Interactions between Geomorphology and Production Chain of High-Quality Coffee in Costa Rica
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Geomorphological Mapping, Coffee Land Cover, and Their Interactions
2.3. Production Conditions and the Implication for the Growth of Coffee Areas
3. Results
3.1. Landforms and Processes
3.2. Interactions between Landforms and Coffee Areas Growth
3.3. Interactions in the Coffee Production Chain for High-Altitude Coffee Growth
4. Discussion
4.1. Local and Management Factors Related to Increasing High-Altitude Coffee Zones
4.2. Production–Processing–Market Chain Related to Coffee Croplands Growth
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- ICAFE. Guía Técnica para el Cultivo del Café; ICAFE: Heredia, Costa Rica, 2011; p. 72. [Google Scholar]
- ICAFE. Informe Sobre la Actividad Cafetalera de Costa Rica Preparado en el Instituto del Café de Costa Rica para los Delegados al XLVIII Congreso Nacional Cafetalero Ordinario; ICAFE: Heredia, Costa Rica, 2019. [Google Scholar]
- Muschler, R.G. Shade improves coffee quality in a sub-optimal coffee-zone of Costa Rica. Agrofor. Syst. 2001, 51, 131–139. [Google Scholar] [CrossRef]
- Lambot, C.; Herrera, J.C.; Bertrand, B.; Sadeghian, S.; Benavides, P.; Gaitan, A. Cultivating coffee quality—Terroir and agro-ecosystem. In The Craft and Science of Coffee; Academic Press: Cambridge, MA, USA, 2017; pp. 17–49. [Google Scholar]
- Martins, P.M.M.; Batista, N.N.; Miguel, M.G.D.C.P.; Simão, J.B.P.; Soares, J.R.; Schwan, R.F. Coffee growing altitude influences the microbiota, chemical compounds and the quality of fermented coffees. Food Res. Int. 2020, 129, 108872. [Google Scholar] [CrossRef] [PubMed]
- Macchiavello, R.; Miquel-Florensa, J. Vertical Integration and Relational Contracts: Evidence from the Costa Rica Coffee Chain; Working Papers Series; University of Warwick: Coventry, UK, 2017. [Google Scholar]
- Pérez, B.; Samper, M. Tierra, Café y Sociedad; Facultad Latinoamericana de Ciencias Sociales (FLACSO): San José, Costa Rica, 1994. [Google Scholar]
- Grabs, J.; Kilian, B.; Hernández, D.C.; Dietz, T. Understanding coffee certification dynamics: A spatial analysis of voluntary sustainability standard proliferation. Int. Food Agribus. Manag. Rev. 2016, 19, 31–56. [Google Scholar]
- Dragusanu, R.; Nunn, N. The Effects of Fair Trade Certification: Evidence from Coffee Producers in Costa Rica; No. w24260; National Bureau of Economic Research: Cambridge, MA, USA, 2018. [Google Scholar]
- ICAFE. Procedimiento para Autorizar la Comercialización de una Categoría de Café con Liquidación Diferenciada. Heredia, Costa Rica, 2019. Available online: http://www.icafe.cr/wp-content/uploads/publicaciones/leyes_y_reglamentos/Procedimientodiferenciado.pdf (accessed on 11 January 2021).
