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Abstract: Sustainable development has become a concern of all countries globally, and Artificial
Intelligence technology emerges at this historic moment. However, few researchers have studied the
innovation activities of the Artificial Intelligence industry from the macro-level. This paper focuses on
the topological structure and the spatial pattern of the AI patent citation network in China over from
2000–2016. Our main research results are as follows: The network has experienced a striking growth
in terms of the size and the number of linkages since 2000, but it has also developed unequally across
regions. In the later stages, the network has formed a scale-free network that exhibits small-world
property. The network nodes have shown an assortative trait property while weighted preferential
attachment has not been significant. In addition, the high values of centrality and numerous linkages
between nodes concentrate in the eastern part of China, especially in the Yangtze River Delta, Pearl
River Delta, and Bohai Rim. Our results suggest that the AI innovation policies should expand the
targets of technological exchange and cultivate more nodes as intermediaries of local knowledge
transmission necessary to expand the network and develop the AI industry.

Keywords: Artificial Intelligence; innovation network; topological structure; spatial pattern; sustainable
development

1. Introduction

Under the traditional economic development pattern, the high consumption of pro-
duction factors and the consequent high pollution are the two persistent issues that hinder
sustainable development [1–4]. Innovation is a new engine of regional growth [5,6]. It
has become a key factor in maintaining regional competitiveness and sustainable devel-
opment [7] since knowledge capital has replaced human and financial capital as a major
factor in driving economic development [7,8]. As a shared resource, knowledge could
flows freely among innovation objects. The literature has long brought to the fore the
role of face-to-face communication and codified knowledge in the transmission of knowl-
edge [9–12]. For instance, Jaffe et al. (1993) have examined knowledge flows within the
US [13], while Maurseth and Verspagen (2002) and Fischer et al. (2006) have focused on
European countries [14,15]. In addition, Jaffe and Trajtenberg (2002) and Adams (2002)
have compared the source of knowledge flows between colleges and universities, labs, and
firms and have examined different channels of transmission [16,17], such as collaboration,
talent flow, and a disembodied direct channel of codified information which could facilitate
the diffusion of technical knowledge [18].

Furthermore, recent studies have employed social network analysis (SNA) to in-
vestigate the structure of an innovation network and its characteristics based on patent
data [19,20]. Through four indices of centrality, De Prato and Nepelski (2012) find that the
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position of a node in the innovation network has a very strong impact on patent collabora-
tion with other nodes [20]. Specifically, a node’s strength and closeness centrality influence
positively the technological cooperation between countries, while the degree centrality of
nodes shows the opposite result. Based on the example of applied patents in the field of
biotechnology, Li et al. (2015) argue that innovation networks can differ in terms of size,
degree, linkage, and other network indicators. In addition, they find an obvious expansion
in network size over time for both science network and technology network. Furthermore,
they highlight the presence of a preferential attachment feature in the patent co-applicant
network [21]. Analyzing the citation of US biomedical chemistry patents in Europe, Breschi
and Lissoni (2009) describe the evolutionary characteristics of the innovation network
and identify the significance of the innovator flow in knowledge spillovers [22]. Another
example is Ter Wal (2013) who analyzes the biotechnology patent in Germany and discovers
that the importance of geographic proximity in this network has declined over time [23]. It
can be seen that the study of the topology structure on innovation networks based on SNA
can help to gain insight into the development situations and trends of the industry. At the
same time, the geographically presented pattern of innovation networks can provide policy
advice for the regional development planning of industries.

Although many researchers have studied the innovation network in China [24,25],
most have evaluated all sectors together, hence leading to estimates that did not reflect
the heterogeneity across sectors [26,27]. In addition, only a handful of contributions have
focused on the country’s Artificial Intelligence (AI) network. AI is a frontier sector in
innovation activity, which has been broadly used in various disciplines, supporting to
accomplish most of the targets across Sustainable Development Goals (SDGs) [28]. AI is
explained as the investigation of intelligent problem-solving behavior and the creation of
intelligent computer systems [29], which has been a key driver of technological revolution
since the beginning of the 21st century, assisting human beings to figure out the issues of
economic, social and scientific more efficiently and rapidly [30], such as improving trans-
portation that keeps safety for drivers and pedestrians by applying driverless technology,
developing economics that eradicates poverty through boosting productivity, alleviating
environmental pollution by increasing resources utilization efficiency [29,31,32]. For China,
it is crucial to develop AI to tackle large challenges of societal importance, as seen in
an aging population [33], resource shortage [34], economic restructuring, and industrial
upgrading [35], which hinder sustainable development. As of 2016, China owned a total of
76,876 AI patents which is slightly more than the US (67,276) and Japan (44,755).

