The Effect of Spill Light on Street Lighting Energy Efficiency and Light Pollution
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Quantity and Properties of Luminaires Used in Computational Models
3.2. The Results of Computational Models
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- CEN EN 13201:2; Road Lighting. Part 2: Road Lighting Performance Requirements. European Committee for Standardization (CEN): Brussels, Belgium, 2015.
- CEN EN 13201:3; Road Lighting. Part 3: Road Lighting Calculation of Performance. European Committee for Standardization (CEN): Brussels, Belgium, 2015.
- International Commission on Illumination (CIE). Lighting of Roads for Motor and Pedestrian Traffic; CIE Publication 115; CIE: Vienna, Austria, 2010. [Google Scholar]
- International Commission on Illumination (CIE). Road Lighting Calculations; CIE Publication 140; CIE: Vienna, Austria, 2019. [Google Scholar]
- International Commission on Illumination (CIE). Guide on the Limitation of the Effects of Obtrusive Light; CIE Publication 150; CIE: Vienna, Austria, 2017. [Google Scholar]
- International Commission on Illumination (CIE). Guidelines for Minimizing Sky Glow; CIE Publication 126; CIE: Vienna, Austria, 1997. [Google Scholar]
- Pracki, P.; Skarżyński, K. A Multi-Criteria Assessment Procedure for Outdoor Lighting at the Design Stage. Sustainability 2020, 12, 1330. [Google Scholar] [CrossRef] [Green Version]
- ÖNORM O 1052; Light Pollution-Measurement and Evaluation. Austrian Standards Institute: Wien, Austria, 2016.
- ČSN 36 0459; Reducing the Undesirable Side Effects of Outdoor Lighting-Draft. Czech Standardization Agency: Prague, Czech Republic, 2022.
- Tabaka, P.; Fryc, I. Landscape lighting as a source of light pollution-the effect of the seasons on this phenomenon. In Proceedings of the 2016 IEEE Lighting Conference of the Visegrad Countries, Karpacz, Poland, 13–16 September 2016. [Google Scholar] [CrossRef]
- Krupiński, R. Simulation and Analysis of Floodlighting Based on 3D Computer Graphics. Sustainability 2021, 14, 1042. [Google Scholar] [CrossRef]
- Schulte-Römer, N.; Meier, J.; Dannemann, E.; Söding, M. Lighting Professionals vs. Light Pollution Experts? Investigating Views on an Emerging Environmental Concern. Sustainability 2019, 11, 1696. [Google Scholar] [CrossRef] [Green Version]
- Dostál, F.; Sokanský, K.; Novák, P. Long-term measurements of night sky illuminance. In Proceedings of the 2010 9th International Conference on Environment and Electrical Engineering, Prague, Czech Republic, 16–19 May 2010. [Google Scholar] [CrossRef]
- Gălăţanu, C.D. Luminance measurements for light pollution assessment. In Proceedings of the 2017 International Conference on Electromechanical and Power Systems (SIELMEN), Iasi, Romania, 11–13 October 2017. [Google Scholar] [CrossRef]
- Kolláth, Z.; Dömény, A.; Kolláth, K.; Nagy, B. Qualifying lighting remodelling in a Hungarian city based on light pollution effects. J. Quant. Spectrosc. Radiat. Transf. 2016, 181, 46–51. [Google Scholar] [CrossRef]
- Bečák, P.; Wlosoková, J.; Pícha, J.; Novák, T.; Sokanský, K. Modeling of Luminous Flux Radiation to the Upper Hemisphere from Real Model of Town. In Proceedings of the 2019 20th International Scientific Conference on Electric Power Engineering, Kouty nad Desnou, Czech Republic, 15–17 May 2019. [Google Scholar] [CrossRef]
- Olsen, R.N.; Gallaway, T.; Mitchel, D. Modelling US light pollution. J. Environ. Plan. Manag. 2013, 57, 883–903. [Google Scholar] [CrossRef]
- Ghosh, T.; Anderson, S.J.; Elvidge, C.D.; Sutton, P.C. Using Nighttime Satellite Imagery as a Proxy Measure of Human Well-Being. Sustainability 2013, 5, 4988–5019. [Google Scholar] [CrossRef] [Green Version]
- Rabaza, O.; Molero-Mesa, E.; Aznar-Dols, F.; Gómez-Lorente, D. Experimental Study of the Levels of Street Lighting Using Aerial Imagery and Energy Efficiency Calculation. Sustainability 2018, 10, 4365. [Google Scholar] [CrossRef] [Green Version]
- Tomczuk, P.; Chrzanowicz, M.; Jaskowski, P.; Budzynski, M. Evaluation of Street Lighting Efficiency Using a Mobile Measurement System. Energies 2021, 14, 3872. [Google Scholar] [CrossRef]
- Wojnicki, I.; Komnata, K.; Kotulski, L. Comparative Study of Road Lighting Efficiency in the Context of CEN/TR 13201 2004 and 2014 Lighting Standards and Dynamic Control. Energies 2019, 12, 1524. [Google Scholar] [CrossRef] [Green Version]
