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Abstract: The long-run relationship between economic growth and environmental quality has been
estimated within the framework of the environmental Kuznets Curve (EKC). Several studies have
estimated this relationship by using statistical models such as panel regression and time series
regression. The current study argues that there is a nonlinear relationship between environmental
quality indicators and economic and non-economic predictors and hence an appropriate nonlinear
model is required to predict it. An adaptive and nonlinear model, namely radial basis function
neural network (RBFNN) has been developed in this study. CO2 emission is used as the target output
and renewable energy consumption share, real GDP, trade openness, urban population ratio, and
democracy index are used as the predictors to estimate the EKC relationship for nineteen major CO2

emitting countries that account for 78% of the global emissions. The model developed in this study
could predict the CO2 emissions of all the countries with more than 95% accuracy. This finding
underlines the usefulness of the RBFNN model which can be used to predict emission levels of other
pollution indicators at the global level. Further, comparing two models, one with all the predictors
and the other excluding the renewable energy share, it was found that the model with renewable
energy share predicts CO2 emissions more accurately. This reinforces the already strengthening
campaign to encourage industries and governments to increase the share of renewable energy in total
energy use.

Keywords: EKC estimation; CO2 emissions prediction; neural networks; radial basis function neural
network; renewable energy consumption

1. Introduction

The likely impacts of economic growth on environmental degradation have been
analyzed and examined by economists for decades now but there is still no consensus on
how different predictors such as trade openness and energy consumption affect environ-
mental degradation [1]. Recent studies have highlighted the contribution of non-economic
factors such as democracy in determining the environmental quality of a country [2,3].
A lack of consensus can be attributed to the countries studied, the period chosen, the
choice of explanatory variables, and the methodologies used. The pioneering studies by
the early researchers such as Grossman and Krueger [4,5], Shafik and Bandyopadhyay [6],
and Selden and Song [7], have been continued with significant contributions by the later
researchers over the years and produced a large number of empirical studies, which
has popularly come to be known as “environmental Kuznets curve” (EKC). An inverted
U-shaped EKC hypothesis states that as a country’s economy develops, environmental
pollution increases initially and then begins to decline until it reaches a certain income level
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threshold. Once a certain (threshold) income level is attained, this results in an environ-
mental improvement [5,8,9]. Antweiler et al. [10] broke down the influence of international
trade on the environment into three distinct effects: scale, composition, and technique, and
then summed them together to calculate the overall impact of free trade on environmental
quality. Later, Managi et al. [11], Tsurumi and Managi [12,13], Kagohashi et al. [14], and
Abe et al. [15] produced more realistic results in the EKC relationship by treating income
and trade openness as endogenous variables.

Although numerous studies produce different estimates of EKC, there is still a common
shortcoming in these studies. The methods used are either time-series causality and
cointegration tests or panel regressions and panel cointegration regressions. These methods
typically estimate a single constant parameter for the relationship for the entire sample
period. Even though some prominent research takes into account structural breaks in their
estimated EKC relationship, they still produce constant estimates of the effect of economic
growth on indicators of environmental quality over the entire predicted period [16]. We
argue that there is a potential nonlinear relationship between air pollution and its economic
predictors such as GDP per capita, renewable energy consumption, and trade openness
over a period of time. If the apparent nonlinearities existing in this relationship are explicitly
modeled, more accurate predictions can be made. This is the major contribution of this
study to the EKC literature. We develop a nonlinear dynamic neural network model,
namely the radial basis function neural network (RBFNN) model to predict the CO2
emissions of 19 countries based on the economic factors such as real GDP (constant US$),
renewable energy share in total energy use, and trade openness measured by export and
import ratio to GDP and non-economic factors such as democracy status of a country and
urban population ratio. In the RBFNN model, the predictors (inputs) are passed through a
Gaussian function to receive information from each other through nodes (neurons) that
enhance their prediction ability. The adjoining weights are continuously adjusted by the
adaptive error learning process and the final output (CO2 emission) is produced.

