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Abstract: The concentrating photovoltaic/thermal (PVT) collectors offer the benefits of the reduced
per-unit price of electrical energy and co-generation of electrical and thermal energies by intensifying
the solar irradiation falling on the hybrid receiving plane. The compound parabolic concentrating
(CPC) collectors have appeared as a promising candidate for numerous applications in the field
of solar energy due to their ability to collect both direct and diffuse solar radiation and suitability
for stationary installation. Over the last few decades, various configurations of CPC collectors
have been proposed and investigated by different researchers for the simultaneous generation of
electrical and thermal energies. This article presents a comprehensive review of historical and
recent developments and applications of CPC-based hybrid PVT systems. The review focuses on
the heat extraction mechanisms and commonly used application areas of CPC-PVT systems. The
innovative design configurations proposed by different researchers have been reviewed in detail.
The outputs of CPC-PVT systems are generally found to be superior to their counterparts without
CPCs, which justifies their increased popularity. Due to dual outputs, the hybrid CPC-PVT systems
are considered to be suitable for rooftop and building façade integrated applications. Finally, future
recommendations have been enlisted, highlighting the potential research opportunities and challenges
for the prospective researchers working in the field of concentrating solar PVT systems.

Keywords: concentration ratio; acceptance half-angle; optical efficiency; building integrated
concentrating photovoltaic/thermal; air heating collectors
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1. Introduction

The combustion of hydrocarbons increases the emission of greenhouse gases in the
atmosphere, resulting in adverse climate change. Simultaneously, exhaustion of such
nonrenewable resources in nature causes an increment in their prices. Renewable energy
has proved to be a promising solution to this situation. Solar energy is a prime renewable
energy resource among renewable energy options to support sustainable development and
rapid industrialization [1]. It is a pollution-free, nondepleting, and cheaper energy resource.
Solar energy can be harnessed either by solar thermal collectors or solar photovoltaic
panels [2]. However, the energy conversion efficiencies of PV panels are inherently lower,
which further decrease with a rise in solar cells’ temperatures [3]. The hybrid PVT collectors
are developed by integrating heat exchangers at the back of PV cells. A working fluid
circulates through the heat exchanger tubes and extracts the heat generated during the
energy conversion process [4]. The extracted heat can be used in different processes of
various industrial applications to satisfy their thermal needs [5]. Due to the co-generation
of electricity and heat, the hybrid PVT collectors can achieve higher overall efficiencies
than separate PV and thermal collectors [6]. Another obstacle hindering the widespread
use of PV technology is the higher upfront cost of silicon semiconductor material which
is the major constituent component of PV panels [7–9]. Optical concentrators serve the
purpose of enhancing the intensity of solar radiation incidents on a target surface [10]. Due
to intensified solar flux, the same output can be produced by a relatively smaller quantity
of silicon material [11]. Thus, the costly silicon solar cells can potentially be replaced
by relatively cheaper optical concentrating elements. Moreover, the maximum power
generated by a concentrator-based hybrid PVT system is enhanced by a factor having a
value equal to the geometric concentration ratio of its concentrator [12].

Optical concentrators can be broadly grouped into two categories, namely conven-
tional concentrators and holographic concentrators [13]. The widely used conventional
concentrators are further subdivided into different types, such as the refractive, reflective,
hybrid, and luminescent concentrators [14], as depicted in Figure 1. The refractive and
reflective concentrators follow the principles of refraction and reflection of sunlight from
lenses and mirrors, respectively [15]. Another classification of optical concentrators is based
on their geometrical concentration ratios. For example, high concentrating collectors are
characterized by the geometric concentration ratios above 100× [16]. For medium and low
concentrating collectors, the geometric concentration ratio lies in the range of 10–100× and
2–10×, respectively [17]. The incident solar flux on the PV receiver is apparently higher
in the case of high concentrating collectors, but they are seldom used in ordinary appli-
cations due to the requirement of dual-axis accurate tracking systems, increased cooling
power required to maintain the temperature of solar cells within limits and higher initial
and maintenance costs [18]. On the contrary, the low concentrating systems are mostly
stationary or quasi-stationary depending upon their acceptance angles and are relatively
cheaper to manufacture [19]. The concentrators for low concentrating systems include
V-troughs and linear Fresnel reflectors and compound parabolic concentrators. Due to
their wider acceptance angles, higher optical efficiency, and the capability to gather both
direct and diffuse solar radiation, CPCs are preferably employed in low concentration
systems [20–22].