- Castillo-Rodríguez, M.; López-Blanco, J.; Muñoz-Salinas, E. A geomorphologic GIS-multivariate analysis approach to delineate environmental units, a case study of La Malinche volcano (central México). Appl. Geogr. 2010, 30, 629–638. [Google Scholar] [CrossRef]
- Bocco, G.; Velázquez, A.; Siebe, C. Using geomorphologic mapping to strengthen natural resource management in developing countries. The case of rural indigenous communities in Michoacan, Mexico. Catena 2005, 60, 239–253. [Google Scholar] [CrossRef]
- Seijmonsbergen, A.C. The modern geomorphological map. In Treatise on Geomorphology; Elsevier Inc.: Amsterdam, The Netherlands, 2013; pp. 35–52. [Google Scholar]
- Holland, M.B.; Shamer, S.Z.; Imbach, P.; Zamora, J.C.; Medellín, C.; Leguía-Hidalgo, E.; Donatti, C.I.; Martínez-Rodríguez, M.R.; Harvey, C.A. Mapping adaptive capacity and smallholder agriculture: Applying expert knowledge at the landscape scale. Clim. Chang. 2017, 141, 139–153. [Google Scholar] [CrossRef] [Green Version]
- Bocco, G.; Mendoza, M.; Velázquez, A. Remote sensing and GIS-based regional geomorphological mapping—A tool for land use planning in developing countries. Geomorphology 2001, 39, 211–219. [Google Scholar] [CrossRef]
- Hoalst-Pullen, N.; Gatrell, J.D.; Patterson, M.W. Applied geography: A problem-solving approach. Appl. Geogr. 2021, 128, 102412. [Google Scholar] [CrossRef]
- Quesada-Román, A.; Zamorano-Orozco, J.J. Geomorphology of the Upper General River Basin, Costa Rica. J. Maps 2019, 15, 95–101. [Google Scholar] [CrossRef] [Green Version]
- Camacho, M.E.; Quesada-Román, A.; Mata, R.; Alvarado, A. Soil-geomorphology relationships of alluvial fans in Costa Rica. Geoderma Reg. 2020, 21, e00258. [Google Scholar] [CrossRef]
- Quesada-Román, A.; Zamorano-Orozco, J.J. Peligros Geomorfológicos en Costa Rica: Cuenca Alta del Río General. Anuário Inst. Geociências 2018, 41, 239–251. [Google Scholar] [CrossRef]
- Quesada-Román, A.; Zamorano-Orozco, J.J. Zonificación de procesos de ladera e inundaciones a partir de un análisis morfométrico en la cuenca alta del río General, Costa Rica. Investig. Geográficas 2019, 99, 1–19. [Google Scholar] [CrossRef]
- Quesada-Román, A.; Stoffel, M.; Ballesteros-Cánovas, J.A.; Zamorano-Orozco, J.J. Glacial geomorphology of the Chirripó National Park, Costa Rica. J. Maps 2019, 15, 538–545. [Google Scholar] [CrossRef]
- Quesada-Román, A.; Campos, N.; Alcalá-Reygosa, J.; Granados-Bolaños, S. Equilibrium-line altitude and temperature reconstructions during the Last Glacial Maximum in Chirripó National Park, Costa Rica. J. S. Am. Earth Sci. 2020, 100, 102576. [Google Scholar] [CrossRef]
- Quesada-Román, A.; Campos, N.; Granados-Bolaños, S. Tropical glacier reconstructions during the Last Glacial Maximum in Costa Rica. Rev. Mex. Cienc. Geol. 2021, 38, 55–64. [Google Scholar] [CrossRef]
- Alfaro, E.; Quesada-Román, A.; Solano, F. Análisis del impacto en Costa Rica de los ciclones tropicales ocurridos en el Mar Caribe desde 1968 al 2007. Rev. Diálogos 2010, 11, 25–38. [Google Scholar] [CrossRef]
- Campos-Durán, D.; Quesada-Román, A. Impacto de los eventos hidrometeorológicos en Costa Rica, periodo 2000–2015. Rev. Geo UERJ 2017, 30, 440–465. [Google Scholar] [CrossRef] [Green Version]
- Quesada-Román, A. Geomorfología Fluvial e Inundaciones en la Cuenca Alta del Río General, Costa Rica. Anuário Inst. Geociências 2017, 40, 278–288. [Google Scholar] [CrossRef]
- Quesada-Román, A. Landslides and floods zonation using geomorphological analyses in a dynamic catchment of Costa Rica. Rev. Cart. 2021, 102, 125–138. [Google Scholar] [CrossRef]
- Camacho, M.E.; Mata, R.; Barrantes-Víquez, M.; Alvarado, A. Morphology and characteristics of eight Oxisols in contrasting landscapes of Costa Rica. Catena 2021, 197, 104992. [Google Scholar] [CrossRef]
- Kappelle, M. The Montane Cloud Forests of the Cordillera de Talamanca. In Costa Rican Ecosystems; Kappelle, M., Ed.; University of Chicago Press: Chicago, IL, USA, 2016. [Google Scholar]
- Klingebiel, A.A. Land-Capability Classification (No. 210); Soil Conservation Service, US Department of Agriculture: Washington, DC, USA, 1961.