Hence, we are aware of the importance of the AI sector in innovation activity. Mean-
while, we realized that the AI sector has a far-reaching impact on sustainable development,
and it had been developed over the past time in China. Thus, discussing the evolution of
the AI sector in China is meaningful. To our knowledge, there is no research that depicts
the development evolution of the AI sector based on topological and spatial structure. We
remedy this gap by focusing on the changes in the AI network across Chinese cities from
2000–2016. We employ social network analysis (SNA) to study the topological structure and
the spatial pattern of the Chinese AI patent citation network. Compared to the ordinary
innovation network, such as the cooperation network and the inventor network, patent
citation provides a document trail [15] that makes it easier to trace and measure the learning
process [14,16]. It offers the advantage of formally accounting for the direction and the
intensity of the knowledge flows [9]. In addition, while several contributions focus on
the factors that explain knowledge flows in the patent citation process [36–39], this paper
lays particular emphasis on highlighting the characteristics of the patent creation-citation
network itself. Furthermore, this paper distinguishes itself from the literature by focusing
on the innovation network at the urban scale in order to better investigate the spatial
heterogeneity present in knowledge transmission that we could not get from a study at the
regional or country level [25,40].

This paper proceeds as follows: in Section 2, we discuss the data and the methodology.
Sections 3 and 4 explain the topological structure and the spatial pattern of the Chinese
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AI innovation network respectively. The last section summarizes the results and provides
some concluding remarks.

2. Materials and Methods
2.1. Research Method

Based on graph theory [41,42], we start by constructing the Chinese AI patent citation
network noted G = (V, E), where V is the number of nodes in the network, one for each
city. E is the number of edges in the network, which represents the citation relationship
between cities. We use the degree centrality of cities as the nodes’ weight and the number
of citations between cities as the edges’ weight. We employ SNA, which involves Network
Centrality Model and Complexity, as our research methods, which are usually used by
scholars to analyze the innovation network.

2.1.1. Network Centrality Model

Ponds et al. (2007), Varga and Parag (2009), Alderson et al. (2010), Eisingerich et al.
(2010), and Neal (2011) argue that a city’s innovation capacity is tied to that city’s centrality
in the network [43–47]. The authors argue that inventors in central areas could receive more
information from more partners compared to others who work in peripheral places. We
rely on three centrality indices traditionally used in the literature [20] to reflect the position
of a city in the innovation network:

(1) Degree centrality, CD, refers to the number of nodes that connect to the target
node [48]. In our case, it corresponds to the number of cities that city i is connected with:

CD(i) = ∑n
j = 1 wij, (1)

where wij is the cell of an adjacent matrix. If the citation exists, the cell of the matrix is 1;
otherwise, it is 0.

(2) Betweenness centrality, CB, measures the proportion of the shortest paths that go
through the target node [49]. When the value is large, the target node has a large controlling
power over the network. In our case, it represents the ability of the city to act as the
“gatekeeper of the exchange of information”:

CB(i) = ∑n
j = 1;k = 1;j 6=k 6=i

Njk(i)
Njk

, (2)

where Njk(i) denotes the number of shortest paths between node j and node k that go
through node i.

(3) Strength centrality, CS, is the sum of the weight of the edges that associate with
target node [50]. In our case, it means the total number of citations about city:

CS(i) = ∑j∈Ni
tij, (3)

where Ni denotes the set of adjacent nodes to node i and tij means the total number of
citations between nodes i and j.

2.1.2. Network Complexity

According to Strogatz (2001) and Wagner and Leydesdorff (2005), complex networks
are characterized by self-organization, self-similar, scale-free, and small-world features
that can be measured through several network indices [51,52]. One of the crucial indices
describing the topological features of a network is the degree distribution of nodes [21]. By
tradition, the degree distribution is measured through a power-law function which takes
the following form: f (x) = ax−k where a is a constant, x stands for the degree of a node, k
is an exponent greater than zero that measures the heterogeneity across nodes and f (x)
stands for the number of nodes. Small values of k indicate that the heterogeneity across
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nodes is strong. Furthermore, when the degree distribution follows a power-law function,
the network is called a scale-free network [53].

