A Brief Review on the Development of Alginate Extraction Process and Its Sustainability
Abstract
:1. Introduction
2. Alginate Production Process—A Conventional Approach
2.1. Pretreatment
2.1.1. Mechanical Treatment
2.1.2. Soaking
2.1.3. Acid and Alkali Pre-Treatment
2.2. Extraction
2.2.1. The Impact of Temperature
2.2.2. The Impact of Time
2.2.3. The Impact of Extraction Chemical and pH
2.3. Alginate Separation and Purification
2.3.1. Separation
2.3.2. Precipitation
2.3.3. Drying
Seaweed Species | Size | Soaking | Acid/Alkali | Extraction a | Precipitation b | Drying | Yield (w/w), mw (kDa), M/G c | Ref. |
---|---|---|---|---|---|---|---|---|
Alaria esculenta; Saccharina latissima; Ascophyllum nodosum | 0.5 mm | 0.2 M HCl 24 h, (ratio 1:25 w/v) | 0.1 M NaHCO3 2 h (ratio 1:45 w/v) & NaOH pH 8 | Isopropanol | 65 °C overnight | 14.6–38.6%, -, - | [45] | |
Ascophyllum nodosum | 0.25 mm | 1% CaCl2 18 h (ratio 1:15 w/v) | 5% HCl 1 h (ratio 1:15 w/v) | 3% (w/v) 1 h (ratio 1:15 w/v) | Ethanol (ratio 1:1 v/v) | 50 °C | 18.3–23.7%, -, 0.91–1.33 | [29] |
Bifurcaria bifurcate; Fucus spiralis | 0.5 mm | 0.1 M HCl 3 h 60 °C pH 2.0 (ratio 1:20 w/v) | 3% (w/v) pH 11, at 60 °C for 2 h | 96% Ice-cold ethanol (ratio 1:3) | Freeze drying | 24–25%, 220, - | [53] | |
Cystoseira barbata | 0.5 mm | 70% ethanol, 24 h | 0.1 M HCl | 3% (w/w), 60 °C 2 h | Absolute Ethanol | 50 °C | 19%, 126.6, - | [20] |
Durvillea sp.—D. potatorum | Milled | Formaldehyde | HCl pH 1.8 | pH 7 | 10 °C 70% and 100% isopropanol | Freeze drying | -, 44, - | [54] |
Ecklonia radiata | 0.25–1.4 mm | Ethanol, 3 h, (ratio 1:10 w/v) | HCl pH 1–6.5, 25–55 °C, 1–120 min | 0.2 M, 45 °C, 2 h (ratio 1:20 w/v) | Ethanol (ratio 2:1) | 60 °C | 32.2–45.4%, 373–986, - | [33] |
Lessonia flavicans; Desmarestia ligulata; Desmarestia distans | Petroleum ether, ethanol, formaldehyde | 3%, 50 °C, 4 h (ratio 1:20 w/v) | 96% ethanol | 60 °C | 11.0%, -, 1.03; 27.2%, -, 0.77; 15.2%, -, 0.58 | [28] | ||
Laminar digitata | 5 mm2–5 cm2 | 2% w/w formaldehyde, 4 months | 0.5 M H2SO4 overnight 4 °C | 4% (w/w) at 20 °C | H2SO4 pH 2 | 30 °C | 33–39%, 105, - | [21] |
Laminaria digitata | <1 mm; 1–5 mm | 2% formaldehyde overnight 60 °C | 0.2 M HCl 24 h | 2% at 25, 40, 60 °C | Absolute ethanol | ~20 °C | -, 114, - | [17] |
Laminiaria digitata | Pulverized | 2% (w/v) formaldehyde, overnight | 0.5 M HCl at 40 °C 1 h | Synthetic seawater with CO2, adjust pH to 11 by NaOH/KOH or ammonia | 95% Ethanol, 2 h, (ratio 1:3) | Frozen at −32 °C 12 h, freeze drying 8 h | 31.1–40.5%, 85–274, - | [43] |
Macrocystis sp. | 1 mm | 0.05–0.2 N HCl in distilled water or seawater, (ratio 1:10 w/v) | 1,2,3,4% 20 °C 2 h or 60 °C 8 h (ratio 1:30) | CalCl2 2% (ratio 1:20 w/v) | Freeze drying | upto 21.5%, -, - | [37] | |
Nizimuddinia zanardini | Powdered | 2% (v/v) formaldehyde, 24 h (ratio 1:32 w/v) | 0.2 M HCl, 60 °C 3 h (ratio 1:32 w/v) | 3% (w/w) 60 °C 2.5 h (ratio 1:32 w/v) | 3 volume of 96% | Freeze Drying | 27%, 103–119, 1.22 | [24] |
Non-specified | Milled | - | - | 10% Choline hydroxide/NaCl eutectic solvent (1:0.5), 100–130 °C 1–5 h (ionic liquid) | Absolute ethanol | -,-,- | [46] | |
Non-specified | Cold fresh water | HCl | 2–4% 20–40 min | HCl pH < 2.25, 26 °C, 30 min | Air dry, 37.7 °C | -,-,- | [30] | |
Non-specified | 10% formaldehyde | 1–1.2% (w/w), 1:10–15 ratio | HCl | 40–55 °C | 12.1%, -, - | [55] | ||
Sargassum cristaefolium | 0.25 mm | Ethanol, chloroform, water (4:2:1) overnight | HCl (pH 1–5), 25–45 °C, 30–90 min | 2.5% (1:20 ratio), 70 °C 2 h | 96% ethanol | Vacuum dryer 45 °C, 24 h | 29.9%, 194.1, - | [27] |
Sargassum cristaefolium; Sargassum feldmannii; Sargassum ilicifolium; Sargassum polycystum | 2% formaldehyde for 24 h | 0.2 N HCl 24 h | 2%, 3 h | Isopropanol | 60 °C | 0.6–1.8%, -, - | [23] | |
Sargassum errimum; Dictyota dichotoma; Spathoglossum asperum; Iyengaria. stellata | Milled | 4% CaCl2, 2 h, 50% formaldehyde 1 h | 5% HCl 20 min | 80% isopropanol | 40 °C overnight | -,-,- | [56] | |