- Quesada-Román, A. Peligros Geomorfológicos: Inundaciones y Procesos de Ladera en la Cuenca alta del río General (Pérez Zeledón), Costa Rica. Maestría en Geografía con énfasis en Geografía Ambiental. Posgrado en Geografía; Universidad Nacional Autónoma de México: Mexico City, Mexico, 2016; p. 157. [Google Scholar] [CrossRef]
- Quesada-Román, A. Condición de uso de la tierra del distrito San Vito, Coto Brus, Puntarenas. Reflexiones 2013, 92, 47–64. [Google Scholar]
- INEC—Instituto Nacional de Estadística y Censos. National Population Projections for 2020 Based on 2011 National Census. San José, Costa Rica, 2020. Available online: https://www.inec.cr/poblacion/estimaciones-y-proyecciones-de-poblacion (accessed on 6 June 2021).
- MIDEPLAN—Ministerio de Planificación Nacional y Política Económica. Índice de Desarrollo Social 2017; MIDEPLAN: San José, Costa Rica, 2017; p. 126.
- Smith, M.J.; Paron, P.; Griffiths, J.S. Geomorphological Mapping: Methods and Applications; Elsevier: Amsterdam, The Netherlands, 2011; Volume 15. [Google Scholar]
- CARTA—Costa Rica Airborne Research and Technology Applications. Aerial Photographs Scale 1:25,000 of Costa Rica; NASA: Washington, DC, USA; Costa Rica Government: San José, Costa Rica, 2005.
- Quesada-Román, A.; Mata-Cambronero, E. The geomorphic landscape of the Barva volcano, Costa Rica. Phys. Geogr. 2020, 42, 265–282. [Google Scholar] [CrossRef]
- Bishop, M.; James, A.; Shroder, J.; Walsh, S.J. Geospatial technologies and digital geomorphological mapping: Concepts, issues and research. Geomorphology 2012, 137, 5–26. [Google Scholar] [CrossRef]
- Gustavsson, M.; Kolstrup, E.; Seijmonsbergen, A.C. A new symbol-and-GIS based detailed geomorphological mapping system: Renewal of a scientific discipline for understanding landscape development. Geomorphology 2006, 77, 90–111. [Google Scholar] [CrossRef] [Green Version]
- MINAE-FONAFIFO. Coffee Land Uses of Costa Rica. Proyecto Ecomercados; FONAFIFO: San José, Costa Rica, 2006. [Google Scholar]
- ICAFE. Coffee Coverage of Costa Rica. San José, Costa Rica, 2012. Available online: http://www.icafe.cr/cobertura-2012/ (accessed on 25 October 2020).
- Vignola, R.; Watler WPoveda, K.; Vargas, A.; Mora, M.; Rivera, P.; Morales, M. Prácticas Efectivas para la Reducción de Impactos por Eventos Climáticos en el Cultivo de Café en Costa Rica; Ministerio de Agricultura y Ganadería de Costa Rica: San José, Costa Rica, 2018.
- Sandoval, D.; Mata, R. Base de Perfiles de Suelos de Costa Rica; Versión 2; Asociación Costarricense de la Ciencia del Suelo (ACCS): San José, Costa Rica, 2014; Available online: http://http://www.suelos.ucr.ac.cr/ (accessed on 5 April 2021).