The other major contribution of this study is to highlight the effect of renewable energy
consumption on the emission path of CO2. Though several studies have used this variable
in EKC estimation as detailed in Section 2, none of them have measured the accuracy
of their estimations. These studies in the linear statistical framework estimated a single
constant parameter for renewable energy’s effect on environmental quality indicators.
But whether these estimates could reliably predict the CO2 emission path for the entire
sample period they used is questionable. Unless, the studies compared the similarity
between the predicted and actual level of emissions based on their estimated parameters
and found a higher level of similarity, the validity of the estimates is doubtful. On this
premise, we compared the predictive accuracy of our model by comparing the actual
and predicted figures of CO2 using the mean absolute percentage error (MAPE) values
and found a very small error percentage. Furthermore, we used two specifications to
predict CO2 emissions for all countries. In the first specification, all the inputs except
for renewable energy share are used as inputs and in the second, the latter is added to
the list of inputs. Then, we compared the MAPE of the two specifications and found out
that the MAPE of the specification in which renewable energy is used is much smaller for
most countries compared to the one in which it is not used. This comparison of model
predictions validates the contribution of renewable energy in reducing CO2 emissions
beyond a reasonable doubt.

We have used only one environmental indicator in this study i.e., CO2 emission as this
is considered the biggest contributor to climate change and has been given special attention
in the reports of the Intergovernmental Panel on Climate Change (IPCC).

Finally, the democratic status of a country has been used as a non-economic factor in
the non-linear neural network model. Only a very few studies have used this indicator to
determine the shape of the EKC but they used it in the linear regression framework [2,3].
The nineteen countries selected for this study are the major emitters of CO2. Eleven of these
countries emit either 2% or more of the total global emissions and the rest eight countries
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emit 1%. They together account for 78% of the global CO2 emissions. The details of the
variables used and the source of the data are provided in Section 3. The RBFNN model is
explained in Section 4. The simulation procedure is described in Section 5 and the results
are interpreted in Section 6. Finally, Section 7 concludes with policy implications.

2. Literature Review

In recent years, the role of renewable energy consumption in the EKC relationship has been
examined by various authors and the relationship between renewable energy and CO2 emis-
sions was found to be less clear-cut. While Sugiawan and Managi [17], Sinha and Shahbaz [18],
Liu et al. [19], and Apergis et al. [20] claim that increasing renewable energy consumption
will result in a long-run reduction in CO2 emissions, other studies such as Adams and
Nsiah [21], Saidi and Omri [22] found that renewable energy increases CO2 emission in
some countries while reducing in some others. A few other studies such as Menyah and
Wolde-Rufael [23], Sinha et al. [24], and Tanti et al. [25] have found no significant long-term
relationship between renewable energy consumption and CO2 emission. Liu [26] while
reviewing China’s renewable energy law and policy observed several hindrances to higher
use of renewable energy, such as problems with fragmentation, obsolescence, and lack of
operability. Chen et al. [27] examined the possibility of an EKC relationship using provincial
data in China spanning a period from 1995 to 2012. Their results show a heterogenous
effect wherein there is no evidence of an inverted U-shaped relationship in the central and
western regions but was observed in the eastern region.

Bilgili et al. [28] using a dataset for a period spanning 2003–2018 on a set of devel-
oped countries, discovered an EKC relationship only for higher CO2 emitting countries.
The N-shaped nexus, on the other hand, is more prevalent in countries with lower car-
bon emissions. They also discovered that research and development in energy efficiency
is more effective at reducing carbon emissions than research and development in fossil
fuels and renewable energy sources combined. Gyamfi et al. [29] by using data from
1995 to 2018, found no evidence of an N-shaped EKC in the countries under study; in-
stead, they found an inverted U-shaped EKC relationship. They recommended that the
usage of renewable energy be increased to reduce pollution emissions in these countries.
Kirikkaleli and Adebayo [30] based on data for the period 1990–2015 and different time
series econometric models found a long-run relationship between CO2 emissions and their
probable drivers. They discovered that long-term public-private partnership investment in
energy has a favorable impact on CO2 emissions. Yang et al. [31] using a dataset of manu-
facturing industries from 38 countries observed that increased consumption of renewable
energy has resulted in modifications in the relationship between manufacturing growth
and CO2 emissions. Using data from the BRICS economies over a period from 1980 to 2016,
Khattak et al. [32] examined the role of technological innovation and renewable energy
use in the CO2 emissions growth path. They discovered that except for Brazil, innovative
efforts failed to reduce CO2 emissions in China, India, Russia, and South Africa. They also
demonstrated that except for South Africa, the increase in renewable energy use has helped
reduce CO2 emissions in the BRICS panel.

