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Abstract: This study looks to propose a hybrid soft computing approach that can be used to accurately
estimate the shear strength of reinforced concrete (RC) deep beams. Support vector regression (SVR)
is integrated with three novel metaheuristic optimization algorithms: African Vultures optimization
algorithm (AVOA), particle swarm optimization (PSO), and Harris Hawks optimization (HHO). The
proposed models, SVR-AVOA, -PSO, and -HHO, are designed and compared to reference existing
models. Multi variables are used and evaluated to model and evaluate the deep beam’s shear
strength, and the sensitivity of the selected variables in modeling the shear strength is assessed.
The results indicate that the SVR-AVOA outperforms other proposed and existing models for the
shear strength prediction. The mean absolute error of SVR-AVOA, SVR-PSO, and SVR-HHO are
43.17 kN, 44.09 kN, and 106.95 kN, respectively. The SVR-AVOA can be used as a soft computing
technique to estimate the shear strength of the RC deep beam with a maximum error of ±3.39%.
Furthermore, the sensitivity analysis shows that the deep beam’s key parameters (shear span to depth
ratio, web reinforcement’s yield strength, concrete compressive strength, stirrups spacing, and the
main longitudinal bars reinforcement ratio) are efficiently impacted in the shear strength detection of
RC deep beam.

Keywords: reinforced concrete; deep beam; shear strength; support vector regression;
metaheuristic optimization

1. Introduction

In many high-rise reinforced concrete (RC) buildings, as the use of areas is changed
from one story to another, some columns in the upper stories are not permitted to reach
the foundation. To solve this conflict, transfer girders with a considerable thickness named
deep beams are required [1,2]. Furthermore, deep beams are used in many other critical
structures and play a significant role in delivering heavy loads to the bearing elements [2,3].
Deep beams have high flexural stiffness, and the shear diagonal failure is the predominant
mechanism as the loads are mainly transferred from their action points to the supports
locations through a direct diagonal strut [1–4]. Concrete compressive strength, the provided
top/bottom reinforcements, and web reinforcements in terms of amount and spacing all
form the shear resistance of these deep beams [1,2,4,5]. In literature, plenty of analytical
and numerical studies have been focused on the ultimate shear strength assessment of such
beams with large depths compared to their spans [2,3,6–9]. Unavoidable discrepancies
were found with the implementation of both analytical/numerical methods compared to
the experimental results [4]. This study aims to propose a novel soft computing approach
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that can be used to predict an accurate shear strength of RC deep beams based on a wide
range of test results collected from different experimental studies.

Many researchers have used different regression methods to estimate the shear
strength of RC deep beams [8,10]. Recently, soft computing techniques have been proposed
and improved the prediction techniques of shear strength of beams [3,7,11–15]. A con-
ventional artificial neural network (ANN) was applied to estimate the shear strength of
the RC deep beam, and the accuracy of the designed model was high [7]. The ultimate
shear strength of the RC deep beam was also estimated using ANN and compared to
different building codes, and the proposed model provided an accurate prediction of shear
capacity [6]. ANN, adaptive network-based fuzzy inference system (ANFIS), and group
method of data handling (GMDH) approaches were used in predicting the shear strength
of RC beam-column joints, and the performance of these models was high at a different
range of shear strength [15]. A probabilistic model was applied to estimate the shear
strength of beams, and the determination of shear strength was shown to be accurate [14].
Integrated genetic programming and simulated annealing (GSA) outperformed American
concrete institute (ACI) and Canadian standard association (CSA) codes in modeling the
shear strength of RC deep beams [2]. The shear strength of beams reinforced by fiber was
calculated using hybrid support vector regression (SVR) and firefly optimization algorithm
(FFA), and the designed model was shown to be robust in shear strength prediction [13].
ANN was integrated with the adaptive harmony search optimization (AHS) technique for
modeling the shear strength of RC walls, and the proposed model accuracy was high [12].
Multivariate adaptive regression splines (MARS) and artificial bee colony (ABC) were also
integrated to design a model for predicting the shear strength of RC deep beams, and the
performance of MARS-ABC was higher than different building codes in shear strength
estimation [16]. Generally, parameters of machine learning (ML) models are tuned using
metaheuristic algorithms to improve the prediction efficiency of ML models [17–22].

Meanwhile, novel optimization algorithms have recently been developed, such as
the African Vultures optimization algorithm (AVOA), particle swarm optimization (PSO),
and Harris Hawks optimization (HHO). Although these techniques are used in different
engineering applications [17–19], the AVOA optimization technique is not applied yet in
shear strength prediction based on our literature. PSO was integrated with an adaptive
neuro-fuzzy inference system (ANFIS) to predict the shear strength of high strength concrete
for a slender beam, and the ANFIS-PSO attained the best modeling accuracy over ANFIS
-ant colony optimizer (ANFIS-ACO), -differential evolution (ANFIS-DE), and -genetic
algorithm (ANFIS-GA) [20]. Teaching–learning-based optimization (TLBO), PSO, and
HHO were integrated with SVR, and the results of SVR-PSO, SVR-HHO, and SVR-TLBO
were robust and can be used to estimate an accurate shear strength prediction of RC shear
walls [21].

Based on the above literature, the hybrid SVR models are more robust for predicting
the shear strength of RC deep beams [3,16,21,23]. This study aims to evaluate a new hybrid
technique (SVR-AVOA) in predicting the shear strength of RC deep beams. To benchmark
the proposed SVR-AVOA model, the hybrid known models SVR-PSO and SVR-HHO are
proposed and compared; in addition, the recent mathematical studies and building codes
are compared to the proposed model to assess its accuracy of it in modeling shear strength
of RC beam. SVR-AVOA, SVR-PSO, and SVR-HHO are developed using different scenarios
of input variables. For this study, 202 datasets, including 19 variables of experimental
studies, were collected from literature to design and evaluate the proposed models. The
sensitivity analysis of optimum input variables is proposed and evaluated.

2. Background of Variables Impacts the Shear Strength of RC Deep Beams

Figure 1i presents a real case of deep beam function in load transfer of buildings and
variables that impact the shear strength value. Figure 1ii demonstrates the main parameters
of the deep beam. Figure 1iii illustrates the failure mode of deep beams. In the figures, V
represents the deep beam shear capacity, a is the horizontal distance from the load to the
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support, and d denotes the deep beam depth. Here, V depends on (1) Concrete quality
f ′c (for the diagonal strut), (2) Main steel yield strength fy (for the main tie), and (3) Web
reinforcement (horizontal and vertical). As some variables have a big role in forming the
deep beam’s shear strength, the main variables considered in this study are the shear span
to depth ratio, the main reinforcement, ratio and yield strength, concrete compressive
strength, and web reinforcement characteristics.

Figure 1. (i) Real case of using deep beams (left) and deep beam terminology (right); V: Shear
strength, a: Shear span, d: Effective depth of beam. (ii) Basic reinforcement details of simple RC
deep beam. (iii) Failure pattern in deep beam (left), Different mechanism components (middle), and
Flow of forces in deep beam (right); where, C = compression force in concrete, T = tensile force in
the main steel, Hs = tensile force in horizontal web reinforcement, Vs = tensile force in vertical web
reinforcement; 1: Main diagonal strut, 2: Splitting tension force, 3: Main tensile force.
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Many researchers investigated the deep beam’s shear strength evaluation and predic-
tions [1–4,24,25]. They concluded that the compressive strength of concrete ( f ′c), the shear
span to the beam’s depth ratio (a/d), bottom longitudinal reinforcement ratio (ρ), and web
reinforcement ratio (both vertical ρv and horizontal ρh) are the main key parameters. The
previous analytical/experimental studies focused on the role of f ′c in forming V. In the
case of beams with smaller a/d ratios, the role of the truss mechanism in transferring loads
to the support location diminishes, and the direct diagonal strut is the main transferring
load mechanism to the support’s location. The effectiveness of such struts has a significant
impact on V values [3]. Smith and Vantsiotis [26] and Ahmed [27] observed an increase
in V of the deep beam with increasing fc of concrete, but the relationship was not linearly
proportional. In addition, they observed no improvement in V if fc was above a certain
limit. The non-proportional increase in shear strength compared to the increase in concrete
compressive strength can be attributed to two reasons. First, the limited contribution of
the aggregate interlock mechanism in members with high strength concrete compared
to the one with normal strength concrete, as the cracks cross the aggregate particles in
high strength concrete and do not go around them as in normal strength concrete. Second,
the formed tensile strains perpendicular to the main diagonal strut work on reducing the
benefits of using high strengths. Oh and Shin [28] noticed a brittle failure of deep beams
with concrete of 74 MPa without any warning, which is different from the failure of other
beams with 23 MPa. They also observed a decrease in the rate of increase in the ultimate
strength of beams with high-strength concrete.