Right from the year 1974, when Winston [23] conceived the idea of the application of
CPCs for gathering solar energy, these concentrators have found numerous applications in
various fields, including solar thermal systems [24], wireless communication systems [25],
infrared temperature sensing systems [26], and daylighting control systems [27–30]. In ad-
dition, CPCs have also found applications in the fields of thermoelectric generation [31–33]
and solar cooking [34]. However, the dominant application of CPC collectors is in solar
energy systems, including solar PV, thermal, and hybrid PVT collectors. Some review
articles related to concentrating solar thermal collectors [35–38], solar PV systems [39], and
PVT collectors [40–45] are available in the literature, which highlighted the importance of
CPC as one of the concentrating devices for solar applications. Some authors dedicated
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their review articles to CPC collectors. In this regard, Tian et al. [46] published a generalized
review highlighting the applications of CPCs in different fields of solar energy, including
solar PV systems, solar thermal collectors, hybrid PVT collectors, daylighting systems,
and photocatalytic water degradation and purification systems. However, the CPC-based
hybrid PVT systems were not reviewed in detail. Another comprehensive review regarding
applications of CPCs for solar photovoltaic conversion was conducted by Paul [47]. The
author delineated various CPC design configurations related to generation of electrical
energy only. However, the CPC based PVT systems were not considered at all in the
review process.
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An increasing tendency towards empirical and experimental research publications
related to CPC-based PVT systems has been observed in different parts of the world for the
past few years. However, to the best of the authors’ knowledge, no review is available in
the literature about CPC-based PVT systems. This requires an updated and comprehensive
review of the published research related to the recent developments and applications of
CPC-based hybrid PVT systems, covering unique design configurations and heat extraction
techniques. The present review article aims at conducting a detailed review of the available
literature related to CPC-PVT systems, considering the recent research developments in
the applications of CPCs in the relevant fields of solar energy. The review of CPC-based
hybrid PVT systems includes different heat exchanger configurations as well as different
heat extraction methods using heat transfer fluids such as air and water. Finally, the
recommendations are made to serve as guidelines for prospective researchers based on the
detailed review of available literature.

2. Historical Perspective

Optical concentrators are used in both solar thermal collectors and solar PV converters.
However, the motivation for using optical concentrators is different for two major classes
of solar energy collectors. In the case of solar thermal collectors, the key aspiration for
employing concentrators is to elevate the performance at higher operating temperatures by
reducing the heat losses due to a relatively smaller absorber area. Conversely, the major
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motivation for using optical devices in solar PV converters is the economic benefit achieved
due to reduced solar cell area owing to the concentration of solar irradiation [48]. The silicon
solar cell is the most expensive part of a solar PV-based electricity generation system which
prohibits the widespread use of PV generators to fulfill domestic and industrial electrical
load requirements [49]. However, the costly solar cells can be replaced by relatively cheaper
optical concentrators to render the solar PV generators cost-effective.

After initial investigations in the USA during the 1970s, the technical feasibility and
economic viability of CPCs for PV applications had been established. To further reinforce
this, Mallick et al. [50] conducted an experimental study in the UK employing an asymmet-
ric CPC of 2.0× concentration to demonstrate that maximum generated power increases by
62% due to CPC. Yousef et al. [51] conducted a performance assessment of a PV module
integrated with 2.4× CPC for climatic conditions of Egypt using experimental and numeri-
cal methods. Their results indicated that the peak power produced by the CPC-based PV
module increased by 18% compared to analogous non-concentrating PV modules. The
authors also reported an increment of 32% in the short-circuit current. Nonetheless, the
open-circuit voltage declined by 5% due to high temperature. The next research phase
started to eradicate the problems observed during the first phase with different research
goals. Various research groups and individual researchers investigated CPC-PV systems
with versatile research objectives. For example, some authors proposed novel designs of
CPCs for PV systems and conducted research to investigate their optical performance. In
contrast, others explored the varieties of solar cells employed in the PV receiver, includ-
ing monocrystalline, polycrystalline, or thin-film solar cells. Some research studies were
devoted to the issue of non-uniform illumination of the receiver and how to mitigate its
impact on the system’s performance.

3. Basic Construction and Classification of CPCs

The CPC collectors belong to a class of concentrators called non-imaging concentrators.
These concentrators allow the design of optical systems that can attain maximum geometric
concentrations permitted by laws of physical conservation for a given angular field. As
opposed to imaging or focusing concentrators, the concentrators based on non-imaging
optics are capable of achieving moderate levels of concentration without tracking the sun.
Non-imaging optical concentrators are designed based on the edge ray principle, which
asserts that sun rays emanating from the verges of the source are focused on the verges of
the target surface [48]. Thus, all rays lying within a given acceptance angle have a chance
to reach the receiver.

In its simplest form, the CPC consists of two parabolic reflecting segments that direct
the sunrays arriving at the entrance aperture to a receiver surface positioned at the leaving
aperture [52]. The left and right segments of CPC are parts of two parabolas, while the
receiver is placed between the focus points of these parabolas. The axes of the parabolic
segments are orientated away from the CPC axis by an angular range, known as an
acceptance half angle, as illustrated in Figure 2. The solar radiation falling within this
angular range of CPC would travel all the way to reach the receiver, directly or after one or
more reflections [53–55].