Using data from 31 provinces of China between 2007 and 2017, Zeraibi et al. [33]
found that government expenditure has a positive effect on environmental quality in
China. Chen et al. [34] using the panel data from China from 1980 to 2014, found a long-
run relationship between per capita CO2 emissions and the economic predictors. They
discovered that economic growth, non-renewable energy generation, and international
trade do not show an EKC relationship with CO2 emissions but the inclusion of renewable
energy production in the inputs confirmed the U-shaped EKC hypothesis. Khan et al. [35]
using data from 34 high-income countries over the period 1995–2017 show a reciprocal
relationship between GHG emissions and renewable energy in 22 countries. Yao et al. [36]
using a dataset of 17 developing and developed countries spanning a period from 1990 to
2014, found the existence of both the EKC and renewable energy Kuznets Curve (RKC)
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hypotheses. They showed that a 10% increase in renewable energy consumption rate led to
a reduction in carbon emissions by 1.6%.

Zeraibi et al. [37] used the levels of government expenditure as fiscal and broad
money supply as monetary policy instruments to predict CO2 emissions. Their findings
reveal that expansionary fiscal policy led to an increase in CO2 emissions whereas ex-
pansionary monetary policy decreased it in both the short- and long-run in China. They
could not find evidence for the EKC hypothesis, rather the relationship between economic
growth and carbon emissions was N-shaped. A carbon emission function was used by
Balsalobre-Lorente et al. [38] to examine an EKC relationship between economic growth
and CO2 emissions in five European Union countries for the period 1985 to 2016. In the
EU-5 countries, they discovered an N-shaped association between economic growth and
CO2 emissions. Furthermore, they discovered that the use of renewable electricity, the
use of natural resources, and the use of innovative energy technologies all contribute
to improved environmental quality. Using panel data from G20 countries, it has been
shown by Paramati et al. [39] that FDI inflows reduce CO2 emissions both in developed
and developing economies, but stock market expansion slows in developed economies.
They also discovered that the use of renewable energy significantly cuts CO2 emissions
while simultaneously increasing economic production across the countries represented in
their panels. After conducting research on 30 nations over the period 2000 to 2013, Kim
and Park [40] concluded that developing the financial sector in a country can aid in the
deployment of more renewable energy, which in turn can assist reduce CO2 emissions.

Apart from the economic factors, the environmental quality may also be affected by
the non-economic factors such as the political institutions that are involved in the process of
environmental policymaking in a country [41]. Several environmental problems, according
to Romuald [42], can be attributed to institutional failure and ineffective government
practices and policies. Goel et al. [43] claim that numerous measures have been enacted to
compel economic agents to internalize environmental externalities (directly or indirectly).
A critical aspect in the success of these initiatives is a country’s institutional quality. Within
this body of literature, some scholars have concentrated on the democracy–pollution nexus,
while others have evaluated the effect of political freedom on pollution.

A few studies have taken into account political variables that are related to the income–
pollution relationship [44,45]. The findings are mixed when examined empirically. Ac-
cording to the findings of the studies by Torras and Boyce [45], Barrett and Graddy [44],
Li and Reuveny [46], and Farzin and Bond [47], democratization results in citizens being
better informed and better equipped to demonstrate their dissatisfaction with government.
Torras and Boyce [45] discovered that democracy had a favorable and statistically signifi-
cant impact on environmental quality in general, and particularly in low-income nations.
Farzin and Bond [47] discover evidence suggesting a country’s level of democracy and
the liberties that come with it are positively related to the condition of the environment.
Several academics, on the other hand, believe that democracy may not improve or even
deteriorate environmental quality [48–50]). Roberts and Parks [49], for example, conclude
that democracy does not affect carbon emissions. In addition, Scruggs [50] finds that when
wealth disparity is taken into account, there is no significant association between democracy
level and three environmental indicators (dissolved oxygen demand, fecal coliform, and
particle emissions). Midlarsky [48], on the other hand, indicates that a higher level of
democracy is connected with a worse environmental performance in a country.