The inclination angle of the main diagonal strut plays a significant role in determining
the concrete efficiency in the diagonal strut. This angle is directly dependent on the shear
span to depth ratio a/d. As this angle increases, the forces can go directly inside the
diagonal strut to the support. The previous studies [3,29] noticed that the increase in shear
strength could be detected by decreasing the a/d ratio. Kim and Park [30] found a trivial
impact of this ratio on the shear strength of beams with ratios greater than three, and the
contrary was noticed for beams with ratios less than three. Oh and Shin [28] concluded
that the ratio of a/d is the governing key parameter in determining the shear strength of a
deep beam with high-strength concrete. In addition to resisting the induced tensile force of
the main horizontal tie, the main reinforcement bars play an important role in controlling
the width enlargement of the diagonal main cracks by dowel action mechanism and enable
the aggregate interlock to work more effectively. Many researchers investigated the impact
of the main reinforcement ratio on the deep beam’s shear strength [3,31,32]. They observed
a significant increase in the shear strength with increasing the main reinforcement ratio
but up to a certain limit. Above a ratio of 1.5%, Ashour et al. [33] noticed a local concrete
crushing damage due to compressive stress concentration at the top strut far from the main
diagonal strut without enabling the diagonal strut to reach its ultimate resistance.

Web reinforcement has an important role in confining the concrete and delivering the
tensile stresses at the main shear diagonal crack to the intact zones around the crack, which
consequently increases the deep beam’s shear strength [2]. Both vertical and horizontal web
reinforcement has a key role in resisting shear stresses and limiting the enlargement of the
width of the main diagonal crack [3]. In deep beams with higher a/d ratios, the contribution
of vertical reinforcement is more obvious than the horizontal reinforcements, and the
contrary is noticed for beams with a/d less than 1.0. As the deep beam’s shear strength
is dependent on many parameters, the increase of horizontal and vertical reinforcement
above a certain limit does not influence the ultimate shear strength as other parameters
may govern the situation without reaching the maximum capacity of the provided web
reinforcement.

Table 1 presents the existing models used in this study compared to the developed
models. The performance of these models was used significantly in shear strength determi-
nation for the RC deep beams of structures.
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Table 1. Summary of existing models.

Ref. Equation Explanation

ACI [10] Vu = 0.17
√

f ′cbd +
Av fyd(sin θ+cosθ)

s
θ is the angle between the stirrups and the beam

longitudinal axis

Russo [8] Vu = 0.545
(

kX f ′c cosα + 0.25ρh fyhcotα + 0.35 a
d ρv fyv

)
bd

k =
√
(nρ)2 + 2nρ− nρ

tan α = a
0.9d

X = 0.74
(

f ′c
105

)3
− 1.28( f ′c

105 )
2
+ 0.22

(
f ′c

105

)
+ 0.87

Liu [4] Vu = VCLZ + Vci + Vs + Vd

VCLZ is the shear resisted at the critical loading zone, Vci
represents the contribution of aggregate interlock, Vs is
the shear resisted by web reinforcement and Vd is the

dowel action in the main longitudinal bars.

where: f ′c is the compressive strength of concrete, b is the beam width, d is the beam effective depth, Av is
the vertical web reinforcement, fyv and fyh are the yield strength of vertical and horizontal web reinforcement
respectively, s is the spacing between the vertical web reinforcement, ρh and ρv are the ratio of horizontal and
vertical web reinforcement respectively, n is the modular ratio, ρ is the ratio of the main longitudinal bars.

3. Material and Data Collection

The Supplementary Material (Table S1) presents the data collected from the litera-
ture. For this study, 202 datasets were collected from the literature. In the current study,
19 input variables were used and divided into two categories, the main (8 variables) and
other (11 variables) variables, as presented in Table S2. Here, the main variables were
considered based on our literature in the previous section, Section 2; the other variables
were considered while the impact on shear strength calculation was high. The direct rela-
tionship between each variable and the ultimate shear strength (Vu) of the RC deep beam
is presented in Figure S1. Exponential, linear, logarithmic, and power functions were used
to estimate the best direct relationship equation between Vu and input variables. Table 2
presents the summary of these functions.

Table 2. Direct relationship functions between Vu and input variables.

Variable Equation (R2) Variable Equation (R2) Variable Equation (R2)

a/d y = 358.43x−0.803 (0.26) b y = 117.38 × 100.0052x (0.21) Ag y = 476.32x−0.164 (0.03)

ρ y = 65.95ln(x) + 345.74 (0.01) d y = 0.7899x + 35.304 (0.35) Std y = 165.06 × 100.0731x (0.05)

fy y = 396ln(x) − 2024.7 (0.16) h y = 0.6985x + 32.425 (0.33) Bd y = 524.3x−0.262 (0.03)

f ′c y = 495.94ln(x) − 1234.7 (0.39) a y = 259.88 × 100.0003x (0.015)

where:
y represents the Vu

x represents input variables
R2 is the coefficient of determination

ρv y = 325.96 × 10−0.159x (0.01) Lp y = 169.42 × 100.0054x (0.15)

s y = 0.2678x + 344.21 (0.06) Sp y = 169.42 × 100.0054x (0.15)

fyv y = 19.734x0.4588 (0.07) V/P y = 199.58x + 199.66 (0.010)

ρh y = −371.18x + 429.11 (0.10) # bars y = 483.29ln(x) − 199.43 (0.37)

From Table 2, it can be observed that the power function has the best correlation
with Vu in the case of using a/d and fyv of the main variables. The relationship of ρv
with Vu is exponential. The linear correlation can be detected between Vu and (s and
ρh). ρ, fy, and f ′c are correlated with Vu based on logarithmic functions. The best R2

between Vu and the main variables is 0.39 for the f ′c variable. These results indicate that
the relationship between the main variables and Vu cannot be estimated directly, and a
complex relationship may be detected by using all main variables. Similarly, for the other
variables, the relationship between Vu and variables varies. The best R2 is estimated using
a number of main bars, R2 = 0.37. The variation in R2 indicates the complex relationship
between Vu and all variables. Table 2 and Figure S1 show the increase of the resistance
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with beam effective width and height, number of main bars, and concrete strength up to a
certain limit.

The statistical evaluation, range (RA), average (M), standard deviation (SD), kurtosis
(KU), and skewness (SK) of the used datasets is presented in Table 3. From the table,
the range of datasets varies and will affect the models’ performances, so the normalized
datasets are used to overcome the range change of variables. The data is normalized
between 0 and 1 in this study. In addition, in the proposed models, it is recommended to
use the given ranges of input variables. The average and standard deviation values show
that the distortion of datasets is high. The kurtosis and skewness values indicate that the
distribution of datasets is not normal. Figure 2 presents the histogram and distribution of
main variables and Vu. The figure shows positive skewness for whole variables is observed;
the distribution is also supported by the presented values in Table 3.