Sargassum fluitans | Ground | 0.2 N HCl, 3 repeats | HCl (pH 6.5–7.5), 20 °C overnight & NaCl | Ethanol (ratio 1:1) | 30–40 °C | 16.3–23.4%, -, 0.5–0.6 | [44] | |
Sargassum fluitans | Ground | 5% formaldehyde | 0.2 N HCl, 3 repeats | 4% NaOH, 20 °C overnight (ratio 1:100) | Ethanol (ratio 1:1) | 30–40 °C | 18.9–21.1%, -, 0.5–0.6 | [44] |
Sargassum fluitans | Ground | 5% formaldehyde | 0.2 N HCl, 3 repeats | 2%, 80 °C, 2 h | Freeze drying | 18.5–24.5%, -, 0.5–0.6 | [44] | |
Sargassum latifolium | 1–5 mm | 0.54% CaCl2 30 min, 0.5% NaCl 1 h 100 °C (ratio 1:15 w/v) | 5% for 30 min at 100 °C (1:5 w/v) | 80% Ethanol | 50 °C | 17.54%, -, - | [19] | |
Sargassum latifolium | Blended | 70% v/v acetone 4 h | 1 to 3% w/v citric acid, 25–45 °C, 1–3 h | 2% (w/v), 40 °C for 3 h | Ethanol (ratio 2:1) | 60 °C | 21.10–31.78%, 142–194, 0.34–1.05 | [25] |
Sargassum muticum | Tap water, then frozen at −18 °C | Citric acid, pH 3 | 40 °C, 48 h | -, 80–112, 0.33–0.64 | [57] | |||
Sargassum muticum | 0.2 % formaldehyde 24 h 16 °C (ratio 1:10 w/v) | 0.2 M HCl (ratio 1:10 w/v) | 0.5–5%, 1–3.5 h, 50–100 °C | 50–100% ethanol | 65 °C | 13.6%, -, 1.08 | [36] | |
Sargassum natans | 0.5 mm | 2% (w/v) formaldehyde overnight | 0.1 M and 0.5 M, H2SO4 | 5–10% (w/v) 25–75 °C 0.5–6 h (ratio 1:5–15, w/v) | 0.5 M H2SO4 pH 2, Na2CO3 5%, ethanol (ratio 1:15) | −17 °C 24 h & freeze drying 48 h | 7–19%, -, 0.51 | [18] |
Sargassum polycystum | Powdered | 1% (w/w) CaCl2 2 h, ratio 1:8 | 2% HCl 30 min | 4% 90 °C (ratio 1:8 w/v) | CaCl2 & Ethanol, then HCl pH 2–3 | 70–75 °C 8 h | [58] | |
Sargassum sp. | - | NaOH for 2 h | 2 h 100 °C | HCl pH 2.5–3; then NaOH, & isopropanol | [35] | |||
Sargassum sp. | Powdered | 2% CaCl2, 2 h 49% phenol 2 h | 3% 60–80 °C | CaCl2 1–10% | Air Dry | 35%, -, - | [59] | |
Sargassum turbinarioides | 2% formaldehyde 90 °C 24 h, (ratio 1:16 w/v) | 0.2 M HCl for 24 h, ratio (1:16 w/v) | 2%, 3 h 100 °C | 95% ethanol (ratio 1:3) | 65 °C | 10%, 387.9, - | [60] | |
Sargassum wightii; Padina tetrastromatica | Milled | 4% NaPO2H2. H2O, 24 h | 0.4 M HCl, 20 °C, 2 h | 4% (w/w) | 70 °C | [26] |
3. Green Alginate Extraction Process
3.1. Ultrasound-Assisted Extraction (UAE)
3.2. Microwave-Assisted Extraction (MAE)
3.3. Enzyme-Assisted Extraction (EAE)
3.4. Extrusion-Assisted Extraction (ExAE)
3.5. Other Possible Methods for Alginate Extraction
3.6. Comparison of Green Alginate Extraction Processes with Conventional Processes
4. Alginate Industrial Application
5. Sustainability of Alginate Extractions
6. Conclusions and Future Efforts
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Stanford, E.C.C. Improvements in the Manufacture of Useful Products from Seaweeds. British Patent 142.40, 1881. [Google Scholar]
- FAO. FAO Aquaculture, Capture and Global Production Databases; F.A.O. United Nations: Roma, Italy, 2021. [Google Scholar]
- Mahmoud, M.S.; Mohamed, S.A. Calcium alginate as an eco-friendly supporting material for Baker’s yeast strain in Chromium bioremediation. HBRC J. 2017, 13, 245–254. [Google Scholar] [CrossRef] [Green Version]
- Lee, K.; Mooney, D. Alginate: Properties and biomedical applications. Prog. Polym. Sci. 2012, 37, 106–126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Draget, K.I. Alginates. In HandBook of Hydrocolloids; Phillips, G.O., Williams, P.A., Eds.; Woodhead Publishing Ltd.: Cambridge, UK, 2009. [Google Scholar]
- Nussinovitch, A. Alginates. In Hydrocolloid Applications; Springer: Boston, MA, USA, 1997. [Google Scholar] [CrossRef]
- Peteiro, C. Alginate production from marine macroalgae, with emphasis on kelp farming. In Alginates and Their Biomedical Applications; Rehm, B., Moradali, M., Eds.; Springer Series in Biomaterials Science and Engineering; Springer: Singapore, 2018; Volume 11. [Google Scholar]
- Hallmann, A. Algal transgenics and biotechnology Transgen. Plant J. 2007, 1, 81–98. [Google Scholar]
- Grand View Research. Alginate Market Growth & Trends. 2021. Available online: https://www.grandviewresearch.com/press-release/global-alginate-market (accessed on 24 April 2022).