- Van Oijen, M.; Dauzat, J.; Harmand, J.M.; Lawson, G.; Vaast, P. Coffee agroforestry systems in Central America: I. A review of quantitative information on physiological and ecological processes. Agrofor. Syst. 2010, 80, 341–359. [Google Scholar] [CrossRef]
- Avelino, J.; Barboza, B.; Araya, J.C.; Fonseca, C.; Davrieux, F.; Guyot, B.; Cilas, C. Effects of slope exposure, altitude and yield on coffee quality in two altitude terroirs of Costa Rica, Orosi and Santa María de Dota. J. Sci. Food Agric. 2005, 85, 1869–1876. [Google Scholar] [CrossRef]
- Felipe-Lucia, M.R.; Soliveres, S.; Penone, C.; Fischer, M.; Ammer, C.; Boch, S.; Frank, K. Land-use intensity alters networks between biodiversity, ecosystem functions, and services. Proc. Natl. Acad. Sci. USA 2020, 117, 28140–28149. [Google Scholar] [CrossRef]
- Li, Z.; Fang, H. Impacts of climate change on water erosion: A review. Earth Sci. Rev. 2016, 163, 94–117. [Google Scholar] [CrossRef]
- Imbach, P.; Chou, S.C.; Lyra, A.; Rodrigues, D.; Rodriguez, D.; Latinovic, D.; Siquiera, G.; Silva, A.; Garofolo, L.; Georgiou, S. Future climate change scenarios in Central America at high spatial resolution. PLoS ONE 2018, 13, e0193570. [Google Scholar] [CrossRef] [Green Version]
- Hannah, L.; Donatti, C.I.; Harvey, C.A.; Alfaro, E.; Rodriguez, D.A.; Bouroncle, C.; Castellanos, E.; Diaz, F.; Fung, E.; Hidalgo, H.G.; et al. Regional modeling of climate change impacts on smallholder agriculture and ecosystems in Central America. Clim. Chang. 2017, 141, 29–45. [Google Scholar] [CrossRef] [Green Version]
- Ovalle-Rivera, O.; Läderach, P.; Bunn, C.; Obersteiner, M.; Schroth, G. Projected shifts in Coffea arabica suitability among major global producing regions due to climate change. PLoS ONE 2015, 10, e0124155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Imbach, P.; Beardsley, M.; Bouroncle, C.; Medellin, C.; Läderach, P.; Hidalgo, H.; Alfaro, E.; Van Etten, J.; Alan, R.; Hemming, D.; et al. Climate change, ecosystems and smallholder agriculture in Central America: An introduction to the special issue. Clim. Chang. 2017, 141, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Castro-Tanzi, S.; Dietsch, T.; Urena, N.; Vindas, L.; Chandler, M. Analysis of management and site factors to improve the sustainability of smallholder coffee production in Tarrazú, Costa Rica. Agric. Ecosyst. Environ. 2012, 155, 172–181. [Google Scholar] [CrossRef]
- Cerda, R.; Allinne, C.; Gary, C.; Tixier, P.; Harvey, C.A.; Krolczyk, L.; Avelino, J. Effects of shade, altitude and management on multiple ecosystem services in coffee agroecosystems. Eur. J. Agron. 2017, 82, 308–319. [Google Scholar] [CrossRef]
- Bote, A.D.; Vos, J. Tree management and environmental conditions affect coffee (Coffea arabica L.) bean quality. NJAS Wagening. J. Life Sci. 2017, 83, 39–46. [Google Scholar] [CrossRef]
- Bebber, D.P.; Ramotowski, M.A.; Gurr, S.J. Crop pests and pathogens move polewards in a warming world. Nat. Clim. Chang. 2013, 3, 985–988. [Google Scholar] [CrossRef]
- Chaloner, T.M.; Gurr, S.J.; Bebber, D.P. Plant pathogen infection risk tracks global crop yields under climate change. Nat. Clim. Chang. 2021, 11, 710–715. [Google Scholar] [CrossRef]
- Avelino, J.; Cristancho, M.; Georgiou, S.; Imbach, P.; Aguilar, L.; Bornemann, G.; Laderach, P.; Anzueto, F.; Hruska, A.J.; Morales, C. The coffee rust crises in Colombia and Central America (2008–2013): Impacts, plausible causes and proposed solutions. Food Secur. 2015, 7, 303–321. [Google Scholar] [CrossRef] [Green Version]
- Avelino, J.; Cabut, S.; Barboza, B.; Barquero, M.; Alfaro, R.; Esquivel, C.; Drand, J.-F.; Cilas, C. Topography and crop management are key factors for the development of American leaf spot epidemics on coffee in Costa Rica. Phytopathology 2007, 97, 1532–1542. [Google Scholar] [CrossRef] [Green Version]