- Rabaza, O.; Gómez-Lorente, D.; Pozo, A.M.; Pérez-Ocón, F. Application of a Differential Evolution Algorithm in the Design of Public Lighting Installations Maximizing Energy Efficiency. Leukos 2019, 16, 217–227. [Google Scholar] [CrossRef]
- Lobão, J.A.; Devezas, T.; Catalão, J.P.S. Energy efficiency of lighting installations: Software application and experimental validation. Energy Rep. 2015, 1, 110–115. [Google Scholar] [CrossRef] [Green Version]
- Campisi, D.; Gitto, S.; Morea, D. Light Emitting Diodes Technology in Public Light System of the Municipality of Rome: An Economic and Financial Analysis. Int. J. Energy Econ. Policy 2017, 7, 200–208. [Google Scholar]
- Sánchez-Balvás, L.A.; Felipe, J.J.; Quintero, J.M.; Fuente, A. An energy efficiency-based classification approach for street lighting by considering operational factors: A case study of Barcelona. Energy Effic. 2021, 14, 15. [Google Scholar] [CrossRef]
- Campisi, D.; Gitto, S.; Morea, D. Economic feasibility of energy efficiency improvements in street lighting systems in Rome. J. Clean. Prod. 2018, 175, 190–198. [Google Scholar] [CrossRef]
- Carli, R.; Dotoli, M.; Pellegrino, R. A decision-making tool for energy efficiency optimization of street lighting. Comput. Oper. Res. 2018, 96, 222–234. [Google Scholar] [CrossRef]
- Ożadowicz, A.; Grela, J. Energy saving in the street lighting control system—A new approach based on the EN-15232 standard. Energy Effic. 2017, 10, 563–576. [Google Scholar] [CrossRef] [Green Version]
- Beccali, M.; Bonomolo, M.; Ciulla, G.; Galatioto, A.; Lo Brano, V. Improvement of energy efficiency and quality of street lighting in South Italy as an action of Sustainable Energy Action Plans. The case study of Comiso (RG). Energy 2015, 92, 394–408. [Google Scholar] [CrossRef] [Green Version]
- Novák, T.; Bečák, P.; Dubnička, R.; Raditschová, J.; Gašparovský, D.; Valíček, P.; Ullman, J. Modelling of Luminous Flux Directed to the Upper Hemisphere from Electrical Substation before and after the Refurbishment of Lighting Systems. Energies 2022, 15, 345. [Google Scholar] [CrossRef]
- Gašparovský, D.; Janiga, P.; Raditschová, J. Typical Values of Energy Performance Indicators in Road Lighting. Adv. Electr. Electron. Eng. 2021, 19, 134–144. [Google Scholar] [CrossRef]
- Vencovský, T. Smart City Public Lighting Quality Improvement; Czech Technical University in Prague: Prague, Czech Republic, 2021. [Google Scholar]
- THMP Portal. Available online: https://zjisti.si/zarizeni (accessed on 29 April 2021).
- International Commission on Illumination (CIE). The Photometry and Goniophotometry of Luminaires; CIE Publication 121; CIE: Vienna, Austria, 1996. [Google Scholar]
- The Digital Map of Prague. Available online: https://app.iprpraha.cz/apl/app/dtmp/index.html (accessed on 30 April 2021).
- Illuminating Engineering Society. Lighting Science: Concepts and Language of Lighting; IES LS-2-20; Illuminating Engineering Society: New York, NY, USA, 2020; ISBN 978-0-87995-011-8. [Google Scholar]
- Durmus, D. Correlated color temperature: Use and limitations. Lighting Res. Technol. 2021, 14771535211034330. [Google Scholar] [CrossRef]
- Kostic, M.; Djokic, L. Recommendations for energy efficient and visually acceptable street lighting. Energy 2009, 34, 1565–1572. [Google Scholar] [CrossRef]
- Kyba, C.C.M.; Hänel, A.; Hölker, F. Redefining efficiency for outdoor lighting. Energy Environ. Sci. 2014, 7, 1806–1809. [Google Scholar] [CrossRef]
- Drábek, T.; Petrík, V.; Holub, J. Statistical-Based Control Points Selection for Indoor Illuminance Measurement. IEEE Trans. Instrum. Meas. 2020, 69, 8362–8371. [Google Scholar] [CrossRef]
- Schulte-Römer, N.; Meier, J.; Söding, M.; Dannemann, E. The LED Paradox: How Light Pollution Challenges Experts to Reconsider Sustainable Lighting. Sustainability 2019, 11, 6160. [Google Scholar] [CrossRef] [Green Version]
- Illuminating Engineering Society. Luminaire Classification System for Outdoor Luminaires; ANSI/IES TM-15-20; Illuminating Engineering Society: New York, NY, USA, 2020; ISBN 978-0-87995-388-1. [Google Scholar]
- CEN EN 13201:5; Road Lighting. Part 5: Energy Performance Indicators. European Committee for Standardization (CEN): Brussels, Belgium, 2015.