- Hay, I.D.; Ur Rehman, Z.; Moradali, M.F.; Wang, Y.; Rehm, B.H. Microbial alginate production, modification and its applications. Microb. Biotechnol. 2013, 6, 637–650. [Google Scholar] [CrossRef] [Green Version]
- Hernández-Carmona, G.; Freile-Pelegrín, Y.; Hernández-Garibay, E. Conventional and alternative technologies for the extraction of algal polysaccharides. In Functional Ingredients from Algae for Foods and Nutraceuticals; Domnínguez, H., Ed.; Woodhead Publishing: Cambridge, UK, 2013; pp. 475–516. [Google Scholar] [CrossRef]
- Valentine, M.E.; Kirby, B.D.; Withers, T.R.; Johnson, S.L.; Long, T.E.; Hao, Y.; Lam, J.S.; Niles, R.M.; Yu, H.D. Generation of a highly attenuated strain of Pseudomonas aeruginosa for commercial production of alginate. Microb. Biotechnol. 2019, 13, 162–175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharmeen, S.; Rahman, M.S.; Islam, M.M.; Islam, M.S.; Shahruzzaman, M.; Mallik, A.K.; Haque, P.; Rahman, M.M. Applications of polysaccharides in enzyme immobilization. In Functional Polysaccharides for Biomedical Applications; Maiti, S., Jana, S., Eds.; Woodhead Publishing: Cambridge, UK, 2019; pp. 357–395. [Google Scholar]
- Maurstad, G.; Morch, Y.; Bausch, A.; Stokke, B.T. Polyelectrolyte layer interpenetration and swelling of alginate–chitosan multilayers studied by dual wavelength reflection interference contrast microscopy. Carbohydr. Polym. 2008, 71, 672–681. [Google Scholar] [CrossRef]
- Qin, Y. Alginate fibres: An overview of the production processes and applications in wound management. Polym. Int. 2007, 57, 171–180. [Google Scholar] [CrossRef]
- Hecht, H.; Srebnik, S. Structural Characterization of Sodium Alginate and Calcium Alginate. Biomacromolecules 2016, 17, 2160–2167. [Google Scholar] [CrossRef]
- Fertah, M.; Belfkira, A.; Dahmane, E.; Taourirte, M.; Brouillette, F. Extraction and characterization of sodium alginate from Moroccan Laminaria digitata brown seaweed. Arab. J. Chem. 2017, 10, S3707–S3714. [Google Scholar] [CrossRef] [Green Version]
- Mohammed, A.; Bissoon, R.; Bajnath, E.; Mohammed, K.; Lee, T.; Bissram, M.; John, N.; Jalsa, N.K.; Lee, K.-Y.; Ward, K. Multistage extraction and purification of waste Sargassum natans to produce sodium alginate: An optimization approach. Carbohydr. Polym. 2018, 198, 109–118. [Google Scholar] [CrossRef] [PubMed]
- Dalal, S.R.; Hussein, M.H.; El-Naggar, N.E.-A.; Mostafa, S.I.; Shaaban-Dessuuki, S.A. Characterization of alginate extracted from Sargassum latifolium and its use in Chlorella vulgaris growth promotion and riboflavin drug delivery. Sci. Rep. 2021, 11, 16741. [Google Scholar] [CrossRef]
- Trica, B.; Delattre, C.; Gros, F.; Ursu, A.V.; Dobre, T.; Djelveh, G.; Michaud, P.; Oancea, F. Extraction and Characterization of Alginate from an Edible Brown Seaweed (Cystoseira barbata) Harvested in the Romanian Black Sea. Mar. Drugs 2019, 17, 405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vauchel, P.; Kaas, R.; Arhaliass, A.; Baron, R.; Legrand, J. A New Process for Extracting Alginates from Laminaria digitata: Reactive Extrusion. Food Bioprocess Technol. 2008, 1, 297–300. [Google Scholar] [CrossRef]
- Wedlock, D.J.; Fasihuddin, B.A. Effect of formaldehyde pre-treatment on the intrinsic viscosity of alginate from various brown seaweeds. Food Hydrocoll. 1990, 4, 41–47. [Google Scholar] [CrossRef]
- Calumpong, H.P.; Maypa, A.P.; Magbanua, M. Population and alginate yield and quality assessment of four Sargassum species in Negros Island, central Philippines. Hydrobiologia 1999, 398, 211–215. [Google Scholar] [CrossRef]
- Khajouei, R.; Keramat, J.; Hamdami, N.; Ursu, A.; Delattre, C.; Gardarin, C.; Lecerf, D.; Desbrières, J.; Djelveh, G.; Michaud, P. Effect of high voltage electrode discharge on the physicochemical characteristics of alginate extracted from an Iranian brown seaweed (Nizimuddinia zanardini). Algal Res. 2021, 56, 102326. [Google Scholar] [CrossRef]
- Fawzy, M.A.; Gomaa, M. Optimization of citric acid treatment for the sequential extraction of fucoidan and alginate from Sargassum latifolium and their potential antioxidant and Fe(III) chelation properties. J. Appl. Phycol. 2021, 33, 2523–2535. [Google Scholar] [CrossRef]
- Janarthanan, M.; Kumar, M. Extraction of alginate from brown seaweeds and evolution of bioactive alginate film coated textile fabrics for wound healing application. J. Ind. Text. 2018, 49, 328–351. [Google Scholar] [CrossRef]
- Sugiono, S.; Ferdiansyah, D. Biorefinery for sequential extraction of fucoidan and alginate from brown alga Sargassum cristaefolium. Carpathian J. Food Sci. Technol. 2020, 12, 88–89. [Google Scholar]
- Leal, D.; Matsuhiro, B.; Rossi, M.; Caruso, F. FT-IR spectra of alginic acid block fractions in three species of brown seaweeds. Carbohydr. Res. 2008, 343, 308–316. [Google Scholar] [CrossRef] [PubMed]