- Damon, A. A review of the biology and control of the coffee berry borer, Hypothenemus hampei (Coleoptera: Scolytidae). Bull. Entomol. Res. 2000, 90, 453–465. [Google Scholar] [CrossRef] [Green Version]
- Avelino, J.; Romero-Gurdián, A.; Cruz-Cuellar, H.F.; Declerck, F.A. Landscape context and scale differentially impact coffee leaf rust, coffee berry borer, and coffee root-knot nematodes. Ecol. Appl. 2012, 22, 584–596. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martínez-Salinas, A.; DeClerck, F.; Vierling, K.; Vierling, L.; Legal, L.; Vílchez-Mendoza, S.; Avelino, J. Bird functional diversity supports pest control services in a Costa Rican coffee farm. Agric. Ecosyst. Environ. 2016, 235, 277–288. [Google Scholar] [CrossRef]
- Merle, I.; Villarreyna-Acuña, R.; Ribeyre, F.; Roupsard, O.; Cilas, C.; Avelino, J. Microclimate estimation under different coffee-based agroforestry systems using full-sun weather data and shade tree characteristics. Eur. J. Agron. 2021, 132, 126396. [Google Scholar] [CrossRef]
- Karp, D.S.; Chaplin-Kramer, R.; Meehan, T.D.; Martin, E.A.; DeClerck, F.; Grab, H.; O’rourke, M.E. Crop pests and predators exhibit inconsistent responses to surrounding landscape composition. Proc. Natl. Acad. Sci. USA 2018, 115, E7863–E7870. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cerda, R.; Avelino, J.; Harvey, C.A.; Gary, C.; Tixier, P.; Allinne, C. Coffee agroforestry systems capable of reducing disease-induced yield and economic losses while providing multiple ecosystem services. Crop Prot. 2020, 134, 105149. [Google Scholar] [CrossRef] [Green Version]
- ICO—International Coffee Organization. Monthly Coffee Trade Statistics. Available online: http://www.ico.org/monthly_coffee_trade_stats.asp (accessed on 15 November 2020).
- Hallam, D. El Descenso de los Precios de los Productos Básicos y la Respuesta de la Industria: Algunas Enseñanzas Derivadas de la Crisis Internacional del Café. En Situación de los Mercados de Productos Básicos 2003–2004. FAO–Roma. (No. AV/0031). 2004. Available online: https://www.fao.org/3/y5117s/y5117s00.htm (accessed on 16 December 2021).
- Torga, G.N.; Spers, E.E. Perspectives of Global Coffee Demand. In Coffee Consumption and Industry Strategies in Brazil; Woodhead Publishing: Sawston, UK, 2020; pp. 21–49. [Google Scholar]
- Castellanos, E.J.; Tucker, C.; Eakin, H.; Morales, H.; Barrera, J.F.; Díaz, R. Assessing the adaptation strategies of farmers facing multiple stressors: Lessons from the coffee and global changes projected in Mesoamerica. Environ. Sci. Policy 2013, 26, 19–28. [Google Scholar] [CrossRef]
- Baffes, J.; Lewin, B.; Varangis, P. Coffee: Market setting and policies. In Global Agricultural Trade and Developing Countries; Ataman Aksoy, M., Beghin, J.C., Eds.; International Bank for Reconstruction and Development/The World Bank: Washington, DC, USA, 2005; pp. 297–309. [Google Scholar]
- Lewin, B.; Giovannucci, D.; Varangis, P. Coffee Markets: New Paradigms in Global Supply and Demand; International Bank for Reconstruction and Development, Agriculture and Rural Development Department: Washington, DC, USA, 2004. [Google Scholar]
- Snider, A.; Kraus, E.; Sibelet, N.; Skovmand Bosselmann, A.; Faure, G. Influence of voluntary coffee certifications on cooperatives’ advisory services and agricultural practices of smallholder farmers in Costa Rica. J. Agric. Educ. Ext. 2016, 22, 435–453. [Google Scholar] [CrossRef]
- Cerdán, C.R.; Rebolledo, M.C.; Soto, G.; Rapidel, B.; Sinclair, F.L. Local knowledge of impacts of tree cover on ecosystem services in smallholder coffee production systems. Agric. Syst. 2012, 110, 119–130. [Google Scholar] [CrossRef]