The design process of an ideal CPC starts with specifying the values of acceptance
half angle and width of the flat receiver. The resulting width of the entry aperture and total
height of CPC are then calculated using the equations derived by Winston and his fellow
researchers [57,58]. Afterward, the set of coordinates for one of the parabolic reflectors
in the Cartesian coordinate system is determined [59]. The other side parabolic reflector
is simply the mirror image of its counterpart [48] in a symmetric CPC. Some researchers
have developed a new set of equations for designing a symmetric CPC having a flat
receiver, e.g., Taneja et al. [60], Fraidenraich and Salcedo [61], and Tiruneh [62]. Paul [63]
presented a detailed review of mathematical equations used to design different symmetric
and asymmetric CPC collectors configurations for solar energy applications.
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The CPCs are generally categorized as either two-dimensional (2D) and three-dimensional
(3D) or symmetric and asymmetric types [64]. The 2D CPC has a cylindrical trough-like
shape formed by translating the primary geometry perpendicular to the page, whereas
the 3D CPC is obtained by rotating a 2D CPC around its axis of symmetry. The symmetric
2D CPC is the basic CPC geometry, while all other variants can be derived from this basic
shape [23]. The classification of CPCs is shown in Figure 3. While the concentration ratio
of a symmetric CPC is fixed for all incidence angles within its acceptance angle range, an
asymmetric CPC possesses a variable concentration ratio due to the fact that the acceptance
half angles for left and right parabolic reflectors are not the same [65]. That is why it is
not geometrically symmetric around its central axis. A 3D CPC causes increments in the
geometrical concentration ratio compared to 2D CPC, due to which the size of solar cells is
further reduced for a given output. However, the circular shape of entry and exit apertures
of 3D CPC acts as a source of losses. Moreover, the circular shape of 3D CPC also causes
hurdles in its integration with commercially available square-shaped silicon solar cells. To
overcome the limitations of 3D CPC, a modified circular 3D CPC, crossed CPC, having
square acceptance and exit apertures was proposed [66].

The economic feasibility of a CPC collector is dependent on its manufacturing cost,
which is directly related to the area of reflecting surfaces. One weakness of basic CPC
design is its relatively larger height in comparison to the width of the receiver surface. This
problem can be solved by removing the portions of CPC parallel to its optical axis as they
are contributing very little to the size of the entry aperture and concentration ratio [54,64].
The process of removing these least contributing portions without significantly reducing the
acceptance half angle and hence the solar radiation collection by the concentrator is known
as truncation. Truncation reduces CPC height, thus causing a reduction in total mirror area
and the manufacturing cost. Truncation also causes a reduction in the number of reflections
of incident rays before reaching the destination. About 50% truncation of full height offers
a good agreement between CPC’s concentration and mirror area [48]. Carvalho et al. [67]
appraised the effect of truncation position on the monthly and annual average energy
collected by 2D CPCs, taking into account the optical and thermal losses. The authors
developed analytical equations for calculating the angular acceptance to observe the impact
of truncation on the CPC field of view. Higher receipt of the beam and diffuse radiation
and lower mean number of reflections were reported to be the optical gains resulting
from truncation.
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3.1. Feasibility of CPC-Based Hybrid PVT Systems

A PVT system is a hybrid arrangement consisting of a thermal receiver combined
with a PV module to remove the heat produced in the PV cells during the photovoltaic
conversion process to lower their temperature and increase conversion efficiency. A hybrid
PVT collector has the capability of simultaneously generating both electricity and heat.
The schematic diagram of the CPC-PVT collector is illustrated in Figure 4. Diverse con-
figurations of hybrid PVT systems are available in the literature [68–71]. Huang et al. [72]
assessed the performance of an integrated PVT system consisting of a commercially avail-
able polycrystalline PV unit and a heat-gathering sheet. The authors demonstrated that
the principal energy-saving efficacy of the integrated system was superior to that of an
equivalent-sized traditional solar water heating system and PV panel working individually.
The performance of a hybrid PVT system can be proficiently augmented by integrating
optical elements with it. The research studies revealed that heat produced by a concentrat-
ing PVT system is always at higher temperatures than its non-concentrating or flat plate
counterpart due to the concentration of sunlight on the PV surface and can be potentially
used in low to medium temperature thermal applications [73]. Consequently, the quality
of heat energy produced by a concentrating hybrid PVT system is superior due to the
presence of an optical concentrating element within the hybrid system.