- Montes, L.; Gisbert, M.; Hinojosa, I.; Sineiro, J.; Moreira, R. Impact of drying on the sodium alginate obtained after polyphenols ultrasound-assisted extraction from Ascophyllum nodosum seaweeds. Carbohydr. Polym. 2021, 272, 118455. [Google Scholar] [CrossRef] [PubMed]
- Clark, D.E.; Green, H.C. Alginic Acid and Process of Making Same. United States Patent US2036922A, 16 October 1936. [Google Scholar]
- Bertagnolli, C.; Espindola, A.P.D.; Kleinübing, S.J.; Tasic, L.; da Silva, M.G.C. Sargassum filipendula alginate from Brazil: Seasonal influence and characteristics. Carbohydr. Polym. 2014, 111, 619–623. [Google Scholar] [CrossRef]
- Myklestad, S.M. Ion-exchange properties of brown algae—I. Determination of rate mechanism for calcium-hydrogen ion exchange for particles from Laminaria Hyperborea and Laminiaria Digitata. J. Appl. Chem. 1968, 18, 30–36. [Google Scholar] [CrossRef]
- Lorbeer, A.J.; Lahnstein, J.; Bulone, V.; Nguyen, T.; Zhang, W. Multiple-response optimization of the acidic treatment of the brown alga Ecklonia radiata for the sequential extraction of fucoidan and alginate. Bioresour. Technol. 2015, 197, 302–309. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Carmona, G.; McHugh, D.J.; Arvizu-Higuera, D.L.; Rodríguez-Montesinos, Y.E. Pilot plant scale extraction of alginate from Macrocystis pyrifera. 1. Effect of pre-extraction treatments on yield and quality of alginate. Environ. Boil. Fishes 1998, 10, 507–513. [Google Scholar] [CrossRef]
- Giyatmi, G.; Irianto, H.E.; Anggoro, B.; Nurhayati; Fransiska, D. Use of basil leaf ethanol extract in alginate base edible film. J. Phys. Conf. Ser. 2021, 1933, 012001. [Google Scholar] [CrossRef]
- Mazumder, A.; Holdt, S.L.; De Francisci, D.; Alvarado-Morales, M.; Mishra, H.N.; Angelidaki, I. Extraction of alginate from Sargassum muticum: Process optimization and study of its functional activities. J. Appl. Phycol. 2016, 28, 3625–3634. [Google Scholar] [CrossRef]
- Mateus, H.; Regenstein, J.M.; Baker, R.C. Studies to Improve the Extraction of Mannitol and Alginic Acid from Macrocystis pyrifera, a Marine Brown Alga. Econ. Bot. 1977, 31, 24–27. [Google Scholar] [CrossRef]
- Hernandez-carmona, G.; Mchugh, D.J.; Iopez-gutierrez, F. Pilot plant scale extraction of alginates from Macrocystis pyrifera. 2. Studies on extraction conditions and methods of separating the alkaline-insoluble residue. Appl. Phycol. 2000, 11, 493–502. [Google Scholar] [CrossRef]
- Taure, I.; Truus, K.; Vaher, M. Algal Biomass from Fucus vesiculosus (Phaeophyta): Investigation of the Mineral and Alginate Components. Proc. Estonian Acad. Sci. Chem. 2001, 50, 95–103. [Google Scholar] [CrossRef]
- Torres, M.R.; Sousa, A.P.A.; Silva Filho, E.A.T.; Melo, D.F.; Feitosa, J.P.A.; de Paula, R.C.M.; Lima, M.G.S. Extraction and physicochemical characterization of Sargassum vulgare alginate from Brazil. Carbohydr. Res. 2007, 342, 2067–2074. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Labowska, B.; Michalak, I.; Detyna, J. Methods of extraction, physicochemical properties of alginates and their applications in biomedical field—A review. Open Chem. 2019, 17, 738–762. [Google Scholar] [CrossRef] [Green Version]
- Youssouf, L.; Lallemand, L.; Giraud, P.; Soulé, F.; Bhaw-Luximon, A.; Meilhac, O.; D’Hellencourt, C.L.; Jhurry, D.; Couprie, J. Ultrasound-assisted extraction and structural characterization by NMR of alginates and carrageenans from seaweeds. Carbohydr. Polym. 2017, 166, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Zhang, S. New Extraction Technology and Characterization of Sodium Alginate; IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2020; Volume 474, p. 052092. [Google Scholar] [CrossRef]
- Davis, T.A.; Ramirez, M.; Mucci, A.; Larsen, B. Extraction, isolation and calcium binding of alginate from Sargassum spp. J. Appl. Physiol. 2004, 16, 275–284. [Google Scholar]
- Cebrián-Lloret, V.; Metz, M.; Martínez-Abad, A.; Knutsen, S.H.; Ballance, S.; López-Rubio, A.; Martínez-Sanz, M. Valorization of alginate-extracted seaweed biomass for the development of cellulose-based packaging films. Algal Res. 2022, 61, 102576. [Google Scholar] [CrossRef]
- Sun, J.; Feng, M.; Zhao, D. Green Preparation Method of Sodium Alginate Based on Choline-Based Deep Eutectic Solvent. Chinese Patent CN110684129A, 14 January 2020. [Google Scholar]
- Li, Y.Y. Isolation and Characterzation of Alginate from Hong Kong Brown Seaweed: An Evalution of the Potential Use of the Extracted Alginate as Food Ingredient. Master’s Thesis, The Chinese University of Hong Kong, Hong Kong, China, 2000. [Google Scholar]
- Latifi, A.M.; Nejad, E.S.; Babavalian, H. Comparison of extraction of different methods of sodium alginate from brown algae Sargassum sp. localized in the southern of Iran. J. Appl. Biotechnol. Rep. 2015, 2, 251–255. [Google Scholar]