In addition, Newman (2002) examines assortativity, which tests whether the nodes
connect primarily to similar or dissimilar nodes [54]. Barabási and Albert (1999) call this
characteristic the ‘preferential attachment’ and define it as the preference behavior of nodes
when they choose connections [53]. We define the adjoining neighbors’ average degree
centrality of node i as:

knn,i =
1

Nkj
∑N

j = 1 k j, (4)

The adjoining neighbors’ average degree centrality of nodes with degree k, knn(k) is
defined as:

knn(k) =
1

Nk
∑i,ki = k knn,i, (5)

where j is the connected node of node i, k j is the degree centrality of node j, Nkj
is the

number of connected nodes to node i, and Nk is the number of nodes connected to node i
whose degree is k.

In the absence of degree correlations, knn(k) does not depend on k , and knn(k) is a
constant. A positive correlation between k and knn(k) means that the nodes tend to connect
to other nodes with a similar value of CD. In contrast, if the nodes with high CD have a
majority of neighbors with low CD, the correlation is negative, and the network displays a
disassortative structure.

However, knn(k) is defined solely on the basis of the unweighted topological structure.
When combined with the weight, the correlation result will provide us with additional
insights into the hierarchical and structural organization of the network.

In order to figure out the inconsistency, we employ a weighting matrix that includes
both weight and topological properties. We put forward the adjoining neighbors’ average
strength centrality of node i as follows:

kw
nn,i =

1
Nkw

j

∑N
j = 1 kw

j , (6)

where Nkw
j

means the number of connected nodes to node i, kw
j is the strength centrality

of node j. Similarly, if the correlation between the degree kw and kw
nn(kw) is positive, the

nodes tend to connect to other nodes with a similar value of CS. In contrast, if the nodes
with high CS have a majority of neighbors with low CS, the correlation is negative and the
network displays a disassortative structure. Otherwise, kw

nn(kw) does not depend on kw,
which means that there is no weighted preferential attachment feature.

In summary, Equation (6) evaluates the weighted assortative properties by checking
the actual relationship between the nodes of the network based on the strength of their ties.

2.2. Data Resource

Our analysis is based on data from the Patent Office of the People’s Republic of China.
Departing from previous patent extraction (International Patent Classification codes), AI
technologies are embedded in various disciplines. Thus, we collect patents based on the
patent information keywords, including image recognition, automatic speech recognition,
machine learning, neural network, human-computer interaction, robotics, natural language
processing, fuzzy system, expert system, and decision-support system, which Derwent
innovation suggests. We have extracted information about the address of the inventors, the
patent number, the patent description, and all the advanced patents cited by each patent.
Due to the extremely low number of AI patents in China before 2000, we limit our study
to the 2000–2016 period. It should be noted that using patents as the indicator can not
represent individuals’ entire innovation activity and innovation capacity [55]. While in
our work, we focus on the directed knowledge flow that some other indicators (e.g., new



Sustainability 2022, 14, 5448 5 of 17

product avenue) can not express well. Since this paper focuses on the Chinese network, the
study area includes mainland China, Hong Kong, Macao, and Taiwan.

3. Topological Structure of AI Innovation Network
3.1. Network Evolution and Agglomeration

This study employs the Chinese AI patent citation matrix to produce the network
graph reported in Figure 1. In addition, the network statistics are presented in Table 1. Both
cover the selected years of 2000, 2005, 2011, 2013, and 2016. In Figure 1, the foreign nodes
are located in the outer part of the graph while the domestic ones are inside. The size of the
nodes shows the degree centrality (CD) of each city. It corresponds to the citation scale that
occurs with the current city. The CD of nodes diminishes in a counter-clockwise direction
for both domestic and foreign. The thickness of the line shows the intensity of the citations
between cities. We report all the foreign nodes and the top Chinese nodes for each year.
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Table 1. Properties of Chinese AI patent citation network.