Zhang et al. [74] presented the design and performance estimation of a 4× CPC-based
LCPVT system using simulations and experiments. The authors attached a baffle heat
exchange channel at the back of PV cells to reduce the temperature gradient along the flow
direction of the coolant. The performance of the proposed system was assessed by varying
the baffle spacing, flow rate, solar irradiance, and inlet and ambient temperatures. The
maximum thermal and electrical efficiencies on a typical day were recorded to be 55.11%
and 12.5%, respectively. The performance comparison between low concentration and
conventional hybrid PVT collectors can potentially reveal the benefits of low concentration
PVT systems. In another study, Zhang et al. [75] compared the electrical and thermal
performances of an LCPVT system, having a CR of 4×, with a typical flat plate hybrid
receiver for climatic conditions of China. The comparison was made for fixed mass flow rate
conditions. The authors experimentally proved that the LCPVT module generated three
times more electrical power and approximately two times more thermal power compared
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to an equivalent nonconcentrating PVT module. As a result, CPC collectors have emerged
as a preferred choice for researchers working in the field of hybrid LCPVT systems. To
prove this, some authors have studied the benefits of integrating different CPC designs
with PVT collectors.

Bahaidarah et al. [76] evaluated the impact of cooling on the performance of non-
concentrating and CPC-based concentrating PV modules. The authors demonstrated that
cooling enhanced the output power by 49% and 100% in the case of nonconcentrating and
CPC-based concentrating PV modules, respectively. The heat energy extracted from the
concentrated receiver can be used in low-temperature thermal applications causing an
increment in the overall performance of the LCPV system. Yousef et al. [74] conducted a
similar comparative performance evaluation for Egypt’s hot and arid climatic conditions.
As reported by the authors, the temperatures of nonconcentrating and CPC-based con-
centrating PV systems were lowered by 25% and 30%, respectively, causing significant
increments in the output power of both systems. Moreover, the CPC-based PV system
generated 52% more power in comparison with the flat PV module when the cooling mech-
anism was employed. Thus, the cooling causes dual benefits by increasing the electrical
performance and simultaneously providing valuable thermal energy.
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3.2. Performance Enhancement Using Phase Change Materials

The phase change materials (PCM) can absorb and disperse substantial amounts of
latent heat during the transformation in their physical condition. Therefore, the integration
of PCM with the PVT systems offers dual benefits of PV cooling and storage of thermal
energy. Al-Imam et al. [78,79] used PCM for improving the performance of the CPC-PVT
system for the climatic conditions of Bangladesh. The authors [78] conducted experimental
investigations on clear sky and semi-cloudy days using a CPC integrated PVT collector
fitted with a tank having PCM for energy storage. The thermal efficiency was found to vary
from 40 to 50% and around 40% on clear sky and semi-cloudy days, respectively, whereas
the overall efficiency varied between 55–63% and 46–55% for clear sky and semi-cloudy
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weather conditions. It was concluded that the integration of CPC and PCM caused an
increment in the performance of hybrid PVT system.

Liu et al. [80] numerically estimated the performance of a CPC-based PVT collector
utilizing a microencapsulated phase change effluent as the cooling agent. The proposed
system’s electrical and thermal efficiencies attained their peak values when the solar
radiation was at minimum. A comparative analysis of the cooling performance of the water
and microencapsulated phase change effluent was conducted. As reported by the authors,
the thermal and electrical efficiencies were incremented by 9.24% and 1.8%, respectively,
due to the proposed cooling method.

4. Optical Performance Evaluation

The electrical and thermal efficiencies of concentrating PVT collectors depend upon
the optical performance of their reflectors. The optical performance is usually evaluated by
measuring optical efficiency, angular acceptance, and solar flux distribution at the receiver
surface [81]. The angular acceptance can be described as the portion of incident solar radia-
tion that reaches the receiving surface for different incidence angles without contemplating
losses within the concentrator. The Monte Carlo ray tracing is an effective method for opti-
cal performance evaluation and has been used by many researchers [82,83]. Yu et al. [84]
established a mathematical procedure for predicting the optical performance of CPCs.
Some researchers developed their own codes for optical performance evaluation. However,
the optical analysis using ray tracing photometric analysis software is superior and more
beneficial than using a programming language code due to several advantages [85]. Baig
et al. [86] assessed the optical performance of a CPC-based PVT collector with and without
glazing cover for the climatic conditions of the Kingdom of Saudi Arabia using ray-tracing
simulations. The optical efficiency of the collector without a glazing cover was found to be
above 90%, while that of the system with a glazing cover was limited to 80%. However, the
authors preferred the system with a glazing cover due to its long-term advantages.

Chandan et al. [87] measured the peak local flux concentration at the receiver surface
of 2.5× and 2× CPCs having optimized flux homogenizers for uniform solar flux distri-
bution, called elongated CPCs (ECPCs). The authors conducted optical simulations to
demonstrate that local flux concentration on the receiver surface decreased by 55% and
66% for 2.5× and 2× CPCs, respectively, at normal incidence angles, due to the integration
of flux homogenizers. The experimental values of peak electrical efficiency were found to
be 14.1% and 13.9% for 2× and 2.5× ECPCs, respectively. In contrast, the peak electrical
efficiency was limited to 13.9% and 13.6% for standard CPCs of 2× and 2.5×, respectively.
Guiqiang et al. [88] appraised the optical performance of an innovative static-incorporated
CPC-based PVT collector using ray-tracing simulations at different incidence angles fol-
lowed by experimental validation. The authors developed the expression for calculating
optical efficiency at several transverse angles. The average value of optical efficiency within
the acceptance half angle was found to be 83%.