Figure 2. Cont.
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Figure 2. Distribution histogram of input and output variables.

Table 3. Statistical analysis of input and output variables.

Variable RA M SD KU SK Variable RA M SD KU SK

a/d 1.93 1.28 0.46 −0.03 0.38 b (mm) 200.00 188.18 66.50 −0.94 0.28

ρ (%) 3.50 2.00 0.82 0.16 0.65 d (mm) 1374.00 443.74 212.19 11.52 3.14

fy (MPa) 502.00 459.71 147.09 0.50 1.26 h (mm) 1550.00 505.91 235.73 12.91 3.32

f ′c (MPa) 66.10 28.33 13.75 7.04 2.64 a (mm) 1600.00 543.97 242.31 2.87 1.09

ρv (%) 1.25 0.29 0.32 0.69 1.10 Lp (mm) 210.00 113.11 45.63 3.05 2.04

s (mm) 330.00 155.33 80.63 0.54 1.07 Sp (mm) 210.00 113.11 45.63 3.05 2.04

fyv (MPa) 791.00 430.68 171.05 6.12 2.55 V/P 0.50 0.93 0.16 2.96 −2.18

ρh (%) 0.91 0.12 0.24 3.58 2.15 #bars 10.00 3.61 1.70 10.50 2.95

Vu (kN) 1869.00 385.80 285.02 6.25 2.09 Ag (mm) 22.00 14.20 5.67 0.53 1.29

Std (mm) 12.70 8.67 2.42 −0.38 −0.11

Bd (mm) 6.20 7.66 2.08 −0.74 −0.65

4. Methods and Development Models
4.1. Support Vector Regression

Pal and Deswal [23] and Mozumder et al. [34] proposed the SVR formulas and theory
in shear strength to predict RC beams. It was found to be a powerful computation technique
for predicting the shear strength of deep beams [3,23]. Here, a summary of SVR is presented.
SVR is the regression category of support vector machine (SVM), aiming to find a function
that represents the relationship between inputs features to forecast the corresponding
value when a new input is used. In SVR, “a fixed mapping procedure to map its input to
n-dimensional feature space; then nonlinear functions are used to fit the high-dimensional
features [35]”. Vapnik [35] proposed a loss function to allow the concept of SVM margin
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to be used for regression solutions. The following equation represents the mathematical
formula for the SVRs’ approximation function [23,34]:

f (x) = wϕ(x) + b (1)

C =
1
2

w + C
1
n

n

∑
i=1

L(x, d) (2)

where w and ϕ represent the weight vector and transformation functions, respectively; x
and d are the input and output vectors, and b denotes a scalar. In Equation (1), the w and b
are used to determine the normal and scalar vector, respectively, for the high-dimensional

space, which is determined through ϕ(x). Terms 1
2 w and C 1

n

n
∑

i=1
L(x, d) in Equation (2)

are the standard error and the penalty terms, respectively. The ε-insensitive loss function
introduced by Vapnik [34] is commonly used to estimate the Equation (1) parameters
through the following minimization function [23,34]:

minimize 0.5‖ w ‖2 + C
n

∑
i=1

(ξi + ξ∗i ) subjected to


di − (wxi)− b ≤ ε + ξi
(wxi) + b− di ≤ ε + ξ∗i

ξi, ξ∗i ≥ 0
(3)

where C > 0, which controls the trade-off between the model complexity and the amount up
to which deviations larger than ε are tolerated. Equation (3) can be transformed to a dual
space using Lagrange multipliers solution. This solution can be expressed as follows [23,34]:

maximize L = −ε
n
∑

i=1

(
α∗i + αi

)
+

n
∑

i=1
di
(
α∗i − αi

)
−0.5

n
∑

i=1

n
∑

j=1

(
α∗i − αi

)(
α∗j + αj

)(
xi − xj

)
subjected to


n
∑

i=1

(
αi − α∗i

)
= 0

0 ≤ α∗i ≤ C
0 ≤ αi ≤ C

(4)

where L denotes the Lagrangian and αi and α∗i represent the Lagrange multiplier. Once
Equation (4) is used to estimate the parameters of Equation (2), Equation (1) can be rewritten
as [23,34]:

f (x) = ∑
nsv

(α∗i − αi)(xk.x) + b (5)

where nsv represents the number of support vectors (xr, xs). Here, the solution of this
equation depends on the training pattern of Lagrange multipliers, which are only applied
to estimate the w and b. Therefore, the kernel function is commonly used to solve the
nonlinear regression problems in SVR. The Kernel functions can transform the nonlinear
problems into linear problems, as presented in Yaseen et al. [36], which allows the SVR to
solve more complex problems. The nonlinear SVR can be expressed as follows:

f (x) = ∑
nsv

(α∗i − αi)K(xix) + b (6)

where K is the kernel function; K(xix) = (ϕ(xi)ϕ(x)). In the current study, the radial basis
kernel (RBF) is applied.

It should be mentioned that the SVR is built with statistical theory and based on the
minimization of structural risk principle [37]. It is a popular method for a small count
of data, high dimensional, and non-linear problems. Therefore, SVR is used in many
applications [13,38,39] for prediction tasks. Generally, SVR is a type of convex optimization
technique to search a local solution within a problem domain [37]. The tuning of learning
parameters of SVR greatly impacts the evaluation quality. Therefore, finding optimal
values of SVR parameters from global searched cost is a difficult task [40]. Nature-inspired
algorithms are proved to be successful in finding the local best solution from the global one.



Sustainability 2022, 14, 5238 9 of 21

This work applied and showed PSO, HHO, and AVOA for optimizing SVR parameters
with faster convergence capability to provide better prediction accuracy of the SVR model
in the deep beam’s shear strength prediction.

4.2. Optimization Methods

To optimize the best parameters (C, ε, and KernelScale (γ)) of SVR, the PSO, HHO,
and AVOA algorithms are used separately in the current work.

4.2.1. PSO

Kennedy and Eberhart (1995) proposed a metaheuristic population-based optimization
algorithm named particle swarm optimization (PSO). The mechanism of the PSO is inspired
by the fish schooling and foraging of the flock of birds while exploring an unknown region.
Further, PSO is defined as a swarm of particles moving nearby the problem space by the
influence of its global (Gbest) and local best (Pbest) position [41]. Therefore, a population
search algorithm is used in PSO in a nature-inspired manner to analyze the input data
features. The best position of the whole swarm is required to optimize the parameters.
These can be performed through nature-inspired behaviors and learning experiences of
population particles. PSO was found to be a robust integrated technique with SVR and
ANN to model the shear strength of concrete [36,41,42]. PSO algorithm may be summarized
as follows:

• First, it initializes the particle of the swarm, then defines the maximum number of
iterations, and finally defines the cost function.

• After defining the cost function, it evaluates the swarm in order to identify the global
and local best.

• Lastly, it calculates the velocity of each particle and then updates its position using the
following equations:

vik = wvik + coe f1rand1(Pbest,ik − yik) + coe f2rand2(Gbest, ik − yik) (7)

yik = yik + vik (8)

where yi denotes the i-th particle, k = the k-th dimension of the particle, coe f 1 and coe f 2
represent the acceleration coefficients, w refers to the inertia weight, rand 1 and rand 2
represent the random coefficients, which are randomly limited between zero and one. More
details for PSO theory can be found in [43,44].