3. Materials

The International Energy Agency (IEA, Paris, France) has compiled data on carbon
dioxide (CO2) emissions from the combustion of natural gas, coal, oil, and other fuels, as
well as emissions from industrial waste and nonrenewable municipal waste. This data
has been used to select 19 countries based on their emission intensity as shown in Table 1.
The website from which the emission shares are reproduced is “Each Country’s Share of
CO2 Emissions|Union of Concerned Scientists (ucsusa.org)”. The top emitting countries
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whose share is more than 2% of the global emission are China, U.S., India, Russia, Japan,
Iran, South Korea, Saudi Arabia, Indonesia, Germany, and Canada. The rest eight countries
considered in this study have a share of 1%.

Table 1. Fossil CO2 emissions share and the absolute values of CO2 emissions for selected countries.

Sl. No. Emission Share of Selected Countries

1 China (28%)
2 U.S. (15%)
3 India (7%)
4 Russia (5%)
5 Japan (3%)
6 Iran (2%)
7 South Korea (2%)
8 Saudi Arabia (2%)
9 Indonesia (2%)
10 Germany (2%)
11 Canada (2%)
12 Brazil (1%)
13 South Africa (1%)
14 Mexico (1%)
15 Turkey (1%)
16 Australia (1%)
17 United Kingdom (1%)
18 Italy (1%)
19 France (1%)

The data on the predicted variable i.e., CO2 emissions, and the predictors such as GDP
in constant US$ measured in 2010, renewable energy share in total energy use, the urban
population as a percentage of the total population, and trade openness for all 19 countries
are drawn from the World Bank database for the period 1960 to 2019. The data for another
predictor i.e., democracy is obtained from the database of Freedom House, which is an
independent watchdog organization based in the USA. It collects and publishes data
on the political rights (PR) and civil liberties (CL) of most countries of the world. The
democracy index used in this study is constructed by adding the scores of PR and CL of
the nineteen countries. The description of output and input variables and the data sources
are provided in Table 2. The data files are available in the Supplementary Materials section
of this article.

Table 2. Variable description and data source.

Variables Data Source

Carbon dioxide emissions (mega ton) World Development Indicators [51]
Renewable energy share in total energy use (%) World Development Indicators [51]

GDP (constant 2005 US$) World Development Indicators [51]
Urban Population Ratio World Development Indicators [51]

Trade openness (ratio of imports plus exports to GDP World Development Indicators [51]
Sum of the Freedom House Political Rights and Civil

Liberties Indices Freedom House [52]

Notes: All the data are annually from 1960 to 2019. Freedom in the World|Freedom House. http://data.
worldbank.org/indicator. Accessed on 2 February 2022.

The compound annual growth rate (CAGR) of CO2 emissions of the 19 countries
between 1990 and 2019 is shown in Figure 1. The countries that experienced higher levels
of CO2 emissions during this period are China, India, Saudi Arabia, Iran, Turkey, and Brazil
with 6.7%, 6.2%, 4.8%, 5.3%, 4.6%, and 3.2% respectively. On the other hand, the UK with
−1.8%, Italy with −0.9%, France with −0.58%, the USA with 0.11%, Japan with 0.05%, and
Canada with 1.3% are the countries that have managed a low emission growth path. The

http://data.worldbank.org/indicator
http://data.worldbank.org/indicator
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trends in Figure 1 indicate the existence of an EKC relationship as the CO2 emissions have
declined in developed countries and increased in highly developing countries.
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Figure 1. The growth rate of CO2 emission (mt).

4. Development of Radial Basis Function Neural Network (RBFNN) Based CO2
Prediction Model

Artificial neural networks (ANN) are nonlinear models having a lot of real-life applica-
tions. There are different types of architecture available under ANN such as feed-forward
networks, and feedback networks which might be single layer or multilayer. Depending
upon the nonlinearity associated with the problem the network is chosen judiciously. The
RBFNN is a simple single hidden layer feed-forward network trained by a supervised
learning algorithm [53]. The hidden layer nodes also known as centers use radial basis
functions (RBF) or Gaussian functions. The nonlinear mapping of the data from the input to
the output layer is done as it passes through the RBF or Gaussian functions. Mathematically,
the RBF calculates the Euclidean distance between the input data and the nodes or centers
present in the hidden layer. The weighted sum of the output of RBF nodes is considered
the final output of the network.

The advantages of the RBFNN model in the prediction process are as follows:

(1) Training is faster in RBFNN as it involves a smaller number of computations. Hence
it gives faster convergence.