Year 2000 Year 2005 Year 2011 Year 2013 Year 2016

Number of nodes 9 35 90 114 217
Number of edges 8 39 181 346 1457

Average Degree Centrality 0.89 1.11 2.01 3.04 6.71
Average Betweenness Centrality 0 2.58× 10−5 1.25× 10−4 5.46× 10−4 9.39× 10−4

Average Strength Centrality 40 49.09 120.67 154.33 495.33
Average Clustering Coefficient 0 0.064 0.078 0.114 0.245

Average Path Length 1 1 1.34 1.88 2.11

In 2000, the network was composed of only 9 nodes and 8 edges. Seven Chinese nodes
were not associated with any other cities in China but only with US and German. Foshan
was the only non-provincial capital among them while the other domestic nodes were
core cities. By 2005, just a few new nodes had entered the network, thus adding sparse
connections to it. In the second decade of the 21st-century, China followed in the footsteps of
numerous developed countries by deploying successive AI development strategies related
to Big Data and Internet Plus. More obvious changes occurred in the network scale in 2011
as the number of nodes increased from 35 to 90 and the number of edges changed from
39 to 181. At that time, there were 8 foreign nodes in the network. However, a substantial
number of Chinese nodes cited foreign patents heavily while citations between domestic
patents remained low (29.28% of all linkages). This result indicates that even though
many cities had developed AI, most of them relied on foreign technology mainly. The
network configuration changed over 2011–2013 with the emergence of massive connections.
While the number of nodes increased by only 24 during this time, the number of edges
increased from 181 to 346. This evolution indicates that previously unrelated nodes started
to connect with each other. By 2016, the number of nodes and edges increased to 205 and
1457, respectively. More foreign places were cited (up to 12). Without exception, these
foreign nodes were technologically advanced regions located in Western Europe (Germany,
the UK, and France) and in North America (the US and Canada). Although the number of
nodes increased by the same number as in the previous time period, the network doubled
its average degree centrality (CD) compared to 2013.

In general, there is a significant growth in each network indicator from 2000–2016. The
increase in the number of nodes indicates that more cities had participated in the AI R&D
activity. While edges, whether domestic or international, increased rapidly over the study
period, we find that the AI inventors cited domestic patents more frequently over the more
recent years. In addition, the average degree centrality increased from 0.89 in 2000 to 6.71
in 2016, which shows that the connection choices of nodes became richer. This result also
implies that cities are not bounded to their original citation path, they are willing to cite
from new technologically-advanced regions. Besides, the increasing average clustering
coefficient indicates the level of network cohesiveness was enhanced [53], which suggests a
growing network connectivity and a network becoming more mature.

Although the network matured over the study period, the development of the network
is unevenly spread across nodes. Based on Figure 1, we find that the majority of nodes had
connected with few hubs in 2016. This result is confirmed by a Gini coefficient of 0.680 and
a coefficient of variation (CV) of 1.693 for CD in 2016. As for the other two centrality indices,
the Gini coefficient of CB reached 0.942, and the CV was 4.687 in 2016. The Gini coefficient
of CS was close to 0.890, and the CV was 6.309 in the same year. These two indicators
suggest that the high values of CD, CB, and CS are mostly occurring in the minority nodes.
In addition, in 2016, newly created patents in China cited past German patents 44,103 times,
an amount that was far larger than the sum of citations of other foreign countries or
institutions (5124 times).

Table 2 lists the top 10 areas for each centrality index and selected year. It is worth
noting that not all nodes with a high CD presented a high value in CB at the same time,
which indicates that not all active nodes played a major role in information transmission.
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De Prato and Nepelski (2012) claim that there is a strong correlation between CD and
CS [20]. In our case, however, nodes with high values of CD do not always display high
values of CS, which demonstrates that nodes have diverse connection properties. This
result helps us identify two kinds of nodes: the first type corresponds to nodes with a
high CS but a low CD at the beginning of the period, which tend to expand their linking
target. The second type is nodes with a low CS but a high CD. These are nodes that focus
on intensifying their strength of existing linkages. As the network develops, the former
type experiences a decrease in the value of CS. This behavior is verified in Table 2 which
reports how several nodes that appear in the top list of cities based on CS but not based
on CD in 2011 fell off from the top list of CS in 2013 and 2016. These cities followed their
own “innovation path dependency” [56] by sticking to cities they absorbed knowledge
from in the past. However, these cities seem to have lost their competitive advantages at
the end of the period. This result is consistent with observations by Rubera et al. (2016),
Almirall and Casadesus-Masanell (2010), and Prabhu et al. (2005) who point out that
external searches allow innovative subjects to escape path dependency and broaden their
knowledge base [57–59]. New network connections help units enter a new innovation path
and develop new products [58–61]. For instance, Shenzhen, which has had the highest
CD since 2011, became the leader of CS five years later. This phenomenon indicates that
absorbing diversified knowledge is more effective in the long-term development of a city
than concentrating on limited resources in AI activity.