4.2.2. HHO

Heaidari and Mirjalili (2019) proposed a gradient-free, population-based optimization
technique named Harris hawks optimization (HHO) [45]. The main inspiration behind
HHO is surprised pounce, i.e., the chasing style and cooperative behavior of Harris’ hawks
in nature. According to the HHO optimization technique, numerous hawks cooperate to
surprise a prey by pouncing it from multiple directions. They display a variety of pursuit
patterns based on different scenarios and escaping patterns of the prey. The mechanism of
HHO is that it mimics the Harris’ hawk behavior in that trace, encircle, flush out, and attack
the prey. It has been integrated with SVR and ANN to model the concrete characteristics
and other engineering applications [21,46–49]. The main phases in the attacking of hawks
are exploration (phase 1), transferring (phase 2), and exploitation (phase 3). In phase 1, the
hawk depends on its position from the prey based on his waiting, seeking, and discovering;
this can be expressed as follows:

Y(iter + 1) =

{
Yranm(iter)− r1|Yranm(iter)− 2r2Yranm(iter) i f n ≥ 0.5(
Yprey(iter)−Ym(iter)

)
− r3(LB + r4(UL− LL)) i f n < 0.5

(9)
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where Yranm and Yprey indicate the random position for the selected hawk and prey’s
position, respectively. UL and LL indicate the upper and lower range; ri indicates a random
number, having a value between 0 and 1; and Ym = 1/N ∑N

1 Yi(iter).
In phase 2, the prey energy is modeled as E = 2E0

(
1− iter

T

)
, where T and E0 ∈ (−1, 1),

and they indicate that energy falls for the prey with their escapes. Thus, the hawk can
decide the solution based on the E computation and starting in phase 3 when |E| ≥ 1, and
exploiting the neighborhood when |E| < 1. Once starting phase 3, hawks decide to apply
a soft or hard besiege. |E| ≥ 0.5 indicates the prey still has enough energy to escape, but
maybe some misleading jumps occur in it to fail, so a soft besiege works. On the other
hand, in the case of |E| < 0.5, the prey is too fatigued to escape, so hard besiege works.
Here, the HHO is used to optimize the SVR parameters.

4.2.3. AVOA

Abdollahzadeha and Gharehchopogh (2021) recently introduced a metaheuristic al-
gorithm named African vultures’ optimization algorithm (AVOA) [17]. The inspiration
behind the development of the AVOA algorithm is the competing and searching behavior
of vultures to acquire a large amount of food. To acquire a large amount of food, these
vultures, ‘N’ (N denotes the population of vulture), were divided into categories based on
their fitness to find food and eat. The solution with the highest fitness value is treated as
the first-best vulture and the second-best solution as the second-best vulture. The rest of
the vultures were trying to approach the best vulture. This is formulated as follows.

Step 1: To determine the best vulture in the group. Fitness of all solutions is determined,
and the best solution is selected as the best vulture of the group and other solutions will
move towards the best solution using:

R(i) =
{

vulturebest1 i f pi = K1
vulturebest2 i f pi = K2

(10)

where the value of K1 and K2 lies between 0 and 1 with their sum equal to 1.
Step 2: Starvation rate of vultures. The starvation rate is the rate at which the vultures

are satiated or hungry. The satiated rate has a declining trend, and to model, behavior
Equation (11) is used,

F = (2ranm1 + 1)P
(

1− iteri
itermax

)
+ t (11)

t = h
(

sinw
(

0.5π
iteri

itermax

)
+ cos

(
0.5π

iteri
itermax

)
− 1
)

(12)

where F indicates the vultures are satiated. If the value of |F| is greater than 1, vultures
search for food in different areas, and the algorithm enters the exploration phase, whereas
if the value is less than 1, AVOA enters the exploitation phase, and vultures search for food
in the neighborhood. iteri Indicates the iteration number, itermax indicates the total number
of iterations, ranm1 has a random value between 0 and 1. Here, z and h indicate random
numbers with values lying between −1 to 1 and −2 to 2, respectively. If the value of z is
less than 0, it indicates the vulture is starved, and if it increases to 0, it indicates the vulture
is satiated. Here, w indicates the optimization operation disrupts the exploration and
operation phases. By increasing the value of w, the probability of entering the exploration
phase in the final optimization stages increases, and vice versa for decreasing the value of w.

Step 3: Exploration phase. In this phase, different random areas can be examined
using two different strategies. To select the strategies in the ranm1 exploration phase, a
random number between 0 and 1 is generated. This procedure is shown in Equation (13).

P(i + 1) =
{

R(i)− |XR(i)− P(i)|F i f P1 ≥ ranmP1
R(i)− F + ranm2((UB− LB)ranm3 + LB) i f P1 < ranmP1

(13)
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where P(i + 1) indicates the vulture position vector in the next iteration, F indicates the rate
of vulture being satiated, and R(i) indicates one of the best vultures, which is selected at
step 1 in the current iteration. X indicates a coefficient vector that increases the random
motion by changing in each iteration and is obtained using the formula X = 2 × ranm,
where ranm is a random number between 0 and 1.

Step 4: Exploitation phase. In this phase, the efficiency stage of the algorithm is
investigated. If the value of |F| is less than 1, the algorithm enters the exploitation phase.
Here, the exploitation phase is categorized based on the |F| value. If |F| is between 1 and
0.5, the rotating flight strategy of the vulture is processed based on parameter P2. This can
be processed as follows:

P(i + 1) =

 |XR(i)− P(i)|(F + ranm4)− (R(i)− P(i)) i f P2 ≥ ranmP2

R(i)−
[(

R(i)(cos(P(i)))
(

ranm5P(i)
2π

))
+
(

R(i)(sin(P(i)))
(

ranm6P(i)
2π

))]
i f P1 < ranmP2

(14)

If |F| is less than 0.5, the two vultures’ movements accumulate several types of vul-
tures over the food sources, and the siege and aggressive strife to find food are implemented
using parameter P3. This can be defined as follows:

P(i + 1) =

{ A1+A2
2 i f P3 ≥ ranmP3

R(i)− (|R(i)− P(i)|)(F)(LF(d)) i f P3 < ranmP3
(15)

where,

A1 = vulturebest1(i)− F
vulturebest1(i)P(i)

vulturebest1(i)− P(i)2 ; and A2 = vulturebest2(i)− F
vulturebest2(i)P(i)

vulturebest2(i)− P(i)2 (16)

LF(x) = 0.01
µσ

|v|1/β
, σ =

(
Γ(1 + β) sin(πβ/2)

Γ(1 + β2)β2((β− 1)/2)

)1/β

(17)

In which, vulturebest1(i) and vulturebest2(i) are the best vulture of the first and second
groups, respectively, in the iteration i; d is the problem dimensions, µ and v denotes a
random number between 0 and 1, and β = 1.5.

In this work, AVOA is used to tune the SVR parameter set to find the efficient perfor-
mance of the SVR model.

4.3. Models’ Development and Accuracy Assessment

This study proposed a new hybrid AVOA metaheuristic algorithm-based SVR model
to find the optimal parameters (C, ε, and γ) of SVR and compare its performance with
other two metaheuristics nature-inspired algorithms (called PSO and HHO)-based SVR
model. Generally, the robustness of the SVR model depends on an appropriate selection
of the parameters named as the penalty parameter/”BoxConstraint” (C), insensitive loss
function/”epsilon” (ε), and the kernel parameter/”KernelScale” (γ/gamma). The range
of these parameters is large, and it is difficult to search for the optimal set of values for
these three parameters. Therefore, this optimization task may be solved using optimization
algorithms. The authors of this article used three metaheuristic algorithms (AVOA, PSO,
and HHO) to find the optimal parameter set of the SVR model. Figure 3 shows the process
flow of the proposed technique. Initially, the missing value from the dataset is replaced
using the k-nearest neighbor (KNN) imputer method. This study used a Euclidean distance
measure to fill the missing value. The whole dataset is bifurcated into a train (80%) and
test (20%) set. The three-metaheuristic algorithm is used to train SVR parameters for
all/selected featured datasets separately. Root means squared error (RMSE) is selected
as the fitness function of all algorithms. Metaheuristic algorithms are sensitive to their
different parameter set. The Hit and trail approach is used to select the initial parameter
set of metaheuristic algorithms. Table 4 shows the initial value of all parameters of three
algorithms for SVR training. Since the number of epochs and population size affect the
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convergence rate of metaheuristic algorithms, this research work aims to find a faster
convergence rate of metaheuristic algorithm with 15 epochs and five population sizes
(Table 4).