- Castro, L.M.; Calvas, B.; Hildebrandt, P.; Knoke, T. Avoiding the loss of shade coffee plantations: How to derive conservation payments for risk-averse land-users. Agrofor. Syst. 2013, 87, 331–347. [Google Scholar] [CrossRef]
- Knoke, T.; Román-Cuesta, R.M.; Weber, M.; Haber, W. How can climate policy benefit from comprehensive land-use approaches? Front. Ecol. Environ. 2012, 10, 438–445. [Google Scholar] [CrossRef]
- Do, H.; Luedeling, E.; Whitney, C. Decision analysis of agroforestry options reveals adoption risks for resource-poor farmers. Agron. Sustain. Dev. 2020, 40, 20. [Google Scholar] [CrossRef]
- De Sousa, K.F.D.; Detlefsen, G.; de Melo Virginio Filho, E.; Tobar, D.; Casanoves, F. Timber yield from smallholder agroforestry systems in Nicaragua and Honduras. Agrofor. Syst. 2016, 90, 207–218. [Google Scholar] [CrossRef]
- Meylan, L.; Merot, A.; Gary, C.; Rapidel, B. Combining a typology and a conceptual model of cropping system to explore the diversity of relationships between ecosystem services: The case of erosion control in coffee-based agroforestry systems in Costa Rica. Agric. Syst. 2013, 118, 52–64. [Google Scholar] [CrossRef]
- Carvajal-Arroyo, D.; Murillo-Cruz, R.; Gonzalez-Rojas, M.; Fonseca-Gonzalez, W. Evaluation of the growth of Cedrela odorata L. in coffee agroforestry systems in Pérez Zeledón, Costa Rica. Rev. Cienc. Ambient. 2021, 55, 230–249. [Google Scholar] [CrossRef]
Name | 2005 | 2012 | 2018 |
---|---|---|---|
Floodplain | 14.21 | 12.05 | 20.91 |
Landslides slopes | 10.52 | 19.15 | 47.05 |
Rotational deposits | 8.50 | 2.68 | 0.00 |
Rotational ruptures | 2.85 | 0.95 | 0.00 |
Talus | 14.16 | 15.32 | 14.33 |
Translational landslides | 0.00 | 4.09 | 3.86 |
Valley slopes | 18.05 | 27.96 | 32.66 |
Volcanic slopes | 96.91 | 153.20 | 246.50 |
Total | 165.20 | 235.41 | 365.30 |
Differentiated Cultivation through Micro-Lots | Process of Benefitting through Micro-Benefits | Marketing of High-Quality Coffee |
---|---|---|
Planting different varieties | The producer changes from a coffee supplier to a processor | The producer relates to the buyer |
Different harvesting periods | Employs multiple methods of coffee processing | The producer knows about the characteristics of the coffee they are processing and for whom they are processing |
Collects, stores, and processes separately | Innovates fruit processing with various processing methods | The producer takes the necessary actions to improve it until the desired quality is achieved |
Maximum use of environmental conditions: altitude, soil, humidity, solar radiation, position with respect to the winds, cloudiness, etc. | The beneficiary rescues the origin of the coffee, the local area, and the producer | The producer is trying out new ways to process the coffee depending on the buyer’s preferences |
The producer learns from tasting, becomes the producer’s ally in improving quality |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Quesada-Román, A.; Quirós-Arias, L.; Zamora-Pereira, J.C. Interactions between Geomorphology and Production Chain of High-Quality Coffee in Costa Rica. Sustainability 2022, 14, 5265. https://doi.org/10.3390/su14095265
Quesada-Román A, Quirós-Arias L, Zamora-Pereira JC. Interactions between Geomorphology and Production Chain of High-Quality Coffee in Costa Rica. Sustainability. 2022; 14(9):5265. https://doi.org/10.3390/su14095265
Chicago/Turabian StyleQuesada-Román, Adolfo, Lilliam Quirós-Arias, and Juan Carlos Zamora-Pereira. 2022. "Interactions between Geomorphology and Production Chain of High-Quality Coffee in Costa Rica" Sustainability 14, no. 9: 5265. https://doi.org/10.3390/su14095265
APA StyleQuesada-Román, A., Quirós-Arias, L., & Zamora-Pereira, J. C. (2022). Interactions between Geomorphology and Production Chain of High-Quality Coffee in Costa Rica. Sustainability, 14(9), 5265. https://doi.org/10.3390/su14095265