552 | 0.690 | 0.800 | drs |
Variables | Input Relaxation of Operation Cost | Input Slacks of R&D Funds | Input Slacks of R&D Manpower | |||
---|---|---|---|---|---|---|
Coefficient | Standard-Error | Coefficient | Standard-Error | Coefficient | Standard-Error | |
Beta(constant) | −1.1 × 10−4 *** | 1.00 | −3.0 × 107 *** | 1.00 | 4.0 × 10 *** | 1.00 |
Economic value | 5.3 × 10−7 *** | 1.00 | 1.5 × 105 *** | 3.00 | 1.6 × 10−1 *** | 1.2 × 10−1 |
Social value | −1.1 × 10−9 *** | 1.00 | −5.5 × 102 *** | 2.0×102 | −4.2 × 10−5 *** | 1.2 × 10−3 |
σ2 | 2.6 × 10−8 *** | 2.5 × 1015 *** | 1.2 × 104 *** | |||
γ | 9.3 × 10−1 ** | 1.00 *** | 1.00 *** | |||
Log | 1.6 × 102 | −3.7 × 102 | −1.1 × 102 | |||
LR | 7.3 *** | 9.6 *** | 9.3 *** |
Year | TE | PE | SE |
---|---|---|---|
2018 | 0.633 | 0.778 | 0.781 |
2019 | 0.710 | 0.805 | 0.857 |
2020 | 0.626 | 0.844 | 0.741 |
DMU | 2018 TE | 2019 TE | 2020 TE | 2018 PE | 2019 PE | 2020 PE | 2018 SE | 2019 SE | 2020 SE |
---|---|---|---|---|---|---|---|---|---|
Daqian | 1.000 | 0.824 | 1.000 | 1.000 | 0.845 | 1.000 | 1.000 | 0.976 | 1.000 |
CSD | 0.020 | 0.306 | 0.108 | 0.443 | 0.592 | 0.142 | 0.046 | 0.516 | 0.757 |
Haixia | 0.882 | 0.756 | 1.000 | 1.000 | 0.868 | 1.000 | 0.882 | 0.870 | 1.000 |
Liantai | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
Tianyu | 0.351 | 1.000 | 0.337 | 0.375 | 1.000 | 0.439 | 0.935 | 1.000 | 0.768 |
Longma | 0.500 | 0.249 | 0.258 | 0.509 | 0.258 | 1.000 | 0.982 | 0.963 | 0.258 |
BGE | 0.349 | 0.271 | 0.361 | 0.370 | 0.350 | 1.000 | 0.944 | 0.774 | 0.361 |
Weiming | 0.256 | 1.000 | 1.000 | 0.346 | 1.000 | 1.000 | 0.74 | 1.000 | 1.000 |
Shanghai | 0.690 | 0.742 | 0.325 | 0.731 | 1.000 | 1.000 | 0.944 | 0.742 | 0.325 |
Tianjin | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
Huaguang | 0.505 | 0.716 | 1.000 | 0.597 | 1.000 | 1.0000 | 0.845 | 0.716 | 1.000 |
Grandblue | 1.000 | 0.177 | 0.958 | 1.000 | 0.476 | 0.931 | 1.000 | 0.372 | 1.028 |
Yuanda | 0.933 | 0.373 | 0.179 | 1.000 | 0.662 | 0.240 | 0.933 | 0.563 | 0.747 |
Beijing | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
Lvyin | 0.650 | 0.556 | 0.409 | 1.000 | 0.600 | 1.000 | 0.650 | 0.926 | 0.409 |
Lingnan | 1.000 | 1.000 | 0.247 | 1.000 | 1.000 | 0.333 | 1.000 | 1.000 | 0.74 |
Dongjiang | 0.177 | 0.392 | 0.363 | 0.492 | 0.454 | 0.785 | 0.359 | 0.863 | 0.463 |
Wangneng | 0.326 | 1.000 | 0.424 | 1.000 | 1.000 | 1.000 | 0.326 | 1.000 | 0.424 |
Infore | 1.000 | 0.848 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.848 | 1.000 |
CPEP | 0.028 | 1.000 | 0.548 | 0.703 | 1.000 | 1.000 | 0.039 | 1.000 | 0.548 |
n | DMU | TE | PE | SE | Returns to Scale |