Luminaire Type | Power Consumption (W) | Lamp Luminous Flux (lm) | Typical Pole Height (m) | Quantity | Total Power Consumption (kW) |
---|---|---|---|---|---|
Z1 50 W | 62 | 4400 | 5 | 5914 | 366.67 |
MC12 70 W | 83 | 6600 | 10 | 3284 | 272.57 |
MC2 100 W | 112 | 9600 | 10 | 1176 | 131.71 |
MC2 150 W | 164 | 17,500 | 12 | 863 | 141.53 |
MC2 250 W | 268 | 33,000 | 12 | 330 | 88.44 |
Total | 11,567 | 1000.92 |
Luminaire Type | Power Consumption (W) | Quantity in the Suburban Landscape | Quantity in the Garden City | Quantity in the Modernist City | Quantity in the Compact City |
---|---|---|---|---|---|
Z1 50 W | 62 | 1 939 | 3569 | 376 | 30 |
MC12 70 W | 83 | 104 | 1553 | 1145 | 237 |
MC2 100 W | 112 | 255 | 195 | 75 | 362 |
MC2 150 W | 164 | 215 | 556 | 92 | 0 |
MC2 250 W | 268 | 0 | 294 | 0 | 36 |
Parameter | Unit | Suburban Landscape | Garden City | Modernist City | Compact City |
---|---|---|---|---|---|
Total luminous flux of luminaires | klm | 12 312.6 | 38 253.3 | 9 1816 | 5 361.6 |
% | 100 | 100 | 100 | 100 | |
Direct luminous flux onto the traffic area | klm | 5 727.9 | 26 005.5 | 5 823.3 | 3 818.5 |
% | 46.52 | 67.98 | 63.42 | 71.22 | |
Direct luminous flux out of the traffic area 1 | klm | 6 584.7 | 12 247.7 | 3 358.3 | 1 543.2 |
% | 53.48 | 32.02 | 36.58 | 28.78 | |
Direct luminous flux to the upper hemisphere | klm | 244.5 | 430.6 | 53.2 | 27.4 |
% (RULO) | 1.99 | 1.13 | 0.58 | 0.51 |
Parameter | Unit | Suburban Landscape | Garden City | Modernist City | Compact City |
---|---|---|---|---|---|
Total power consumption of lighting system | kW | 192.7 | 542.0 | 141.8 | 71.7 |
Unnecessary power consumption | kW | 103.0 | 173.5 | 51.9 | 20.6 |
% | 53.48 | 32.02 | 36.58 | 28.78 |
Parameter | Unit | Suburban Landscape 1 | Garden City | Modernist City | Compact City |
---|---|---|---|---|---|
Global luminous flux onto the traffic area | klm | 5727.9 | 26,105.3 | 5880.9 | 4051.8 |
% | 46.52 | 64.24 | 64.05 | 75.57 | |
Global luminous flux to the upper hemisphere | klm | 1286.9 | 3907.1 | 786.6 | 683.4 |
% (RUL) | 10.45 | 10.21 | 8.57 | 12.75 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Terrich, T.; Balsky, M. The Effect of Spill Light on Street Lighting Energy Efficiency and Light Pollution. Sustainability 2022, 14, 5376. https://doi.org/10.3390/su14095376
Terrich T, Balsky M. The Effect of Spill Light on Street Lighting Energy Efficiency and Light Pollution. Sustainability. 2022; 14(9):5376. https://doi.org/10.3390/su14095376
Chicago/Turabian StyleTerrich, Theodor, and Marek Balsky. 2022. "The Effect of Spill Light on Street Lighting Energy Efficiency and Light Pollution" Sustainability 14, no. 9: 5376. https://doi.org/10.3390/su14095376
APA StyleTerrich, T., & Balsky, M. (2022). The Effect of Spill Light on Street Lighting Energy Efficiency and Light Pollution. Sustainability, 14(9), 5376. https://doi.org/10.3390/su14095376