Table 2. Centrality Indices.

Rank
Degree Centrality Betweenness Centrality Strength Centrality

City Value City Value City Value
2000

1 Germany 7 Germany 0 Germany 179
2 Taipei 2 Taipei 0 Beijing 80
3 Beijing 1 Beijing 0 Nanjing 30
4 Shanghai 1 Shanghai 0 Taipei 20
5 Nanjing 1 Nanjing 0 Shenzhen 20
6 Guangzhou 1 Guangzhou 0 Shanghai 10
7 Shenzhen 1 Shenzhen 0 Guangzhou 10
8 Foshan 1 Foshan 0 Foshan 10
9 USA 1 USA 0 USA 1

10 N/A N/A N/A
2011

1 Germany 77 Shenzhen 5.92 × 10−3 Germany 5064
2 Shenzhen 24 Dongguan 4.47 × 10−3 Beijing 847
3 Beijing 18 Hangzhou 4.26 × 10−4 Shanghai 509
4 EPO 15 Beijing 2.98 × 10−4 Shenzhen 443
5 Shanghai 14 Guangzhou 1.28 × 10−4 Suzhou 330
6 Shenyang 14 N/A Hangzhou 233
7 Dongguan 12 N/A Nanjing 190
8 Hangzhou 11 N/A Jinan 188
9 Harbin 9 N/A Xi’an 179

10 Changzhou 9 N/A Chengdu 169
2013

1 Germany 86 Shenzhen 1.34 × 10−2 Germany 7520
2 Shenzhen 35 Suzhou 9.85 × 10−3 Beijing 1359
3 Beijing 33 Beijing 9.07 × 10−3 Shenzhen 842
4 Suzhou 32 Hefei 7.29 × 10−3 Suzhou 725
5 EPO 30 Shanghai 5.24 × 10−3 Shanghai 583
6 Shanghai 24 Hangzhou 4.20 × 10−3 Chengdu 494
7 Hangzhou 23 Xi’an 3.78 × 10−3 Nanjing 376
8 USA 22 Foshan 2.21 × 10−3 Guangzhou 338
9 Japan 22 Dongguan 2.02 × 10−3 EPO 302

10 Hefei 21 Guangzhou 1.86 × 10−3 Xi’an 258
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Table 2. Cont.

Rank
Degree Centrality Betweenness Centrality Strength Centrality

City Value City Value City Value
2016

1 Germany 178 Shenzhen 5.04 × 10−2 Germany 44,103
2 Shenzhen 123 Beijing 2.65 × 10−2 Shenzhen 9249
3 Beijing 105 Dongguan 1.80 × 10−2 Beijing 8567
4 Dongguan 87 Chengdu 1.34 × 10−2 Chengdu 3303
5 Shanghai 83 Hangzhou 1.30 × 10−2 Shanghai 3209
6 Hangzhou 81 Guangzhou 1.20 × 10−2 Guangzhou 2296
7 EPO 78 Shanghai 1.10 × 10−2 Dongguan 2051
8 Guangzhou 74 Wuhan 6.50 × 10−3 EPO 2007
9 Chengdu 70 Xi’an 5.08 × 10−3 Suzhou 1981

10 Wuhan 58 Taizhou 4.23 × 10−3 Hangzhou 1550

3.2. Network Complexity

Firstly, we examine the fit of the power function described in Section 2.1.2 based on
the CD value of nodes. Figure 2 shows the fitted curves and associated R2 values.
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Figure 2. Power-law function of degree distribution.

We find that the R2 values are between 0.966 and 0.986, hence indicating that the
degree distribution of the Chinese AI innovation network follows the power-law function.
It means that the majority of the high values of CD concentrate on the minority nodes and
that the network holds the traits of a scale-free network. This result confirms the unbalanced
development of the network described in the previous subsection. To be specific, the value
of the exponent indicator k decreases from 2.418 in 2011 to 1.194 in 2016, indicating that
the discrepancy of nodes in terms of CD has widened while the network scale expands
rapidly. The value of k in 2016 is much smaller than the value in any other year, not only
because the CD of the leading nodes had increased dramatically but also because a large
number of fresh nodes with a low CD have emerged. It is worth noting that even if the
degree distribution follows the power-law function, the result didn’t give a conclusive
answer that the power-law distribution is favored over alternative distributions [62]. Since
the sample size of our case, we can’t tell power-law and log-normal apart after excluding
the exponential and stretched exponential or Weibull behaviors.
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Secondly, Table 3 reports the correlation between the nodes’ value of CD and the average
CD of their partners in 2011, 2013, and 2016. These figures are based on Equations (5) and (6).