(2) The function of each hidden node can be easily interpreted in RBFNN.
(3) There is no requirement to decide apriori the number of hidden layers in RBFNN,

which is needed in some other models.

Taking into consideration the above advantages, the RBFNN model is used for the
development of CO2 emission prediction which is an optimization problem.

The block diagram of RBFNN based prediction model is shown in Figure 2. Each node
in the hidden layer is an RBF or Gaussian function having a center and width. Let the
centers and corresponding widths associated with h number of nodes in the hidden layer
be represented as c = c1, c2, c3 . . . ch and σ = σ1, σ2, σ3 . . . σh respectively. The same input
(x = x1, x2, x3 . . . xn) is given to all the nodes of the hidden layer. The dimension of centers
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of every hidden node and the input data are the same, i.e., ci ∈ Rn, x ∈ Rn. The output of
each hidden node (φ1, φ2, φ3 . . . φh) is multiplied by the weight values (w1, w2, w3 . . . wh)
respectively to produce the final output of the network.
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The output of ith hidden node φi is represented as

φi(z) = e
−z2

2σi
2 (1)

where, z = ||x− ci||, denotes the Euclidean distance between input data and the corre-
sponding centers and φi = φ(||x− ci||. The final response of the RBFNN for a particular
input is calculated as

y = ∑h
i=1 wiφi (2)

Training of the RBFNN model is carried out iteratively for each training data, {x, y}.
During this learning period the model parameters such as the weights, centers, and width
values, {wi, ci, σi} are updated until the error cost function is minimized. The error cost
function e is given as

e =
1
2

(
yd − y

)2
(3)

At any time instant t, the parameter update rules to change {wi, ci, σi} are given
below. The update rules are derived using the gradient descent algorithm.

wi(t + 1) = wi(t) + η1

(
yd − y

)
φi (4)

cij(t + 1) = cij(t) +
η2

σ2
i

(
yd − y

)
wiφi

(
xj − cij

)
(5)

σi(t + 1) = σi(t) +
η3

σ3
i

(
yd − y

)
wiφizi

2 (6)

where, yd = desired or target value. In this case, it is the CO2 emission value.
cij = jth element of ith center.
η1, η2, η3 = learning rate for network parameters, {wi, ci, σi} respectively.



Sustainability 2022, 14, 5260 8 of 17

5. Simulation Study

The simulation procedure explains the steps that are carried out during the develop-
ment of the RBFNN based CO2 emission prediction model. The three main steps involved
in it are data preprocessing, training, and testing of the model.

5.1. Data Preprocessing

The data is collected from 19 different countries from 1960 to 2019. The EKC rela-
tionship is estimated using the CO2 emissions as a parameter for environmental quality,
renewable energy share in total energy used, the urban population as a percentage of the
total population, real GDP, trade openness, and political freedom as the predictors of CO2
emissions. The main objective of this study is to predict the CO2 emission levels of major
emitting countries based on the key predictors and to highlight the role of renewable energy
in predicting CO2 emission. For the second objective, we have used two specifications of the
model. In the first specification, renewable energy share is excluded (partial model) and in
the second all the predictors are used (full model). The purpose is to compare the predictive
performance of the full model against the partial model. The hypothesis here is that the
performance of the full model will be higher than the partial model, which would entail
renewable energy as the major predictor of CO2 emission. In the RBFNN model developed
in the study, CO2 emission is taken as the target output and the predictor variables as the
inputs. The data for the target and input variables are normalized before they are used
to develop the model. Normalization of the data is done by dividing each value of each
column by the corresponding maximum value. Hence all the values lie between 0 to 1.
Normalization is one of the important steps of data preprocessing as the RBFNN model is
used for prediction purposes. The normalization of the data helps in faster convergence of
the model. After normalization, the dataset is divided into two sets–training and testing
sets. Randomly selected 80% of the data becomes the training set which is used to develop
the RBFNN model and the remaining 20% of data becomes the testing set which is used for
the evaluation of the model. As the sample size for each country contains 59 data tuples,
randomly 47 data tuples (80%) are selected for the training of the model and 13tuples for
the testing.