- Gomez, C.; Lambrecht, M.V.P.; Lozano, J.E.; Rinaudo, M.; Villar, M.A. Influence of the extraction–purification conditions on final properties of alginates obtained from brown algae (Macrocystis pyrifera). Int. J. Biol. Macromol. 2009, 44, 365–371. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Cheng, J.; Ao, Q. Preparation of Alginate-Based Biomaterials and Their Applications in Biomedicine. Mar. Drugs 2021, 19, 264. [Google Scholar] [CrossRef] [PubMed]
- Lim, S.; Khalafu, S.; Mustapha, W.; Lim, S. Effects of different precipitation method on physicochemical properties and antioxidant activities of alginates from Sargassum sp. Sains Malays. 2017, 46, 1807–1816. [Google Scholar] [CrossRef]
- Hernandez-Carmona, G.; McHugh, D.J.; Arvizu-Higuera, D.L.; Rodríguez-Montesinos, Y.E. Pilot plant scale extraction of alginates from Macrocystis pyrifera 4. Conversion of alginic acid to sodium alginate, drying and milling. J. Appl. Phycol. 2002, 14, 445–451. [Google Scholar] [CrossRef]
- Bouissil, S.; El Alaoui-Talibi, Z.; Pierre, G.; Michaud, P.; El Modafar, C.; Delattre, C. Use of Alginate Extracted from Moroccan Brown Algae to Stimulate Natural Defense in Date Palm Roots. Molecules 2020, 25, 720. [Google Scholar] [CrossRef] [Green Version]
- Hjelland, F. Process for the Production of Alginate Having a High Mannuronic Acid-Content. US Patent US7838641B2, 23 November 2010. [Google Scholar]
- Li, Y.; Liu, W. Preparation Method of Sodium Alginate. Chinese Patent CN104311697A, 23 October 2014. [Google Scholar]
- Dangar, K.; Varsani, V.; Vyas, S. Characterization of sodium alginate extracted from brown seaweeds growing on Veraval coast, Gujarat. Plant Sci. Today 2021, 8, 45–48. [Google Scholar] [CrossRef]
- Flórez-Fernández, N.; Domínguez, H.; Torres, M.D. A green approach for alginate extraction from Sargassum muticum brown seaweed using ultrasound-assisted technique. Int. J. Biol. Macromol. 2018, 124, 451–459. [Google Scholar] [CrossRef] [PubMed]
- Mokoginta, M.K.; Indriati, N.; Dharmayanti, N.; Nurbani, S.Z. Extraction and characterization of sodium alginates from Sargassum polycystum for manufacturing of tuna (Thunnus sp.) meatballs. IOP Conf. Ser. Earth Environ. Sci. 2019, 278, 012047. [Google Scholar] [CrossRef]
- Dharmarathne, A.; Thilakasinghe, I.; Gunasekera, U.; Vijayarajah, V. Investigating the possibilities to produce alginate filaments with locally available seaweeds. In Proceedings of the 2020 Moratuwa Engineering Research Conference (MERCon), Moratuwa, Sri Lanka, 28–30 July 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 459–464. [Google Scholar]
- Laroche, C.; Michaud, P. A novel alginate from the brown seaweed Sargassum turbinaroides (Sargassae). In Current Topics on Bioprocesses in Food Industry; Larroche, C., Pandey, A., Dussap, C.G., Eds.; Asiatech Publishers: New Delhi, India, 2009; pp. 71–92. [Google Scholar]
- Garcia-Vaquero, M.; Ummat, V.; Tiwari, B.; Rajauria, G. Exploring Ultrasound, Microwave and Ultrasound–Microwave Assisted Extraction Technologies to Increase the Extraction of Bioactive Compounds and Antioxidants from Brown Macroalgae. Mar. Drugs 2020, 18, 172. [Google Scholar] [CrossRef] [Green Version]
- Yuan, Y.; Macquarrie, D.J. Microwave assisted step-by-step process for the production of fucoidan, alginate sodium, sugars and biochar from Ascophyllum nodosum through a biorefinery concept. Bioresour. Technol. 2015, 198, 819–827. [Google Scholar] [CrossRef] [PubMed]
- Borazjani, N.J.; Tabarsa, M.; You, S.; Rezaei, M. Effects of extraction methods on molecular characteristics, antioxidant properties and immunomodulation of alginates from Sargassum angustifolium. Int. J. Biol. Macromol. 2017, 101, 703–711. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sugiono, S.; Masruri, M.; Estiasih, T.; Widjanarko, S.B. Optimization of extrusion-assisted extraction parameters and characterization of alginate from brown algae (Sargassum cristaefolium). J. Food Sci. Technol. 2019, 56, 3687–3696. [Google Scholar] [CrossRef] [PubMed]
- Hanjabam, M.D.; Kumar, A.; Tejpal, C.; Krishnamoorthy, E.; Kishore, P.; Kumar, K.A. Isolation of crude fucoidan from Sargassum wightii using conventional and ultra-sonication extraction methods. Bioact. Carbohydrates Diet. Fibre 2019, 20, 100200. [Google Scholar] [CrossRef]
- Nigam, S.; Singh, R.; Bhardwaj, S.K.; Sami, R.; Nikolova, M.P.; Chavali, M.; Sinha, S. Perspective on the Therapeutic Applications of Algal Polysaccharides. J. Polym. Environ. 2021, 30, 785–809. [Google Scholar] [CrossRef] [PubMed]
- Alboofetileh, M.; Rezaei, M.; Tabarsa, M.; You, S. Ultrasound-assisted extraction of sulfated polysaccharide from Nizamuddinia zanardinii: Process optimization, structural characterization, and biological properties. J. Food Process. Eng. 2018, 42, 1–13. [Google Scholar] [CrossRef]