Figure 3. Process flowchart of the proposed method.

Table 4. Initial parameters of metaheuristic algorithms to train the SVR model.

Metaheuristic Algorithm Parameters Value

AVOA

Population 5
Iteration 15

P1 0.9
P2 0.3
P3 0.6

Alpha 0.8
Beta 0.2

Gamma 2.5
Range of C [103, 10−3]
Range of ε [103, 10−3]
Range of γ [103, 10−3]

PSO

Population 5
Iteration 15

C1 1
C2 2

Range of C [103, 10−3]
Range of ε [103, 10−3]
Range of γ [103, 10−3]

HHO

Population 5
Iteration 15

N 3
Range of C [103, 10−3]
Range of ε [103, 10−3]
Range of γ [103, 10−3]

To evaluate the accuracy of the proposed models, eight statistical indices are used:
coefficient of determination (R2), variance account factor (VAF), variance inflation factor
(VIF), mean absolute error (MAE), root mean square error (RMSE), performance index (PI),
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mean bias error (MBE), and percentage error (PE). The R2 and VAF are used to measure
the correlation between the measured and predicted values. VIF is used to evaluate the
collinearity between the measured and predicted values; VIF > 10 indicates high collinearity.
The models’ errors are evaluated using MAE, RMSE, and MBE, and the PE is used to
estimate the accuracy of the proposed model error in predicting the shear strength of RC
deep beams. The mathematical expression of these indices can be expressed as follows:

R2 =
∑N

i=1(Vi −Vmean)
2 −∑N

i=1
(
Vi −Vpi

)2

∑N
i=1(Vi −Vmean)

2 (18)

VAF = 100

(
1−

var
(
Vi −Vpi

)
var(Vi)

)
(19)

VIF =
1

1− R2 (20)

RMSE =

√
∑N

i=1
(
Vi −Vpi

)2

N
(21)

MAE =
∑N

i=1
∣∣(Vi −Vpi

)∣∣
N

(22)

MBE =
1
N

N

∑
i=1

(
Vi −Vpi

)
(23)

PI = adj R2 + (0.01VAF)− RMSE (24)

PE = 100
RMSE

Vmax −Vmin
(25)

where Vi and Vpi represent the measured and predicted shear strength, Vmean, Vmax, and
Vmin are the average, maximum, and minimum, respectively, of measured values, adj R2 is
the adjustment R2, and N is the number of the data sample.

4.4. Sensitivity Analysis

Cosine Amplitude Method (CAM) is used to analyze the strength of the relation
between input the parameter and power factor [50]. It can also be used to determine the
express similarity relation between correlated parameters. To apply CAM, all the data pairs
were stated in common X-space. The data pairs used to construct a data array defined K as:

K = {K1, K2, K3, . . . , Kn} (26)

Every elements i.e., Ki, in the data array K is a vector of lengths j, i.e.,:

Ki =
{

ki1, ki2, ki3, . . . , Kij
}

1 (27)

Therefore, each of the data pairs is represented as a point in m-dimensional space,
where each point requires j-coordinates for its complete description.

5. Results and Discussion

Two scenarios are presented in this section. The first is the evaluation of the proposed
models based on all variables and the study of the effect of all variables on Vu estimation.
Second, the main variables are considered in modeling and evaluating the sensitivity of
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input variables on the best selection model. The best solution is compared to existing
models in the shear strength determination of RC deep beams.

5.1. All Variables Impact on Vu Estimation

Table 5 presents the statistical indices of the proposed models. The numerical inves-
tigation of the statistical indices shows that the performance of the AVOA-SVR model
is better to estimate Vu with R2 = 0.98 and RMSE = 32.20 kN in the training stage. The
comparison between all models using performance indices of all statistical indices in the
training and testing stages shows that the AVOA-SVR model has a high index. However,
the performance of HHO-SVR is better in terms of PI, RMSE, and PE in the testing stage.
Moreover, Figure 4 illustrates the linear correlation between experimental and predicted
Vu values for the proposed models. From Figure 4, it is shown that the performance of the
AVOA-SVR model is more accurate than other proposed models in the training and testing
stages. The distortion of data points around best fitting is small in modeling Vu with the
AVOA-SVR model, and the VIF is higher than in other models, as presented in Table 5. This
means that when we used all variables, the AVOA-SVR model can be used to estimate Vu
with a model error approach of 6.95%.

Table 5. Statistical evaluation of the proposed models.

Training R2 VAF VIF PI RMSE MAE MBE PE

AVOA-SVR 0.984 97.330 64.510 −30.241 32.198 24.377 −0.047 1.723

PSO-SVR 0.813 78.261 5.358 −89.973 91.568 31.605 26.960 4.899

HHO-SVR 0.818 66.278 5.500 −62.003 63.483 105.885 −6.032 3.397

Testing R2 VAF VIF PI RMSE MAE MBE PE

AVOA-SVR 0.756 67.921 4.102 −76.076 77.505 101.702 −13.001 6.949

PSO-SVR 0.630 52.981 2.706 −75.687 76.837 106.357 17.850 6.889

HHO-SVR 0.715 45.786 3.514 −46.690 47.856 162.579 −56.320 4.290

The comparison between the AVOA-SVR model and previous studies is presented in
Table 6. The statistical evaluation of relative predicted shear strength (Vu measured/predicted
(Vm/p)) is presented in Table 6; COV is the coefficient of variation. From this table, it can be
observed that the AVOA-SVR model performance is better and slightly better than ACI and
Russo algorithms, respectively. Although the distortion around the mean for the proposed
model is lower than for the Russo technique, the range of datasets for Russo is better than
the proposed models. The Liu technique is better than previous and proposed models when
considering the whole variables in modeling shear strength through the AVOA-SVR model.
The selected variables are used and evaluated in the next section to estimate more accurate
Vu values.

Table 6. Vm/p statistical evaluation for AVOA-SVR and previous studies.

Model M Maximum Minimum SD COV

Liu [4] 1.10 1.54 0.65 0.15 0.13

Russo [8] 1.00 1.63 0.48 0.19 0.19

ACI [10] 0.59 2.06 0.09 0.41 0.69

AVOA-SVR 0.95 1.87 0.34 0.16 0.17



Sustainability 2022, 14, 5238 15 of 21

Figure 4. Scatter plot of model’s performances in the training (upper row) and testing (lower row) stages.

5.2. Selected Variables Impact on Vu Estimation

Table 7 and Figure 5 present the performance evaluation of the proposed models. The
performance of AVOA-SVR is high in the training stage. A high correlation, R2 = 0.97, and
low model error, PE = 2.25%, are observed. In the testing stage, a low distortion around
best fitting is observed with the AVOA-SVR. In addition, the statistical correlation factors
are high, R2 = 0.97 and VAF = 94.46, as presented in Table 7 and Figure 5. The VIF values of
AVOA-SVR in the training and testing stages are higher than other models. This means
the accuracy of AVOA-SVR is acceptable with low distortion around the observed values.
Although the PI and RMSE of the HHO-SVR models are lower than for the AVOA-SVR
model, the distortion of HHO-SVR datasets is high, as presented in Table 7 and Figure 5.
Meanwhile, the performance of the proposed models is shown to be low to estimate the
high shear strength (as presented in Figures 4 and 5). However, the performance of AVOA-
SVR is seen as more robust. This indicates that AVOA-SVR can overcome the variation
change in the data used. Figure 6 also shows a faster convergence rate of the AVOA-SVR
model compared to the other two hybrid models. Therefore, the AVOA-SVR can be used to
estimate the shear strength of RC deep beams with 3.4% model accuracy. The statistical
comparison indices in Tables 5 and 7 show that the performance of proposed models with
the selected variables is better than that for using all variables in modeling the proposed
techniques. This means that the selected variables are more influential in the shear strength
of RC deep beams.
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Figure 5. Scatter plot of model’s performances in the training (upper row) and testing (lower row) stages.