5.2. Training of the Model

During the training process, the neural network model learns from the past data
iteratively and becomes adaptive. Referring to Figure 3, the RBFNN structure used for
the simulation is 5:4:1. It has five inputs, four nodes or centers in the hidden layer, and
one output. The four nodes of the hidden layer contain Gaussian functions. Each Gaussian
function has a center and center-width. The number of centers at each Gaussian function is
equal to the number of inputs. Since the number of inputs is five, in this case, each of the
Gaussian functions at each neuron has five centers. Initially, the value of centers, center-
width of Gaussian functions, and the connecting weights are initialized to remain between
−0.5 to +0.5. Out of the training data set, a single data point containing five values is given
as input to the model. It is then passed through the Gaussian functions of the hidden
layer, multiplied with the corresponding weight values, and summed over to produce the
estimated output. The error value is obtained by comparing the estimated output with the
corresponding target value. The error value may be a positive or negative, hence squared
error which is always positive is used as the cost function which needs to be minimized.
Using the error value and the learning algorithm of RBFNN the weights, centers, and widths
are updated. The detailed update equations are given in Equations (4)–(6). The process
is repeated for all inputs and the corresponding error square values are calculated. This
completes one experiment. This simulation process is repeated 2000 times until the mean
squared error is minimized. The mean square error (MSE) value for each experiment or
iteration is noted and plotted against the iteration to observe the convergence characteristics.
The details of the parameters used for simulation are given in Table 3. Once the MSE is



Sustainability 2022, 14, 5260 9 of 17

minimized the final value of weights, centers, and center-width are frozen. The model is
then ready for testing purposes.

Sustainability 2022, 14, x FOR PEER REVIEW 9 of 18 
 

 

 

(a) (b) 

 
 

(c) (d) 

 
 

(e) (f) 

Figure 3. Cont.



Sustainability 2022, 14, 5260 10 of 17

Sustainability 2022, 14, x FOR PEER REVIEW 10 of 18 
 

 
 

(g) (h) 

 
 

(i) (j) 

  
(k) (l) 

Figure 3. Cont.



Sustainability 2022, 14, 5260 11 of 17
Sustainability 2022, 14, x FOR PEER REVIEW 11 of 18 
 

 
 

(m) (n) 

 
 

(o) (p) 

 
 

(q) (r) 

Figure 3. Cont.



Sustainability 2022, 14, 5260 12 of 17
Sustainability 2022, 14, x FOR PEER REVIEW 12 of 18 
 

 
(s) 

Figure 3. Actual and estimated CO2 emission values during testing using the RBFNN model (a) for 

Australia; (b) for Brazil; (c) for Canada; (d) for China; (e) for France; (f) for Germany; (g) for India; 

(h) for Indonesia; (i) for Iran; (j) for Italy; (k) for Japan; (l) for the Korea Republic; (m) for Mexico; 

(n) for Russia; (o) for Saudi Arabia; (p) for South Africa; (q) for Turkey; (r) for the UK; (s) for the 

USA. 

Table 3. Parameters used in the simulation. 

Parameter Value 

Structure of RBF full model 

5:4:1  

(No. of inputs: 5, hidden neurons: 4, 

output:1) 

Structure of RBF partial model 

4:4:1  

(No. of inputs: 4, hidden neurons: 4, 

output:1) 

Number of Centres or nodes in the hidden 

layer 
04 

Number of experiments 2000 

Number of training tuples (80%) 30 

Number of testing tuples (20%) 07 

Value of µ  (learning parameter) 0.1 

  

Figure 3. Actual and estimated CO2 emission values during testing using the RBFNN model (a) for
Australia; (b) for Brazil; (c) for Canada; (d) for China; (e) for France; (f) for Germany; (g) for India;
(h) for Indonesia; (i) for Iran; (j) for Italy; (k) for Japan; (l) for the Korea Republic; (m) for Mexico;
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Table 3. Parameters used in the simulation.