---|---|---|---|---|---|
1 | Daqian | 0.551 | 0.875 | 0.630 | irs |
2 | CSD | 0.758 | 0.877 | 0.864 | irs |
3 | Haixia | 0.67 | 0.951 | 0.705 | irs |
4 | Liantai | 1.000 | 1.000 | 1.000 | - |
5 | Tianyu | 0.767 | 0.975 | 0.787 | irs |
6 | Longma | 1.000 | 1.000 | 1.000 | - |
7 | BGE | 0.965 | 0.965 | 1.000 | - |
8 | Weiming | 1.000 | 1.000 | 1.000 | - |
9 | Shanghai | 0.837 | 0.904 | 0.926 | irs |
10 | Tianjin | 1.000 | 1.000 | 1.000 | - |
11 | Huaguang | 0.969 | 0.971 | 0.999 | irs |
12 | Grandblue | 0.842 | 0.884 | 0.953 | irs |
13 | Yuanda | 0.680 | 0.831 | 0.818 | irs |
14 | Beijing | 0.928 | 1.000 | 0.928 | irs |
15 | Lvyin | 1.000 | 1.000 | 1.000 | - |
16 | Lingnan | 0.817 | 0.818 | 0.999 | irs |
17 | Dongjiang | 0.940 | 1.000 | 0.94 | drs * |
18 | Wangneng | 0.978 | 0.993 | 0.985 | irs ** |
19 | Infore | 1.000 | 1.000 | 1.000 | - |
20 | CPEP | 0.712 | 0.879 | 0.810 | irs |
Class | Enterprise Scale is Too Large | Optimal Scale of Enterprise | A State of Easy Improvement | A State of Technical Inefficiency | Enterprise Scale is Too Small |
---|---|---|---|---|---|
Measuring Standard | SE ≤ 0.9 (decreasing returns to scale) | TE = SE = 1 | 0.9 < SE ≤ 1 PE > 0.9 | 0.9 < SE ≤ 1 PE < 0.9 | SE ≤ 0.9 (increasing returns to scale) |
Number of The Enterprise | 1 | 6 | 6 | 2 | 5 |
Sample Enterprise | 17 | 4, 6, 8, 10, 15, 19 | 7, 9, 11, 14, 17, 18 | 12, 16 | 1, 2, 3, 13, 20 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, J.; Wang, N.; Sun, G. Measurement of Innovation-Driven Development Performance of Large-Scale Environmental Protection Enterprises Investing in Public–Private Partnership Projects Based on the Hybrid Method. Sustainability 2022, 14, 5096. https://doi.org/10.3390/su14095096
Feng J, Wang N, Sun G. Measurement of Innovation-Driven Development Performance of Large-Scale Environmental Protection Enterprises Investing in Public–Private Partnership Projects Based on the Hybrid Method. Sustainability. 2022; 14(9):5096. https://doi.org/10.3390/su14095096
Chicago/Turabian StyleFeng, Jiao, Nannan Wang, and Guoshuai Sun. 2022. "Measurement of Innovation-Driven Development Performance of Large-Scale Environmental Protection Enterprises Investing in Public–Private Partnership Projects Based on the Hybrid Method" Sustainability 14, no. 9: 5096. https://doi.org/10.3390/su14095096
APA StyleFeng, J., Wang, N., & Sun, G. (2022). Measurement of Innovation-Driven Development Performance of Large-Scale Environmental Protection Enterprises Investing in Public–Private Partnership Projects Based on the Hybrid Method. Sustainability, 14(9), 5096. https://doi.org/10.3390/su14095096