Zhang et al. [89] established a combined optical–thermal–electrical model to analyze
the impacts of non-uniform radiation and temperature distributions on the performance
of a linear concentrating system comprising truncated CPCs. First, the authors found the
irradiance distributions by conducting a ray-tracing analysis of two previously designed
CPCs with different concentration ratios, LEMR and HEMR CPCs. These irradiance profiles
were later used as inputs to the coupled thermal–electrical model established to foresee the
performance of the CPC-PV collector. Through simulation and experiments, the authors
demonstrated that LEMR CPC experiences a rapid increase in non-uniform radiation and
temperature distributions compared to HEMR CPC, with an increase in concentration
ratios of both concentrators. For a CR of 8×, the fill factor and conversion efficiency of
LEMR CPC decreased by 2.6% and 2.1%, respectively, in comparison with HEMR CPC. In
another study, Zhang et al. [90] theoretically evaluated the effects of truncation positions
of EMR-CPC on the thermal and electrical performances of a concentrating PVT system
consisting of specially designed EMR-CPCs. The authors used a 2D coupled thermal-
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electrical model to predict the temperature dispersion across PV modules and the energy
and exergy efficiencies of the proposed concentrating PVT system. The optimum height
of EMR-CPC for producing the best energy and exergy efficiencies was determined. As
reported by the authors, when the height was truncated below optimum value, the non-
uniformity in radiation and PV temperature distribution along the hybrid receiver increased
swiftly. When compared with an equivalent flat PV panel, the overall exergy efficiency of
the proposed concentrating EMR-CPC-PVT system was found to be slightly higher.

5. Heat Exchanger Configurations for CPC-PVT Collectors

The heat extraction method should ensure effective heat removal from the concen-
trating PV cells for controlling their temperatures within the permissible limits. Guiqiang
et al. [91] conducted a comparative performance analysis between a CPC-PVT collector
with a U-type pipe pasted at its backside and an equivalent nonconcentrating hybrid PVT
collector, considering water as heat transfer fluid. Based on simulation results, the authors
demonstrated that the CPC-PVT collector with a U-type pipe performed better than its
flat-plate counterpart by reducing the number of PV cells for the same power generation
and supplying higher temperature heat for thermal applications. Moreover, the authors
calculated thermal and electrical efficiencies of the proposed CPC-PVT collector at different
concentration ratios and proved that overall system efficiencies increased by 28% for a
concentration ratio of 3×. Jaaz et al. [92] observed the impact of jet impingement of water
on the electrical and thermal efficiencies as well as the electrical power produced by a CPC-
PVT system for the climatical conditions of Malaysia. The experimental results suggested
that electrical efficiency and output power increased by 7% and 36%, respectively, due to
the integration of CPC and jet impingement cooling technique with a hybrid PVT collector
for solar radiation of 1050 W/m2 and an ambient temperature of 33.5 ◦C. Moreover, the
combination of CPC and jet impingement caused an increment of nearly 28% in the short
circuit current produced by the PVT module. In another study, Jaaz et al. [93] evaluated the
electrical efficiency, thermal efficiency, total efficiency, and total power produced by CPC-
PVT collector using the jet impingement technique. The authors reported an increment of
7% and 81% in electrical and thermal efficiencies, respectively, whereas total power was
found to increase by 31%.

Proell et al. [94] developed the prototype of a CPC-based PVT collector with an angular
acceptance of ±25◦ for measuring the angle-dependent electrical and thermal efficiencies
for the climatic conditions of Germany. The authors measured the thermal coupling
between solar cells and heat transfer fluid in a laboratory-scale experiment. The thermal
efficiency of the proposed collector attained a value of 34% in comparison to its value of
17% for a glazed flat PVT collector of the same dimensions. However, electrical efficiency
was found to decrease from 15% to a lower value of 9%. The possible reasons for this
decrement were reported to be the errors in optical equipment, temperature rise, and the
non-uniform solar flux dispersion on the PV surface. The cooling fluid inadvertently causes
a temperature gradient across the PV cells in hybrid PVT systems, causing a reduction
in PV output. Chen et al. [95] proffered a microchannel heat pipe array as a heat sink
in a CPC-based PVT collector to homogenize the heat flux. The authors experimentally
demonstrated increments in thermal and electrical efficiencies due to the microchannel
heat sink. Baig et al. [96] estimated the performance of a low concentration PVT collector
consisting of five units of CCPC attached to a heat exchanger. The authors used a bespoke
rotating table for a detailed optical performance evaluation of the CCPC-PV system as a
function of its angular orientation. A CFD model of the proposed system was developed
to assess the usefulness of the heat exchanger. Based on simulations, the rate of fluid flow
was found to be a key parameter in optimizing the low concentration PVT collectors. The
average electrical efficiency of the proposed collector was shown to attain a value ranging
from 10 to 16% for five different cities in Europe.