Table 3. Preferential attachment.

Unweighted Preferential Attachment Weighted Preferential Attachment

Year Correlation Coefficient p-Value Correlation Coefficient p-Value

2011 0.241 0.000 0.043 0.256
2013 0.285 0.000 0.016 0.676
2016 0.184 0.001 −0.077 0.177

The results are positive and significant, which means that the network structure
presents an assortative trait. However, the result of the weighted preferential attachment is
not significant, which demonstrates that there is no obvious tendency for the nodes with
high CS to link with nodes with the same properties. This phenomenon indicates that
nodes become attractive based on the number of linkages rather than their intensity.

Furthermore, compared to a random network of the same scale, the average clus-
tering coefficient (C2016 = 0.245) in 2016 is much larger than that of the random one
(Crandom = 0.136), and the average path length of both is roughly equal (L~Lrandom). This
result exhibits a “small-world behavior”, which is an optimal structure for an efficient
diffusion of knowledge [63].

4. Spatial Pattern of AI Innovation Network

In the network graph (Figure 1), two nodes might appear close by based on the inten-
sity of their relationship, even if they are located far away from each other geographically.
In this section, we mix the nodes’ information with their geographical location in order to
investigate the spatial pattern of the Chinese AI innovation activities.

4.1. Network Connection

Figure 3 maps the geographical distribution of the citations. There are three types of
nodes that represent different levels of degree centrality across Chinese cities. The thickness
and shade of the links denote the intensity of the AI patent citations.

Based on Figure 3, we recognize several domestic nodes without edges, which indicates
that these cities cite foreign patents only. All the domestic nodes were insular at the
beginning period. As more connections formed between domestic nodes, the citation
network in 2011 and 2013 presented a quadrilateral skeleton. Meanwhile, the majority of
the edges were located in the eastern part of China, especially between the Yangtze River
Delta (YRD), the Pearl River Delta (PRD), and the Bohai Rim. By 2016, more interlaced
and sophisticated connections appeared between cities, revealing a diamond shape. At
the same time, the proportion of isolated nodes decreased significantly, which suggests an
increased focus on domestic AI technology. Yet, several areas remained without nodes or
links. They are mostly regions in the western and middle parts of the country as well as
some sparsely populated and underdeveloped areas located elsewhere.

In order to investigate further the geographical distribution of the network and the
directionality of the flows, Figure 4 reports the heatmap of the citation intensity for the
aggregate data and the entire period. In this figure, the regions are grouped into a two-level
hierarchy: 34 provinces or municipalities and 300 prefecture-level cities. The rows of the
matrix indicate the origin of the citation and the columns represent the destination. The
color of the elements varies from white to green to red, describing the citation intensity
from low to high.

Figure 4 confirms the dominance of PRD, YRD, and the Bohai Rim described earlier in
the patent network. However, these three regions have distinct link behaviors. For PRD,
we find that the darker-shaded dots and the highest point density appear in Ellipse 5. It
means that AI inventors in PRD favor YRD’s patents. Intra-regional citations, shown on the
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diagonal of the graph, are mostly present in a few places like Shenzhen and Guangzhou as
indicated in Circle 6. In contrast, YRD relies mostly on local rather than remote citations
due to the majority of dark-shaded cells appearing in Circle 1. While the point distribution
in Circle 1 is much more homogeneous than the intra-citation of PRD (Circle 6), showing
that citations inside YRD are relatively dispersed. When it comes to Bohai Rim, we note
that the point density is higher in Ellipses 7 and 8 than in other places, which indicates that
cities in this area tend to cite patents from YRD and PRD more often than from elsewhere
in China.
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Figure 3. Spatial distribution of network connection.