Table 7. Statistical evaluation of the proposed models.

Training R2 VAF VIF PI RMSE MAE MBE PE

AVOA-SVR 0.974 96.726 39.202 −40.095 42.036 26.728 −0.360 2.249

PSO-SVR 0.834 81.625 6.042 −90.753 92.402 32.755 18.958 4.944

HHO-SVR 0.816 71.805 5.427 −72.442 73.975 92.860 −7.926 3.958

Testing R2 VAF VIF PI RMSE MAE MBE PE

AVOA-SVR 0.970 94.460 33.512 −35.876 37.790 43.168 −7.149 3.388

PSO-SVR 0.950 91.774 20.118 −45.091 46.958 44.085 0.475 4.210

HHO-SVR 0.948 79.860 19.147 −33.841 35.586 106.952 −50.633 3.190

Figure 6. Convergence rate of three models.
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5.3. Comparison with Previous Studies and Codes

Table 8 and Figure 7 show the performance of the proposed model compared to the
previous studies’ formulas. As seen in Table 8, the used selected variable improved the
AVOA-SVR performance by 60% in terms of COV. This indicates that the selected variables
are significantly affected by the Vu values of the RC deep beams. The comparison between
previous formulas and AVOA-SVR shows that the proposed model accuracy is high in
estimating the shear strength of RC deep beams. The small range is estimated with AVOA-
SVR, and the range is 0.57 kN. The small SD and COV of the statistical indices are observed
with AVOA-SVR. This means the accuracy of AVOA-SVR is high compared to other models.

Table 8. Vm/p statistical evaluation for AVOA-SVR and previous studies.

Model M Maximum Minimum SD COV

Liu [4] 1.10 1.54 0.65 0.15 0.13

Russo [8] 1.00 1.63 0.48 0.19 0.19

ACI [10] 0.59 2.06 0.09 0.41 0.69

AVOA-SVR 0.98 1.33 0.76 0.07 0.07

The boxplot in Figure 7a shows that the median, red horizontal line of Russo, is close
to the true value “1”, followed by the AVOA-SVR and Liu models, respectively. The
low interquartile range (IQR) value, the height of the box, is observed to be small with
the AVOA-SVR model, followed by Liu and Russo models, respectively. The maximum
and minimum quartiles, the black horizontal solid lines, are small with the AVOA-SVR
model, followed by Liu and Russo models, respectively. The outliers are observed near the
median of the AVOA-SVR and far to the median of the ACI model. From the visualization
of boxplot results, it can be concluded that the performance of the AVOA-SVR model
is more accurate than the previous studies for modeling the shear strength of RC deep
beams. In addition, the following model is the Liu model, as this model considers more
shear resistance mechanisms and shows a higher normal distribution and lower error than
Russo’s and ACI’s models. The quantile-quantile (Q-Q) plot is presented in Figure 7b for
the Liu and AVOA-SVR models for further investigation. The relative shear strength is
presented versus the standard normal distribution. From this figure, both models have
approximately followed the normal distribution; this indicates that both models can be
used to estimate the shear strength of the RC deep beam. The AVOA-SVR model has
more correlation with the standard normal distribution, and the VAOA-SVR model is more
accurate than the Liu technique in modeling the shear strength of RC deep beams. The
scatter plot presented in Figure 7c,d shows that the worst model for estimating the shear
strength is the ACI’s model. The variation in the best solution “1” is shown as small for
Russo, Liu, and AVOA-SVR models, respectively. The most of relative shear strength of
the AVOA-SVR model falls within ±20%. The comparison of the AVOA-SVR model and
previous models shows that the developed model can be used accurately to model the
shear strength of the RC deep beams. Therefore, the AVOA-SVR model is a potential soft
computing technique that can be used in predicting the shear strength of RC deep beams.
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Figure 7. Comparison of model’s performances, (a) boxplot, (b) Q-Q plot, (c) scatter plot of relative
shear strength with measured shear strength, and (d) zoom in for upper plot with +20% limits for the
best models.

5.4. Sensitivity Analysis of Input Variables

Figure 8 presents the most influential input variables in modeling the shear strength
of the RC deep beam. The impact of the input variables is presented for the three models.
From Figure 8, it can be noticed that the significant impact of the ratio of vertical and
horizontal web reinforcements is low compared to other variables. The sensitivity of the
shear span to depth ratio is high, followed by the yield strength of the main steel, the ratio
of the main tensile bars, yield strength of vertical web reinforcement, stirrups spacing, and
concrete compressive strength, respectively. The impact of the input variables on output
for the other developed models is similar. These results imply that the shear strength of
the RC deep beam is highly influenced by the beam geometry, concrete strength, and yield
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strength of the steel bars. The stirrups spacing also has a large effect on the shear strength
of RC deep beams.

Figure 8. Sensitivity of input variable on model’s prediction.

6. Conclusions

This study investigated the use of new metaheuristic optimization algorithms inte-
grated with SVR to model the shear strength of RC deep beams and evaluate the sensitivity
of input parameters. SVR-AVOA, -PSO, and -HHO were designed and compared to ex-
isting models in the current study. In this study, 202 datasets, including 19 variables of
experimental studies, were collected from literature to design and evaluate the proposed
models. The common eight parameters (shear span to depth ratio, the ratio of the main
tensile bars, yield strength of main bars, concrete compressive strength, the ratio of vertical
web reinforcement (stirrups), stirrups spacing, yield strength of vertical web reinforcement,
and the ratio of horizontal web reinforcement) are also used to evaluate the performance
of the proposed models’ in predicting the shear strength of RC deep beams. The perfor-
mance of SVR-AVOA is high in the cases of the used 19 and 8 parameters for modeling the
shear strength. The accuracy of SVR-AVOA is improved by 60%, in COV terms, using the
common input variables. Thus, other parameters were found less significant in modeling
the shear strength of RC deep beams. The comparison of the SVR-AVOA and the previous
studies shows that the accuracy of the proposed model is higher than Liu [4], Russo [8],
and ACI [10] by 46%, 63%, and 90%, respectively, in terms of COV. This indicates that
SVR-AVOA is the more robust model and can be accurately used in modeling the shear
strength of RC deep beams. The sensitivity of the input variables in modeling the shear
strength of RC beams with the SVR-AVOA was assessed. This investigation shows the
impact of the shear span on the beam’s depth ratio, yield strengths of vertical and horizontal
web reinforcement, concrete compressive strength, stirrups spacing, and the ratio of the
main longitudinal bars on the deep beams’ shear strength.

Furthermore, the sensitivity of AVOA algorithm parameters can be tested to balance
between exploitation and exploration side for enhancing the SVR performance. In the
future, to check the efficiency of the proposed model should be tested on other datasets
and other civil engineering application areas. The AVOA algorithm can be combined with
other machine learning models like an extreme learning machine, random forest, etc., for
prediction tasks.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/su14095238/s1, Figure S1: Direct relationship between inputs
and output; Table S1: Data used in Modeling; Table S2: Modeling variables.

https://www.mdpi.com/article/10.3390/su14095238/s1
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Sustainability 2022, 14, 5238 20 of 21

Author Contributions: Conceptualization, M.R.K. and B.S.A.; methodology, M.R.K. and B.R.; soft-
ware, B.R.; validation, M.R.K., B.R. and B.S.A.; formal analysis, M.R.K. and B.S.A.; investigation,
M.R.K., B.R. and B.S.A.; resources, B.S.A.; data curation, M.R.K. and B.S.A.; writing—original draft
preparation, M.R.K., B.R. and B.S.A.; writing—review and editing, M.R.K., B.R., K.C. and B.S.A.;
visualization, M.R.K., B.R., K.C., S.-M.K., H.-M.J. and B.S.A.; supervision, M.R.K. and J.-W.H.; project
administration, M.R.K., J.-W.H. and B.S.A.; funding acquisition, J.-W.H. All authors have read and
agreed to the published version of the manuscript.