- Alboofetileh, M.; Rezaei, M.; Tabarsa, M.; Rittà, M.; Donalisio, M.; Mariatti, F.; You, S.G.; Lembo, D.; Cravotto, G. Effect of different non-conventional extraction methods on the antibacterial and antiviral activity of fucoidans extracted from Nizamuddinia zanardinii. Int. J. Biol. Macromol. 2018, 124, 131–137. [Google Scholar] [CrossRef] [PubMed]
- Kadam, S.U.; Tiwari, B.K.; O’Connell, S.; O’Donnell, C.P. Effect of Ultrasound Pretreatment on the Extraction Kinetics of Bioactives from Brown Seaweed (Ascophyllum nodosum). Sep. Sci. Technol. 2014, 50, 670–675. [Google Scholar] [CrossRef]
- Ruslan, R.; Amir, A.; Agrippina, W. Extraction of Sodium Alginate from Sargassum sp. using Microwave-Assisted Extraction (MAE). J. Pure Appl. Chem. Res. 2018, 8, 23–30. [Google Scholar] [CrossRef]
- Dobrinčić, A.; Balbino, S.; Zorić, Z.; Pedisić, S.; Bursać Kovačević, D.; Elez Garofulić, I.; Dragović-Uzelac, V. Advanced technologies for the extraction of marine brown algal polysaccharides. Mar. Drugs 2020, 18, 168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuan, Y.; Macquarrie, D. Microwave assisted extraction of sulfated polysaccharides (fucoidan) from Ascophyllum nodosum and its antioxidant activity. Carbohydr. Polym. 2015, 129, 101–107. [Google Scholar] [CrossRef] [PubMed]
- Jain, T.; Jain, V.; Pandey, R.; Vyas, A.; Shukla, S. Microwave assisted extraction for phytoconstituents—An overview. Asian J. Res. Chem. 2009, 2, 19–25. [Google Scholar]
- Torabi, P.; Hamdami, N.; Keramat, J. Microwave-assisted extraction of sodium alginate from brown macroalgae Nizimuddinia zanardini, optimization and physicochemical properties. Sep. Sci. Technol. 2022, 57, 872–885. [Google Scholar] [CrossRef]
- Charoensiddhi, S.; Conlon, M.A.; Franco, C.M.M.; Zhang, W. The development of seaweed-derived bioactive compounds for use as using enzyme technologies. Trends Food Sci. Technol. 2017, 70, 20–33. [Google Scholar] [CrossRef] [Green Version]
- Okolie, C.L.; Mason, B.; Mohan, A.; Pitts, N.; Udenigwe, C.C. Extraction technology impacts on the structure-function relationship between sodium alginate extracts and their in vitro prebiotic activity. Food Biosci. 2020, 37, 100672. [Google Scholar] [CrossRef]
- Lee, B.-B.; Ravindra, P.; Chan, E.-S. Size and Shape of Calcium Alginate Beads Produced by Extrusion Dripping. Chem. Eng. Technol. 2013, 36, 1627–1642. [Google Scholar] [CrossRef]
- Tan, C.; Toh, W.Y.; Wong, G.; Lin, L. Extrusion-based 3D food printing—Materials and machines. Int. J. Bioprinting 2018, 4, 143. [Google Scholar] [CrossRef]
- Sugiono, S.; Masruri, M.; Estiasih, T.; Widjarnako, S.B. Structural and Rheological Characteristics of Alginate from Sargassum cristaefolium Extracted by Twin Screw Extruder. J. Aquat. Food Prod. Technol. 2019, 28, 944–959. [Google Scholar] [CrossRef]
- Heffernan, N.; Smyth, T.J.; FitzGerald, R.J.; Soler-Vila, A.; Brunton, N. Antioxidant activity and phenolic content of pressurised liquid and solid-liquid extracts from four Irish origin macroalgae. Int. J. Food Sci. Technol. 2014, 49, 1765–1772. [Google Scholar] [CrossRef]
- Santoyo, S.; Plaza, M.; Jaime, L.; Ibañez, E.; Reglero, G.; Señorans, J. Pressurized liquids as an alternative green process to extract antiviral agents from the edible seaweed Himanthalia elongata. J. Appl. Phycol. 2011, 23, 909–917. [Google Scholar] [CrossRef] [Green Version]
- Blanco-Pascual, N.; Alemán, A.; Gómez-Guillén, M.C.; Montero, M.P. Enzyme-assisted extraction of κ/ι-hybrid carrageenan from Mastocarpus stellatus for obtaining bioactive ingredients and their application for edible active film development. Food Funct. 2014, 5, 319–329. [Google Scholar] [CrossRef] [Green Version]
- Saravana, P.S.; Cho, Y.-J.; Park, Y.-B.; Woo, H.-C.; Chun, B.-S. Structural, antioxidant, and emulsifying activities of fucoidan from Saccharina japonica using pressurized liquid extraction. Carbohydr. Polym. 2016, 153, 518–525. [Google Scholar] [CrossRef] [PubMed]
- Vijayalakshmi, K.; Latha, S.; Rose, M.H.; Sudha, P.N. Industrial applications of alginate. In Industrial Applications of Marine Biopolymers; Sudha, P.N., Ed.; CRC Press: Boca Raton, FL, USA, 2017; pp. 545–575. [Google Scholar]
- Xiao, Y.; Lang, M.; Huang, X. Micelles/sodium-alginate composite gel beads: A new matrix for oral drug delivery of indomethacin. Catrbohydr. Polym. 2012, 87, 790–798. [Google Scholar]
- Zhang, M.; Zhao, X. Alginate hydrogel dressings for advanced wound management. Int. J. Biol. Macromol. 2020, 162, 1414–1428. [Google Scholar] [CrossRef] [PubMed]
- Barbu, A.; Neamtu, B.; Zăhan, M.; Iancu, G.M.; Bacila, C.; Mireșan, V. Current Trends in Advanced Alginate-Based Wound Dressings for Chronic Wounds. J. Pers. Med. 2021, 11, 890. [Google Scholar] [CrossRef] [PubMed]
- Niculescu, A.-G.; Grumezescu, A.M. An Up-to-Date Review of Biomaterials Application in Wound Management. Polymers 2022, 14, 421. [Google Scholar] [CrossRef] [PubMed]