El-Samie et al. [97] numerically simulated a low concentrated hybrid PVT system
employing CPC as the concentrating element, shown in Figure 5, using the finite volume



Sustainability 2022, 14, 5529 10 of 30

method. The effects of using different heat sink designs like U-type and Z-type, as well
as different heat transfer fluids like water, ethyl glycol, and therminol were examined
numerically. Moreover, the economic viability of the proposed system was also evaluated
and compared with equivalent-sized nonconcentrating PV modules. The proposed system’s
total energy and exergy efficiencies were found to be 57.66% and 7.94%, respectively. The
authors reported that the Z-type heat sink produced better results by decreasing the average
solar cell temperature as compared to the U-type heat sink, subsequently increasing the
output electrical power. A negligible effect on the energy and exergy efficiencies was
reported by changing the type of HTF due to low CR.
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Kai et al. [98] compared the performance of a 4× CPC-PVT collector using different
configurations of crystalline silicon solar cells with diverse cooling channels. The authors
performed theoretical and experimental investigations using ordinary and sliced silicon
solar cells integrated with three different cooling channels: a glass channel, an aluminum
channel, and a heat pipe. The authors demonstrated that slicing the ordinary silicon
solar cells enhanced their electrical performance when subjected to concentration. The
pros and cons of different cooling channels were listed. The electrical efficiency of the
heat pipe integrated LCPVT collector was highest compared to the aluminum and glass
channels. However, the thermal performance manifested by the glass channel was found
to be pretentious due to low thermal resistance.

6. Applications of CPC-Based Hybrid Solar PVT Collectors

Different working fluids, including air, water, PCM, nanofluids, etc., are commonly
used as HTFs in CPC-based systems [99,100]. The hybrid PVT collectors integrate PV
modules with thermal collectors, having fluid circulation, e.g., air or water. They are
capable of producing electrical and thermal energies simultaneously as opposed to CPC-
based thermal systems, which produce thermal energy only. The integration of CPC with
a hybrid PVT collector causes an increment in working fluid temperature, rendering it
useful for medium-temperature solar thermal applications. CPC-based PVT systems are
appropriate for domestic and industrial applications; e.g., air-cooled and water-cooled
CPC-PVT collectors are generally used for indoor space heating and domestic hot water
production [101]. The choice of CPC-based PVT hybrid collector for a particular application
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depends upon different factors like CR of CPC, temperature, type of working fluid, and the
ability of CPC to track the sun. Besides usual domestic hot water production and space
heating/cooling applications, CPC-PVT systems are also appropriate for desalination, crop
drying, pool heating, and building integrated/attached applications. This section presents
an extensive review of research articles focused on applications of CPC-based PVT hybrid
collectors. Firstly, different heat extraction methods are presented, followed by the details
of renowned application areas.

6.1. CPC-PVT Air Heating Collectors

The purpose of air heating collectors is to supply hot air at specific temperatures
for different process industries. Garg and Adhikari [102,103] developed electrical and
thermal models of PVT air heating collectors to predict hybrid system performance with
and without CPC integration. The authors combined several CPC troughs with a single
PVT air heating collector. It was reported that the integration of CPC with conventional
PVT air collectors was appurtenant for relatively higher temperature applications. Hj.
Othman et al. [104] developed a steady-state analytical model for forecasting the electrical
and thermal performances of a double pass CPC-PVT air heating collector consisting of a
series of CPC troughs integrated with PV cells having fins attached to their backsides. The
authors illustrated that electrical energy production decreased with increased air tempera-
ture due to the concentration of solar radiation by CPCs. However, a trade-off between
maximum electricity generation and temperature of hot air for useful thermal applications
was recommended. The theoretical results were validated by indoor experiments using the
developed prototype. A double pass CPC-PVT system is illustrated in Figure 6.
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Sun et al. [105] numerically evaluated the performance of a single pass CPC-based
PVT collector consisting of three CPC troughs having a concentration of 2×. The impact of
key design and operational parameters on the thermal and electrical performance of the
proposed system was investigated. The results indicated that the thermal efficiency, electri-
cal efficiency, and exergy of the proposed CPC-PVT systems were directly related to the air
mass flow rate and the span of the collector. The electrical efficiency was found to increase
with the increasing packing fraction of the PV receiver. However, the thermal efficiency was
negatively affected by increasing packing fraction. Elsafi and Gandhidasan [106] compared
the performance of a nonconcentrating double pass PVT module with an equivalent CPC-
PVT module, with and without fins for the climatical conditions of Dhahran metropolis
in Saudi Arabia. The authors developed mathematical models of different system compo-
nents. A parametric study was carried out to observe the impact of different design and
operation parameters on proposed configurations’ thermal and electrical performances.
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The results demonstrated that nonconcentrating PVT system with fins generated 3% and
1% higher electrical and thermal powers, respectively, than its unfinned counterpart. The
CPC-PVT system with fins was found to have 3% and 8% more thermal and electrical
powers, respectively, as compared to the equivalent system without fins.