Funding: This work was supported by Incheon National University Research Concentration Profes-
sors Grant in 2021.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data used are available in the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Lee, Y.; Kim, S.; Kim, S. FEM Analysis of RC Deep Beam Depending on Shear-Span Ratio. Archit. Res. 2017, 19, 117–124.
2. Gandomi, A.; Alavi, A.; Shadmehri, D.M.; Sahab, M. An empirical model for shear capacity of RC deep beams using genetic-

simulated annealing. Arch. Civ. Mech. Eng. 2013, 13, 354–369. [CrossRef]
3. Chou, J.-S.; Ngo, N.-T.; Pham, A.-D. Shear Strength Prediction in Reinforced Concrete Deep Beams Using Nature-Inspired

Metaheuristic Support Vector Regression. J. Comput. Civ. Eng. 2016, 30, 04015002. [CrossRef]
4. Liu, J. Kinematics-Based Modelling of Deep Transfer Girders in Reinforced Concrete Frame Structures. Ph.D. Thesis,

Liege University, Liege, Belgium, 2019.
5. Hwang, W.-Y.L.S.; Lee, H. Shear Strength Prediction for Deep Beams. ACI Struct. J. 2000, 97, 367–376. [CrossRef]
6. Yavuz, G. Shear strength estimation of RC deep beams using the ANN and strut-and-tie approaches. Struct. Eng. Mech. 2016, 57,

657–680. [CrossRef]
7. Nguyen, T.-A.; Ly, H.-B.; Mai, H.-V.T.; Tran, V.Q. On the Training Algorithms for Artificial Neural Network in Predicting the

Shear Strength of Deep Beams. Complexity 2021, 2021, 5548988. [CrossRef]
8. Russo, G.; Venir, R.; Pauletta, M. Reinforced Concrete Deep Beams-Shear Strength Model and Design Formula. ACI Struct. J. 2005,

102, 429–437.
9. Dang, T.D.; Tran, D.T.; Nguyen-Minh, L.; Nassif, A.Y. Shear resistant capacity of steel fibres reinforced concrete deep beams: An

experimental investigation and a new prediction model. Structures 2021, 33, 2284–2300. [CrossRef]
10. ACI. Building Code Requirement for Structural Concrete and Commentary; ACI: Detroit, MI, USA, 2011; p. ACI-318.
11. Ben Chaabene, W.; Nehdi, M.L. Novel soft computing hybrid model for predicting shear strength and failure mode of SFRC

beams with superior accuracy. Compos. Part C Open Access 2020, 3, 100070. [CrossRef]
12. Keshtegar, B.; Nehdi, M.L.; Kolahchi, R.; Trung, N.-T.; Bagheri, M. Novel hybrid machine leaning model for predicting shear

strength of reinforced concrete shear walls. Eng. Comput. 2021, 0123456789. [CrossRef]
13. Al-Musawi, A.; Alwanas, A.A.H.; Salih, S.; Ali, Z.; Tran, M.T.; Yaseen, Z.M. Shear strength of SFRCB without stirrups simulation:

Implementation of hybrid artificial intelligence model. Eng. Comput. 2018, 36, 1–11. [CrossRef]
14. Ning, C.; Li, B. Analytical probabilistic model for shear strength prediction of reinforced concrete beams without shear reinforce-

ment. Adv. Struct. Eng. 2017, 21, 171–184. [CrossRef]
15. Naderpour, H.; Nagai, K. Shear strength estimation of reinforced concrete beam–column sub-assemblages using multiple soft

computing techniques. Struct. Des. Tall Spéc. Build. 2020, 29, 1–15. [CrossRef]
16. Cheng, M.-Y.; Cao, M.-T. Evolutionary multivariate adaptive regression splines for estimating shear strength in reinforced-concrete

deep beams. Eng. Appl. Artif. Intell. 2014, 28, 86–96. [CrossRef]
17. Abdollahzadeh, B.; Gharehchopogh, F.S.; Mirjalili, S. African vultures optimization algorithm: A new nature-inspired metaheuris-

tic algorithm for global optimization problems. Comput. Ind. Eng. 2021, 158, 107408. [CrossRef]
18. Dragoi, E.N.; Dafinescu, V. Review of Metaheuristics Inspired from the Animal Kingdom. Mathematics 2021, 9, 2335. [CrossRef]
19. Bagal, H.A.; Soltanabad, Y.N.; Dadjuo, M.; Wakil, K.; Zare, M.; Mohammed, A.S. SOFC model parameter identification by means

of Modified African Vulture Optimization algorithm. Energy Rep. 2021, 7, 7251–7260. [CrossRef]
20. Sharafati, A.; Haghbin, M.; Aldlemy, M.S.; Mussa, M.H.; Al Zand, A.W.; Ali, M.; Bhagat, S.K.; Al-Ansari, N.; Yaseen, Z.M.

Development of Advanced Computer Aid Model for Shear Strength of Concrete Slender Beam Prediction. Appl. Sci. 2020,
10, 3811. [CrossRef]

21. Parsa, P.; Naderpour, H. Shear strength estimation of reinforced concrete walls using support vector regression improved by
Teaching–learning-based optimization, Particle Swarm optimization, and Harris Hawks Optimization algorithms. J. Build. Eng.
2021, 44, 102593. [CrossRef]

22. Tosee, S.V.R.; Faridmehr, I.; Bedon, C.; Sadowski, Ł.; Aalimahmoody, N.; Nikoo, M.; Nowobilski, T. Metaheuristic Prediction of
the Compressive Strength of Environmentally Friendly Concrete Modified with Eggshell Powder Using the Hybrid ANN-SFL
Optimization Algorithm. Materials 2021, 14, 6172. [CrossRef]

http://doi.org/10.1016/j.acme.2013.02.007
http://doi.org/10.1061/(ASCE)CP.1943-5487.0000466
http://doi.org/10.14359/9624
http://doi.org/10.12989/sem.2016.57.4.657
http://doi.org/10.1155/2021/5548988
http://doi.org/10.1016/j.istruc.2021.05.091
http://doi.org/10.1016/j.jcomc.2020.100070
http://doi.org/10.1007/s00366-021-01302-0
http://doi.org/10.1007/s00366-018-0681-8
http://doi.org/10.1177/1369433217713924
http://doi.org/10.1002/tal.1730
http://doi.org/10.1016/j.engappai.2013.11.001
http://doi.org/10.1016/j.cie.2021.107408
http://doi.org/10.3390/math9182335
http://doi.org/10.1016/j.egyr.2021.10.073
http://doi.org/10.3390/app10113811
http://doi.org/10.1016/j.jobe.2021.102593
http://doi.org/10.3390/ma14206172


Sustainability 2022, 14, 5238 21 of 21

23. Pal, M.; Deswal, S. Support vector regression based shear strength modelling of deep beams. Comput. Struct. 2011, 89, 1430–1439.
[CrossRef]

24. Zhang, D.; Shahin, M.; Yang, Y.; Liu, H.; Chang, L. Effect of microbially induced calcite precipitation treatment on the bonding
properties of steel fiber in ultra-high performance concrete. J. Build. Eng. 2022, 50, 104132. [CrossRef]

25. Chen, B.; Zhou, J.; Zhang, D.; Su, J.; Nuti, C.; Sennah, K. Experimental study on shear performances of ultra-high performance
concrete deep beams. Structures 2022, 39, 310–322. [CrossRef]

26. Smith, K.N.; Vantsiotis, A.S. Shear Strength of Deep Beams. J. Am. Concr. Inst. 1982, 79, 201–213. [CrossRef]
27. Ahmed, A.K.E.-S. Concrete Contribution to the Shear Resistance of FRP-Reinforced Concrete Beams. Ph.D. Thesis, University of

Sherbrooke, Sherbrooke, QC, Canada, 2006.
28. Oh, J.-K.; Shin, S.-W. Shear Strength of Reinforced High-Strength Concrete Deep Beams. ACI Struct. J. 2001, 98, 164–173. [CrossRef]
29. El-Zoughiby, M.E. Z-Shaped Load Path: A Unifying Approach to Developing Strut-and-Tie Models. ACI Struct. J. 2021, 118,

35–48. [CrossRef]
30. Jin-Keun, K.; Yon-Dong, P. Shear strength of reinforced high strength concrete beam without web reinforcement. Mag. Concr. Res.