From the analysis above, we can conclude that, as a whole, the Eastern region dom-
inates the AI patent citation network in China even if the network has developed over
the years. We also note that the distribution is heterogeneous in space because several AI-
intensive areas display widely different characteristics. YRD focuses more on self-citation
and local spillovers, while PRD and Bohai Rim focus on remote transmission. At the same
time, linkages within YRD are relatively scattered compared to those within PRD which
concentrates in few places. Furthermore, the intensity of the citations between regions are
asymmetric. Almost all areas tend to cite more from YRD than from other regions, but the
reverse is not true. Thus, the citation intensity varies by citation object and direction.
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4.2. Centrality of Node

Based on Equations (1)–(3), Figure 5 shows the spatial distribution of Degree (CD),
Betweenness (CB), and Strength (CS) centrality, respectively, in 2000, 2011, 2013, and 2016.
For clarity purposes, we label the core cities in the CD graph, and for the year 2016 only.

In 2000, all the cities in the network were located in the eastern coastal region. That
year Taipei was the city with the highest CD and it connected Germany and the US. The
remaining nodes had relationships with Germany only. However, the city with the highest
CS was Beijing, with a value of 80. At that time, the CB value of each city was zero because
there is no interaction between domestic nodes.

By 2011, more cities had participated in the AI innovation network, including some
new creative cities, such as Hangzhou and Dongguan. High values of centrality began to
appear in PRD, YRD, and Bohai Rim. Shenzhen had 24 edges, which supersedes Taipei as
the location with the most connected domestic node, while the highest CS was still Beijing,
way ahead of Shanghai (2nd) and Shenzhen (3rd). In addition, we find that only five cities
(Shenzhen, Dongguan, Hangzhou, Beijing, and Guangzhou) serve as an intermediary agent
of the network despite the presence of almost one hundred cities in the network. They
are all located in the three AI-developed areas and their CB value ranged from 1 × 10−4

to 6 × 10−3. The small value indicates the other nodes did not rely heavily on these
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five transfer stations to connect with others, which reveals that the domestic AI knowledge
exchange was scarce at that time.
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By 2013, it became obvious that the agglomeration of high values of centrality in PRD,
YRD, and Bohai Rim had intensified. Shenzhen was leading in the value of CD while Beijing
was holding its position in terms of CS. Precisely because of the rapid development, which
results in the two cities becoming the major players in the transmission of information
across the country’s network. In other words, Beijing (CB = 9.07 × 10−3) and Shenzhen
(CB = 1.34 × 10−2) situated on the shortest path between many dyads. It is worth noting
that Xi’an, a city located in the mid-western part of China, started to increase its role in
the transmission of knowledge at the regional level. This facilitated the development
of local AI around Xi’an as noted by the high value of CS that appeared across several
mid-western cities.

By 2016, an increasing number of nodes with high centrality had concentrated in the
eastern part of China, especially in terms of CB. The eastern coastal cities accounted for
eleven of the top fifteen most connected places as determined by the value of CD. As
such, there were nine eastern coastal cities in the top list of CS. It should be noted that
several nodes located in the western or mid-western part of China became more active in
the AI business. Here, the most prominent example is Chengdu, a city that was not active
in AI during our initial period but occupied the top position across the three centrality
indices by 2016, as reported in Table 2. This phenomenon led the spatial distribution of
centrality to take a diamond shape. The polygon shape of the innovation network shows
that numerous hubs started to emerge and close innovation relationships started to build,
as one would expect from a mature network [21]. In addition, more cities became involved
in the transmission of information, which improved the knowledge spillovers across cities
in several local areas.

5. Conclusions

As a force driving regional development, scientific and technological innovation plays
an increasingly important role in regional competitiveness and sustainable development.
Past literature shows that the spatial characteristics of innovation activities are becoming a
major focus in economic geography [64,65]. This article has built on patent information
across Chinese AI businesses to investigate the topological structure and spatial pattern of
the innovation network and knowledge spillovers at the urban level from 2000 to 2016.