- Lai, W.-F.; Huang, E.; Lui, K.-H. Alginate-based complex fibers with the Janus morphology for controlled release of co-delivered drugs. Asian J. Pharm. Sci. 2021, 16, 77–85. [Google Scholar] [CrossRef] [PubMed]
- McHugh, D.J. Production, properties and uses of alginates. Production and Utilization of Products from Commercial Seaweeds. FAO Fish. Tech. Pap. 1987, 288, 58–115. [Google Scholar]
- Martău, G.A.; Mihai, M.; Vodnar, D.C. The use of chitosan, alginate, and pectin in the biomedical and food sector—Biocompatibility, bioadhesiveness, and biodegradability. Polymers 2019, 11, 1837. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gheorghita Puscaselu, R.; Lobiuc, A.; Dimian, M.; Covasa, M. Alginate: From Food Industry to Biomedical Applications and Management of Metabolic Disorders. Polymers 2020, 12, 2417. [Google Scholar] [CrossRef] [PubMed]
- Raus, R.A.; Nawawi, W.M.F.W.; Nasaruddin, R.R. Alginate and alginate composites for biomedical applications. Asian J. Pharm. Sci. 2020, 16, 280–306. [Google Scholar] [CrossRef] [PubMed]
- Nandini, V.; Venkatesh, K.V.; Nair, K.C. Alginate impressions: A practical perspective. J. Conserv. Dent. 2008, 11, 37–41. [Google Scholar] [CrossRef]
- Pereira, L.; Cotas, J. Introductory Chapter: Alginates—A General Overview. In Alginates—Recent Uses of This Natural Polymer; IntechOpen: London, UK, 2020. [Google Scholar]
- Qin, Y.; Zhang, G.; Chen, H. The applications of alginate in functional food products. J. Nutr. Food Sci. 2020, 3, 100013. [Google Scholar]
- Muri, J.M.; Brown, P.J. Alginate Fibres, in Biodegradable and Sustianable Fibres; Blackburn, R., Ed.; Taylor & Francis: Abingdon, UK, 2005. [Google Scholar]
- Kopacic, S.; Walzl, A.; Zankel, A.; Leitner, E.; Bauer, W. Alginate and Chitosan as a Functional Barrier for Paper-Based Packaging Materials. Coatings 2018, 8, 235. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, N.; Nassar, S.; El-Shishtawy, R.M. Novel Green Coloration of Cotton Fabric. Part II: Effect of Different Print Paste Formulations on The Printability of Bio-mordanted Fabric with Madder Natural Dye. Egypt. J. Chem. 2020, 63, 1669–1677. [Google Scholar]
- Iro Alginate Industry Co., Ltd. Alginate Application in Paper. 2020. Available online: https://www.iroalginate.com/app-paper.htm (accessed on 24 April 2022).
- Bhairappanavar, D.S.; Vastrad, J. Sodium alginate: An alternative source for printing of cotton fabric with arecanut slurry. Pharma Innov. J. 2021, 10, 178–184. [Google Scholar]
- Suksup, R.; Imkaew, C.; Smitthipong, W. Cream Concentrated Latex for Foam Rubber Products; IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK; Volume 272, p. 012025.
- Sham, K.; Liu, S. Flux-coating development for smaw consumable electrode of high-nickel alloys. Welding Res. 2014, 93, 271–281. [Google Scholar]
- Shen, Y.; Wang, H.; Li, W.; Liu, Z.; Liu, Y.; Wei, H.; Li, J. Synthesis and characterization of double-network hydrogels based on sodium alginate and halloysite for slow release fertilizers. Int. J. Biol. Macromol. 2020, 164, 557–565. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Li, X.; Wu, C.; Zhao, Y.; Gao, B.-Y.; Yue, Q. The role of sodium alginate in improving floc size and strength and the subsequent effects on ultrafiltration membrane fouling. Environ. Technol. 2013, 35, 10–17. [Google Scholar] [CrossRef]
- Srinivasan, A.; Viraraghavan, T. Decolorization of dye wastewaters by biosorbents: A review. J. Environ. Manag. 2010, 91, 1915–1929. [Google Scholar] [CrossRef] [PubMed]
- Seghetta, M.; Romeo, D.; D’Este, M.; Alvarado-Morales, M.; Angelidaki, I.; Bastianoni, S.; Thomsen, M. Seaweed as innovative feedstock for energy and feed—Evaluating the impacts through a life cycle assessment. J. Cleaner Prod. 2017, 150, 1–15. [Google Scholar] [CrossRef]
- Czyrnek-Delêtre, M.M.; Rocca, S.; Agostini, A.; Giuntoli, J.; Murphy, J.D. Life cycle assessment of seaweed biomethane, generated from seaweed sourced from integrated multi-trophic aquaculture in temperate oceanic climates. Appl. Energy 2017, 196, 34–50. [Google Scholar] [CrossRef]
- Anand, K.G.V.; Eswaran, K.; Ghosh, A. Life cycle impact assessment of a seaweed product obtained from Gracilaria edulis—A potent plant biostimulant. J. Clean. Prod. 2018, 170, 1621–1627. [Google Scholar] [CrossRef]
- Duarte, C.M.; Bruhn, A.; Krause-Jensen, D. A seaweed aquaculture imperative to meet global sustainability targets. Nat. Sustain. 2021, 5, 185–193. [Google Scholar] [CrossRef]
- Cottier-Cook, E.J.; Nagabhatla, N.; Asri, A.; Beveridge, M.; Bianch, P.; Bolton, J.; Bondad-Reantaso, M.G.; Brodie, J.; Buschmann, A.; Cabarubias, J.; et al. Ensuring the sustainable future of the rapidly expanding global seaweed aquaculture industry—A vision: United Nations University Institute on Comparative Regional Integration Studies and Scottish Association for Marine Science Policy Brief. 2021. Available online: https://cris.unu.edu/gsstarpolicybrief (accessed on 24 April 2022).