Parameter Value

Structure of RBF full model 5:4:1
(No. of inputs: 5, hidden neurons: 4, output: 1)

Structure of RBF partial model 4:4:1
(No. of inputs: 4, hidden neurons: 4, output: 1)

Number of Centres or nodes in the
hidden layer 04

Number of experiments 2000

Number of training tuples (80%) 30

Number of testing tuples (20%) 07

Value of µ (learning parameter) 0.1

5.3. Testing of the Model

Once the model is trained, it is said to have been learned from the past data in an
adaptive manner using an error correction method and well designed. After this, the
model is being tested using the testing dataset to assess its prediction accuracy. Each
data point of the testing set is used as an input to the model. These inputs are applied
to the optimized RBFNN model, passed through the Gaussian function, weighted and
then summed over to produce the estimated output of CO2 emission value. Each of these
estimated values is compared with the actual target value to evaluate the performance
of the RBFNN based prediction model. The Mean absolute percentage error (MAPE) is
calculated using Equation (7).

MAPE =
1
N

N

∑
l=1

abs((yd(n)− y(n))/yd(n)× 100 (7)

where N = no. of testing tuples.
yd(n) = desired value for the nth testing tuple.
y(n) = the estimated value for the nth testing tuple.
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6. Results

In this study, two models such as the full model (with renewable energy) and the partial
model (without renewable energy) are used to compare the performance of prediction
accuracy (Table 4, columns 3 and 4). The MAPE values in Table 4, Col. 3 exhibit that the
RBFNN based prediction model can predict the CO2 emission figures accurately as the
MAPE is less than 5% for all the countries except for Russia and Saudi Arabia, which have
5.4% and 8.2% respectively.

Table 4. MAPE value for CO2 emission prediction.

Emission Intensity Countries Full Model
(with Renewable Energy)

Partial Model
(without Renewable Energy)

High-emission countries

China 1.63 100.00
The USA 1.95 6.44

India 2.46 3.06
Russia 5.40 100.00
Japan 2.80 4.19
Iran 4.38 4.76

South Korea 2.17 2.78
Saudi Arabia 8.17 4.98

Indonesia 4.41 4.57
Germany 3.56 5.56
Canada 1.4 1.01

Low-emission countries

Brazil 2.16 4.65
South Africa 4.82 6.47

Mexico 3.45 5.32
Turkey 3.05 6.73

Australia 2.06 1.82
UK 2.96 4.88

Italy 2.94 11.38
France 4.37 8.26

The linear regression models produce a single parameter estimate for the entire sample
period. Hence, there is no adaptive process using the error to update the coefficients of
the linear model. These linear models, therefore, produce a large error that makes the
parameter estimates less precise. In contrast, the RBFNN model has an adaptive process
that makes the model learn from the error iteratively and thus, helps in reducing the error
with each iteration. This process of error learning through the feed-forward procedure
makes the model adaptive. When the error is minimized completely, the final parameters
are frozen. The weights can be interpreted as impact coefficients of the inputs with respect
to the output variable, i.e., CO2 emissions. Unlike the linear regression models, these
coefficient values are not a single estimate, but rather produced through an adaptive error
learning procedure and hence, yield highly precise parameter estimates. Along with the
weights, the RBFNN model also produces optimal center values and the values of width.

From the 19 countries considered in this study, 11 are categorized as high emitting
countries, each having a share of 2% or more. The rest 8 countries have a share of 1%
each and are categorized as low emitting countries. We compared the MAPE values in
the full model (Col. 3) with that of the partial model (Col. 4). The purpose is to show
the relative contribution of renewable energy share in total energy used in the prediction
of CO2 emissions. Although some of the past studies have shown rather a strong effect
of renewable energy in the EKC shape [34], given that they have used linear statistical
models, the magnitude of the effect that they show may not be reliable. In this study, the
RBFNN model provides a reliable prediction of CO2 emissions, and hence, the difference
in prediction accuracy between the full and partial models can be directly attributed to the
renewable energy share. The full model has yielded less MAPE value for 17 countries out
of the total 19, thus confirming the significant contribution of renewable energy share in
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total energy in predicting the CO2 emission value. The prediction accuracy of these country
cases is nearly 98%.

The actual and estimated values of CO2 obtained from the RBFNN model during
testing are plotted in Figure 3a–s. The Figures show that there is a higher degree of
convergence between the actual and estimated values of CO2 during the testing.