1994, 46, 7–16. [CrossRef]
31. Londhe, R. Shear strength analysis and prediction of reinforced concrete transfer beams in high-rise buildings. Struct. Eng. Mech.

2011, 37, 39–59. [CrossRef]
32. Mau, S.T.; Hsu, T. Formula for the Shear Strength of Deep Beams. ACI Struct. J. 1989, 86, 516–523. [CrossRef]
33. Ashour, A.; Alvarez, L.; Toropov, V. Empirical modelling of shear strength of RC deep beams by genetic programming.

Comput. Struct. 2003, 81, 331–338. [CrossRef]
34. Mozumder, R.A.; Roy, B.; Laskar, A.I. Support Vector Regression Approach to Predict the Strength of FRP Confined Concrete.

Arab. J. Sci. Eng. 2016, 42, 1129–1146. [CrossRef]
35. Vapnik, V. The Nature of Statistical Learning Theory; Springer: New York, NY, USA, 1995.
36. Yaseen, Z.M.; Tran, M.T.; Kim, S.; Bakhshpoori, T.; Deo, R. Shear strength prediction of steel fiber reinforced concrete beam using

hybrid intelligence models: A new approach. Eng. Struct. 2018, 177, 244–255. [CrossRef]
37. Yap, C.W.; Li, Z.; Chen, Y. Quantitative structure–pharmacokinetic relationships for drug clearance by using statistical learning

methods. J. Mol. Graph. Model. 2006, 24, 383–395. [CrossRef]
38. Du, K.; Liu, M.; Zhou, J.; Khandelwal, M. Investigating the Slurry Fluidity and Strength Characteristics of Cemented Backfill and

Strength Prediction Models by Developing Hybrid GA-SVR and PSO-SVR. Min. Met. Explor. 2022, 39, 433–452. [CrossRef]
39. Liu, Q.; Li, S.; Yin, J.; Li, T.; Han, M. Simulation of mechanical behavior of carbonate gravel with hybrid PSO–SVR algorithm.

Mar. Georesour. Geotechnol. 2022, 1–14. [CrossRef]
40. Ortúzar, J. Future transportation: Sustainability, complexity and individualization of choices. Commun. Transp. Res. 2021,

1, 100010. [CrossRef]
41. Mohammed, A.; Kurda, R.; Armaghani, D.J.; Hasanipanah, M. Prediction of Compressive Strength of Concrete Modified with Fly

Ash: Applications of Neuro-Swarm and Neuro-Imperialism Models. Comput. Concr. 2021, 27, 489–512.
42. Shahbazian, A.; Rabiefar, H.; Aminnejad, B. Shear Strength Determination in RC Beams Using ANN Trained with Tabu Search

Training Algorithm. Adv. Civ. Eng. 2021, 2021, 1639214. [CrossRef]
43. Kennedy, J.; Eberhart, R. Particle Swarm Optimization. In Proceedings of the IEEE International Conference on Neural Networks,

Perth, Australia, 27 November–1 December 1995; pp. 1942–1948. [CrossRef]
44. Yang, H.-C.; Zhang, S.-B.; Deng, K.-Z.; DU, P.-J. Research into a Feature Selection Method for Hyperspectral Imagery Using PSO

and SVM. J. China Univ. Min. Technol. 2007, 17, 473–478. [CrossRef]
45. Heidari, A.A.; Mirjalili, S.; Faris, H.; Aljarah, I.; Mafarja, M.; Chen, H. Harris hawks optimization: Algorithm and applications.

Futur. Gener. Comput. Syst. 2019, 97, 849–872. [CrossRef]
46. Golafshani, E.M.; Arashpour, M.; Behnood, A. Predicting the compressive strength of green concretes using Harris hawks

optimization-based data-driven methods. Constr. Build. Mater. 2021, 318, 125944. [CrossRef]
47. Wei, W.; Li, X.; Liu, J.; Zhou, Y.; Li, L.; Zhou, J. Performance Evaluation of Hybrid WOA-SVR and HHO-SVR Models with Various

Kernels to Predict Factor of Safety for Circular Failure Slope. Appl. Sci. 2021, 11, 1922. [CrossRef]
48. Zhang, H.; Nguyen, H.; Bui, X.-N.; Pradhan, B.; Asteris, P.G.; Costache, R.; Aryal, J. A generalized artificial intelligence model for

estimating the friction angle of clays in evaluating slope stability using a deep neural network and Harris Hawks optimization
algorithm. Eng. Comput. 2021, 1–14. [CrossRef]

49. Sammen, S.; Ghorbani, M.; Malik, A.; Tikhamarine, Y.; AmirRahmani, M.; Al-Ansari, N.; Chau, K.-W. Enhanced Artificial Neural
Network with Harris Hawks Optimization for Predicting Scour Depth Downstream of Ski-Jump Spillway. Appl. Sci. 2020,
10, 5160. [CrossRef]

50. Ji, X.; Liang, S.Y. Model-based sensitivity analysis of machining-induced residual stress under minimum quantity lubrication.
Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2015, 231, 1528–1541. [CrossRef]

http://doi.org/10.1016/j.compstruc.2011.03.005
http://doi.org/10.1016/j.jobe.2022.104132
http://doi.org/10.1016/j.istruc.2022.03.019
http://doi.org/10.14359/10899
http://doi.org/10.14359/10184
http://doi.org/10.14359/51730535
http://doi.org/10.1680/macr.1994.46.166.7
http://doi.org/10.12989/sem.2011.37.1.039
http://doi.org/10.14359/3008
http://doi.org/10.1016/S0045-7949(02)00437-6
http://doi.org/10.1007/s13369-016-2340-y
http://doi.org/10.1016/j.engstruct.2018.09.074
http://doi.org/10.1016/j.jmgm.2005.10.004
http://doi.org/10.1007/s42461-022-00560-w
http://doi.org/10.1080/1064119X.2022.2057261
http://doi.org/10.1016/j.commtr.2021.100010
http://doi.org/10.1155/2021/1639214
http://doi.org/10.4018/ijmfmp.2015010104
http://doi.org/10.1016/S1006-1266(07)60128-X
http://doi.org/10.1016/j.future.2019.02.028
http://doi.org/10.1016/j.conbuildmat.2021.125944
http://doi.org/10.3390/app11041922
http://doi.org/10.1007/s00366-020-01272-9
http://doi.org/10.3390/app10155160
http://doi.org/10.1177/0954405415601802

	Introduction 
	Background of Variables Impacts the Shear Strength of RC Deep Beams 
	Material and Data Collection 
	Methods and Development Models 
	Support Vector Regression 
	Optimization Methods 
	PSO 
	HHO 
	AVOA 

	Models’ Development and Accuracy Assessment 
	Sensitivity Analysis 

	Results and Discussion 
	All Variables Impact on Vu Estimation 
	Selected Variables Impact on Vu Estimation 
	Comparison with Previous Studies and Codes 
	Sensitivity Analysis of Input Variables 

	Conclusions 
	References