- Govumoni, S.P.; Koti, S.; Kothagouni, S.Y.; Venkateshwar, S.; Linga, V.R. Evaluation of pretreatment methods for enzymatic saccharification of wheat straw for bioethanol production. Carbohydr. Polym. 2013, 91, 646–650. [Google Scholar] [CrossRef]
- Ajala, E.O.; Ighalo, J.O.; Ajala, M.A.; Adeniyi, A.G.; Ayanshola, A.M. Sugarcane bagasse: A biomass sufficiently applied for improving global energy, environment and economic sustainability. Bioresour. Bioprocess. 2021, 8, 87. [Google Scholar] [CrossRef]
- Mahato, N.; Sharma, K.; Sinha, M.; Baral, E.R.; Koteswararao, R.; Dhyani, A.; Cho, M.H.; Cho, S. Bio-sorbents, industrially important chemicals and novel materials from citrus processing waste as a sustainable and renewable bioresource: A review. J. Adv. Res. 2020, 23, 61–82. [Google Scholar] [CrossRef] [PubMed]
- Herrero, E.P.; Del Valle, E.M.; Galán, M.A. Development of a new technology for the production of microcapsules based in atomization processes. Chem. Eng. J. 2006, 117, 137–142. [Google Scholar] [CrossRef]
- Zaky, A.S.; Greetham, D.; Tucker, G.A.; Du, C. The establishment of a marine focused biorefinery for bioethanol production using seawater and a novel marine yeast strain. Sci. Rep. 2018, 8, 12127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fillaudeau, L.; Blanpain-Avet, P.; Daufin, G. Water, wastewater and waste management in brewing industries. J. Clean. Prod. 2006, 14, 463–471. [Google Scholar] [CrossRef]
Species | Mannuronic Acid (%) | Guluronic Acid (%) | M/G Ratio | Reference |
---|---|---|---|---|
Ascophyllum nodosum Bifurcaria bifurcata Fucus guiryi | 46.0 | 54.0 | 0.85 | [17] |
65.0 | 35.0 | 1.88 | [18] | |
82.0 | 18.0 | 4.41 | [18] | |
Fucus vesiculosus Laminaria digitata | 59.0 | 41.0 | 1.44 | [17] |
59.0 | 41.0 | 1.44 | [19,20] | |
Laminaria hyperborea, fronds Laminaria hyperborea, stems Laminaria japonica Laminaria ochroleuca | 56.0 | 44.0 | 1.28 | [21] |
30.0 | 70.0 | 0.43 | [21] | |
65.0 | 35.0 | 1.86 | [22] | |
72.0 | 28.0 | 2.52 | [18] | |
Macrocystis pyrifera Saccharina longicruris | 61.0 | 39.0 | 1.56 | [23] |
41.0 | 59.0 | 0.69 | [17] | |
Saccorhiza polyschides | 63.0 | 37.0 | 1.73 | [18] |
Sargassum vulgare | 56.0 | 44.0 | 1.27 | [24] |
Processes | Pros | Cons |
---|---|---|
Conversional process | ||
with fine milling | Increase surface area, increase reaction/extraction rate, reduce reaction time | Extra energy cost, may affect molecular weight of alginate |
with formaldehyde soaking | Soften cell well, remove phenolic compounds, remove pigment | Toxic chemical, need treatment before deposal, long process time |
Sodium alginate extraction route | Fewer steps, high yield, good rheological properties | High organic solvent usage, high water footprint |
Alginic acid extraction route | Lower solvent usage, low cost | Longer steps, low yield, |
Calcium alginate extraction route | Lower solvent usage, low cost | Longer steps, poor mechanical properties |
Green process | ||
Ultrasound-Assisted Extraction (UAE) | Low solvent requirement, environmental friendly, easy handling, fast extraction rate | Additional equipment cost, further investigate is required to demonstrate the benefits |
Microwave-Assisted Extraction (MAE) | Fast heating, fast extraction, environmental friendly | Concern of scale up |
Enzyme-Assisted Extraction (EAE) | Environmentally friendly, non-toxic and rapid process | Enzyme is expensive, enzyme is sensitive to extraction conditions |
Extrusion-Assisted Extraction (ExAE) | Good mixing, high solid ratio, low solvent requirement | Concern of scale up, lack of investigation |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saji, S.; Hebden, A.; Goswami, P.; Du, C. A Brief Review on the Development of Alginate Extraction Process and Its Sustainability. Sustainability 2022, 14, 5181. https://doi.org/10.3390/su14095181
Saji S, Hebden A, Goswami P, Du C. A Brief Review on the Development of Alginate Extraction Process and Its Sustainability. Sustainability. 2022; 14(9):5181. https://doi.org/10.3390/su14095181
Chicago/Turabian StyleSaji, Sijin, Andrew Hebden, Parikshit Goswami, and Chenyu Du. 2022. "A Brief Review on the Development of Alginate Extraction Process and Its Sustainability" Sustainability 14, no. 9: 5181. https://doi.org/10.3390/su14095181
APA StyleSaji, S., Hebden, A., Goswami, P., & Du, C. (2022). A Brief Review on the Development of Alginate Extraction Process and Its Sustainability. Sustainability, 14(9), 5181. https://doi.org/10.3390/su14095181