China is the biggest emitter of CO2 accounting for 28% of the global emissions. In
the last decade, China has transformed its manufacturing sector to integrate the circular
economy model that focuses on the reuse and recycling of materials. The country has set up
industrial parks in which the principles of the circular economy have been integrated into
the entire supply chain of the companies [54]. Despite these efforts, China is expected to
remain the biggest emitter of CO2 with a rising share of the emissions. The heavy reliance
on coal-burning for energy generation in the country is a big challenge in the process of
decarbonizing the manufacturing sector. Although India still relies heavily on coal to meet
the energy demand, the country’s focus on renewable energy generation may set it on
the low carbon emission path. The country has a goal of generating 175 GW of power
through renewable sources by 2022 which comprises 100 GW from solar, 60 GW from wind,
10 GW from bioenergy, and 5 GW from small hydropower sources. Certain technological
innovations in the field of renewable energy such as canal-top solar plants are boosting
India’s efforts to reduce CO2 emissions in near future.

In the case of the USA, both the real GDP and renewable energy consumption variables
bear a negative association with CO2 emissions as reflected in Figure 1, where a downward
movement in CO2 emissions in the country can be observed. This finding supports the
EKC hypothesis that beyond a threshold level of economic growth, any further increase
in real GDP improves the environmental quality as more resources can be committed to
innovating cleaner technologies and upgrading the infrastructure in manufacturing.

Earlier statistical models have estimated the elasticity values for the scale, income,
and substitution effects of economic growth and trade liberalization [55–57]. These models
have assumed a log-linear relationship between air pollution and income per capita and
trade to GDP ratios. After estimating the elasticity values, they have added them to arrive
at a net impact of growth and trade on pollution. However, as we argued in earlier sections,
these models suffer from the non-adaptive behavior of the statistical relationship. The
RBFNN model developed in this study helps estimate the nonlinear relationship adaptively.
However, the RBFNN model does not produce equivalent elasticity values which can be
added to provide a net impact.

7. Conclusions

The Intergovernmental Panel on Climate Change (IPCC) has warned about the catas-
trophic effects of global warming if the global mean temperature is not pegged at 1.5 ◦C
above the pre-industrial level of warming by the end of the 21st century [58]. The current
level of atmospheric temperature has already reached 1.2 ◦C above the pre-industrial level.
At the Paris climate summit of 2015, about 200 countries pledged to reduce CO2 emissions.
In this context, the current study estimates the CO2 emissions of 11 high emitting and 8 low
emitting countries. The prediction of CO2 emissions is done following the EKC framework,
however, the study contributes to this literature by developing and using an artificial neural
network model known as RBFNN.

Based on a dataset spanning 1960 to 2019, the RBFNN model can predict the CO2
values of two sets of high emitting and low emitting countries with nearly 98% accuracy.
The models predict based on both the traditional economic predictors as well as a novel non-
economic predictor such as the political freedom index. By comparing the prediction error
values of the full model with a partial model wherein renewable energy share is excluded,
the simulation results show that the full model achieves higher prediction accuracy. This
finding establishes with higher certainty compared to the earlier statistical models that
renewable energy indeed holds the key for future CO2 emission reduction, thus curbing
the climate change effects.
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The policy implication of this finding is that the rapidly industrializing countries
such as China, India, Brazil, Iran, and Indonesia have to rethink their industrial policy
and growth model. First, there is a need to innovate on cleaner technologies that would
require less energy per output, and secondly, fossil fuel-based energy generation needs
to be substituted with renewable energy generation. Though, both China and India have
taken big strides in this direction in terms of China’s push for the adoption of a circular
economy model in industry and India’s focus on ambitious renewable energy generation
targets, they still need to allocate large investments for rapid reformation of their emission
reduction plans.

This study makes two main contributions to the literature on EKC and the current
climate crisis. First, the nonlinear adaptive models such as RBFNN provide accurate
prediction for CO2 levels of major emitting countries in the world and hence can be used
in a more generalized way. Since this is an adaptive model with low complexity, it is
easier to predict the future CO2 emission levels accurately with less computational time.
However, to implement this research idea for real policymaking, there is a need to build an
emission simulation software package integrating this simulation model. This software
can simulate the future emission levels of CO2 and other environmental quality indicators
as well such as SO2, PM10, and NO2 by inputting the key predictor values to the model
in real-time. Given its low computational requirement and high level of accuracy, it can
equip policymakers with information for future emission paths of the countries and global
emission levels. Second, as our findings show that higher renewable energy consumption
can reduce CO2 emissions, there should be more investments in this energy generation to
replace non-renewable energy.
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