6.2. Hybrid CPC-PVT Collectors Using Water as HTF

Water is most commonly used as HTF in low concentrating solar collectors due to its
superior heat-removal properties. Hedayatizadeh et al. [107] conducted a comprehensive
thermal and electrical performance analysis of a hybrid PVT system integrated with sym-
metric 2D CPC by developing thermal and electrical models of system components. Based
on numerical simulations, the authors estimated thermal, electrical, and overall efficiencies
as well as temperatures of solar cells and cooling water. A parametric analysis was con-
ducted to observe the impact of different design and operating parameters on the thermal
and electrical performances of the collector. Proell et al. [108] evaluated the impact of CPC
mirrors on the electrical efficiency of CPC integrated hybrid PVT collectors. The effect of
solar flux dispersion on the PV efficiency was measured using an experimental prototype
in outdoor conditions. The authors developed an integrated system model combining
the proposed system’s optical, thermal, and electrical models to evaluate the temperature
distribution and incident angle modifier of electrical efficiency for three different concen-
trations. Shah and Patel [109] assessed the feasibility of using a CPC-based PVT collector
for the weather parameters of the Indian state of Gujarat. Based on the experimental data,
the thermal and electrical efficiencies of the CPC-based PVT collector were reported to be
53.92% and 13.52%, respectively, whereas the overall efficiency was found to be 79.18%.

Ustaoglu et al. [110] compared the performances of PVT systems consisting of com-
pound hyperbolic-trumpet (CHCT), CPC, and V-trough collectors. Ray-tracing simulations
were conducted to estimate the solar flux on the receiver surface, whereas solar cell tem-
perature was determined numerically. As reported by the authors, the CHCT-based PVT
system produced almost the same power as CPC and V-trough-based PVT systems for
normal incident rays, while the material required by the CHCT collector was nearly half of
that required by conventional non-imaging concentrators. Chandan et al. [111] numerically
examined the performance of ECPC based low concentration PVT system by developing
optical, electrical, and thermal models of the proposed system. The heat transfer between
different layers is shown in Figure 7. The peak values of thermal and electrical efficiencies
were found to be 40% and 12%, respectively, at a flow rate of 38 liters per hour. A 3%
increment in electrical efficiency was reported when the flow rate was increased from 22 L
per hour to 38 L per hour.

6.3. Rooftop and Building Façade Integrated CPC-PVT Systems

Due to the lower space requirements, CPC-based PV or hybrid solar systems can either
be integrated with building facades or installed on rooftops. Guiqiang et al. [112] assessed
the optical, thermal, and electrical performances of an ALCPC based PVT system, shown
in Figure 8, for building façade integration. The authors conducted the theoretical and
experimental investigations of the proposed system for the atmospheric conditions of Heifi
city in China, considering two typical days of the months of March and May. The average
electrical and thermal efficiencies were recorded to be 6% and 35%, respectively, for actual
outdoor conditions, whereas the average optical efficiency was found to be 83% within
the acceptance half angle of ALCPC for normal irradiance. The thermal and electrical
efficiencies obtained through curve fitting under zero reduced temperature were reported
to be 52% and 6.6%, respectively. Li et al. [113] developed a coupled optical, thermal, and
electrical model for predicting the performance of a hybrid PVT collector consisting of
CCPCs, for rooftop applications. The authors used the developed model to predict the
electrical performance and solar cells’ temperature on specific days for climatic conditions
of three different locations in Europe, namely Jaen, Penryn, and Glasgow. The authors
demonstrated that the proposed model reasonably predicted the electrical energy generated
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by the system with a mean error lying in the range of 2–14%. Furthermore, the effects
of transient terms in diffuse solar radiation and heat transfer models on electrical energy
prediction were identified. The model exhibited better performance for weather data of
Jaen as compared to Penryn and Glasgow.
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Koronaki and Nitsas [114] analytically and experimentally assessed the performance of
a CPC-PVT collector consisting of five asymmetric CPCs connected in a series, mounted on
a rooftop with a tilt angle of 30◦. As reported by the authors, the maximum value of optical
efficiency was observed for an incidence angle of 37◦. This was due to the asymmetric
nature of the concentrator and the position of the absorber. As demonstrated by the
authors, the system produced the maximum useful energy at the solar noon. In addition,
the collector exhibited a nearly constant efficiency of 30% during the steady-state period.
The authors concluded that the maximum thermal efficiency resulted when the collector
was operated in the open circuit mode. Li et al. [115] proposed a three-point-based electrical
modeling approach for extracting the five model parameters of a low concentration PVT
system consisting of CCPCs, based on the voltages and currents at short circuit, open
circuit, and maximum power points. The authors used the five model parameters, together
with other optical and thermal parameters, for predicting the hourly electrical performance
of the CCPC-PV system for the weather data of four different sunny days of the summer
season in England. As reported by the authors, the model predicted hourly absorbed
electrical energy with an error of 5.53% as compared to the experimental data.
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Yang et al. [116] evaluated the annual performance of a novel tri-generation CPC-based
low concentration PVT system designed for heating, cooling, and electricity generation.
The simulations were performed using the Transient System Simulation (TRNSYS) software
package, whereas the experiments were performed on the roof of a building in Beijing,
China. The electrical and thermal efficiencies of the proposed system were reported to be
10% and 60–69%, respectively. In contrast, the coefficient of performance of the absorption
chiller was found to have an average value of above 0.5. Alamoudi et al. [117] proposed
the design of an absorptive, reflective CCPC based (AR-CCPC) PVT system for building
integrated applications. A thermal absorber was placed at the top of the CCPC structure
to collect and store thermal energy. For higher angles of incidence, a significant portion
of incident radiation was collected as thermal energy. The authors performed ray-tracing
simulations and demonstrated that the optical efficiency of AR-CCPC varied between 60%
and 90%. Compared to an identical CCPC, the energy generated by AR-CCPC was found to
be higher, due to thermal absorber. Table 1 presents a summary of research articles related
to the performance evaluation of CPC-PVT systems.
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Table 1. Summary of research articles related to performance evaluation of CPC-PVT systems.