Based on network indices, we find that the network’s topological structure has experi-
enced a remarkable maturation process over the study period. It has taken the form of an
expansion of the network scale and an improvement in connectivity. During this time, most
of the high values were concentrated in a few nodes, demonstrating an agglomeration phe-
nomenon that intensified over time in all centrality indices, especially in degree distribution.
This pattern is supported by the decreasing exponent of the power-law function, which also
shows that a large number of relations were fragile despite the increasing average degree of
the network. However, even if the degree distribution follows the power-law function, it is
difficult to say the power law is favored over the log-normal distribution. We also find that
the degree distribution is indicative of a so-called scale-free network which is characterized
by nodes that link to counterparts who possess a similar degree (assortative trait) but not a
similar weighted degree. This result indicates that the main driver of connections is the
number of cities that one node is linked to instead of the intensity of these relationships.
This demonstrates that the innovation objects tend to connect ones who are recognized as
good by all rather than just a few. This feature is identical to what Jaffe and de Rassenfosse
(2017) found for the US innovation network [66]. Even if the weighted preferential attach-
ment was not significant in our case, future research should consider it for understanding
the characteristic of innovation objects in the knowledge learning process accurately. We
also find that the Chinese AI network displayed a small-world feature over the course of
its maturity, which could facilitate the information diffusion and exchange. In addition, the
difference in the ranking of three centrality indices indicates that the key factor for nodes’
long-term development is absorbing diversified knowledge.
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We also find that an increasing number of nodes with high centrality were located
in the eastern part of China. Indeed, for each of the three centrality indices, the number
of nodes with a high value decrease as one moves westward and the East-West gap has
increased as time passes. As such, the greatest mass of intra- and inter-regional connections
appeared in the eastern coastal region of China, especially in the Yangtze River Delta, the
Pearl River Delta, and the Bohai Rim, so that cities located elsewhere often connect with
cities from these three areas. The gap in the AI industry development increased between the
eastern part of the country and the hinterland for several reasons. First, the R&D resource
endowment of the eastern area is far superior to that of the other places since it was a pioneer
of the Chinese reform and opening in 1978. Second, highly-skilled workers and returnees
prefer to work in the eastern area [67], because the majority of the AI enterprises set up
factories there. By 2016, 44.8%, 28.7%, and 16.9% of all Chinese AI businesses were located
in Bohai Rim, YRD, and PRD, respectively. Nine of the top ten AI companies are located in
these regions. An example is Huawei, located in Shenzhen (PRD), which created the AI
chip and 5G communication, and Alibaba, located in Hangzhou (YRD), which launched
Cloud computing, AI Finance, and AI transport. Third, due to its geographical location, the
eastern part of China has access to advanced knowledge embedded in international trade
and foreign investments [68,69]. Finally, numerous international conferences facilitating
the transmission of AI knowledge, such as the World Artificial Intelligence Conference,
were held in eastern cities. At the same time, our results highlight that the spatial pattern
of network linkages moved from a random distribution to a quadrilateral skeleton over
time. We find that the AI citation has not been constrained by the geographical distance at
all, since the main citation flows occurred across hubs located far away from each other.
Additionally, different regions display diverse citation properties. YRD, for example, was
endocentric while PRD was extraverted.

Previous studies demonstrated the connection between AI and sustainable develop-
ment, and we realize the importance of developing AI for the social, environment, and
economy. Our research reveals the evolution of AI in China, which results can lead to sev-
eral important innovation policy advice to develop the AI sector and support sustainable
development. First, we find that one means by which citations could be improved further
in the country is by expanding the means of technological exchange and cooperate more
broadly. Learning from diversified sources benefits inventors as they can acquire heteroge-
neous knowledge, which increases the intensity of the innovative relations between cities.
Second, our results indicate that a key to the expansion of the citation network has been
the increase in nodes with a high value of betweenness centrality. As such, we believe
that the government should focus its efforts on this type of node as it has the capacity of
promoting AI developments in its surrounding areas. For the central government, they
should pay more attention to cultivating more large nodes in the western area. With regards
to local government, promoting innovation staff to learn advanced knowledge from the
eastern area could develop AI rapidly. Third, we find that intensifying the knowledge
and technology exchange with individuals from external areas can greatly promote the
development of AI in China. AI is embedded in various disciplines and industries [28],
while the resource endowments and industry structure are different across regions due
to the vast area of China. Therefore, the grow up of the AI industry requires close inter-
regional linkage and exchange. Different from the traditional innovation pattern, open
innovation relies not only on internal knowledge and resources of innovation objects but on
externals also [70–72], which can accelerate the knowledge diffusion and achieve a better
innovation performance [72–74]. It has become an effective strategy for promoting regional
economic growth and strengthening regional competitiveness [75–77]. Thus, it is necessary
that develop AI with open innovation pattern to facilitate sustainable development of the
economy in China. Finally, we believe that AI technology can accelerate China’s progress
toward SDGs. However, we can not ignore the negative side of developing AI, such as
individual information leakage and cyber security [28]. Thus, the fast growth of AI needs
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to be supported by the necessary regulatory insight and oversight of AI technologies.
Otherwise, it could result in gaps in transparency, safety, and ethical standards.
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