Ref Type of CPC CR Receiver/Solar Cells Methodology
Results

Thermal Efficiency Electrical Efficiency

[91] Symmetric 2D 1.5, 2, 2.5, 3 Single-crystalline silicon solar cells with a U-type pipe pasted
on the backside

Steady-state thermal-electrical
modeling 67.6% 12.6%

[92] Symmetric 2D - 36 polycrystalline silicon solar cells of 156 × 156 mm with
nozzles connected at the back for jet impingement cooling Experimental 84% 14.5%

[95] Symmetric 2D 4.00 Silicon solar cells pasted on Al plate connected to
microchannel heat pipe array Experimental 54.48% 14.49%

[96] 3D CCPC 3.60 LGBC silicon solar cells directly bonded to a conductive heat
exchanger

Numerical modeling, Indoor
experiments - 16%

[97] Symmetric 2D 2.40 Polycrystalline silicon cells pasted on an Al absorber sheet 3D numerical modeling 48.84% 7.12%

[98] Symmetric 2D 4.00
Monocrystalline silicon solar panel bonded with three

different cooling channels (i) glass channel (GC), (ii)
aluminum channel (AC) and (iii) heat pipe (HP)

Experimental
73% (GC)
66% (AC)
51% (HP)

12.5% (HP)
11.21% (AC)
9.92% (GC)

[107] Symmetric 2D 2.00 Polycrystalline silicon Numerical modeling 51.46% 9.6%
[109] Symmetric 2D 3.00 Transparent solar cells Experimental 53.92% 13.52%
[111] ECPC 2.50 315 W commercial solar panel Numerical and experimental 40% 12.5%

[112] ALCPC 2.40 Two sets of 36 series connected PV cells bonded with Cu pipe
cooling channel Simulation/Experiment 52% 6.6%

[116] Symmetric 2D 4.00 Monocrystalline silicon solar cells bonded with Al cooling
channel Simulation/Experimental 69% 10%

[118] MaReCo 1.52 A parallel combination of two strings of 38 series connected
silicon cells on both sides of the receiver CFD modeling 52% 13.3%

[119] EMR-CPC 4.00 20 series-connected 156 × 78 mm polycrystalline silicon solar
cells

Steady-state and unsteady state
thermal modeling 55% 13%
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6.4. Special Applications Involving Hybrid CPC-PVT Collectors

Low concentrating hybrid solar collectors are usually employed in domestic applica-
tions or small industrial enterprises for supplying electricity and low-quality heat. However,
some researchers used these collectors for special applications like running biogas plants,
solar distillation, and desalination. Singh et al. [118] developed an analytical model for
forecasting the electrical and thermal performances of a CPC-PVT collector integrated
with a fixed dome biogas plant, shown in Figure 9. The authors evaluated the effects of
mass flow rate, the packing factor of the PVT receiver, and the total number of CPC-PVT
modules on the optimum sludge temperature for atmospheric conditions of northern India.
The authors illustrated the increment in sludge temperature with an increasing number
of CPC-PVT modules. The role of the packing factor in optimizing the electrical and
thermal energies produced by the proposed collector for the adequate performance of
the biogas plant was also highlighted. Moreover, the optimum mass flow rate for a fixed
capacity biogas plant having six hybrid collectors for weather conditions of the Indian city
of Srinagar was calculated. Arora et al. [119] analytically conducted the performance and
cost analysis of a solar still combined with a CPC-PVT collector designed for desalination
applications using single wall and multiwall carbon nanotubes-water based nanofluids for
the metrological conditions of New Delhi. The authors used dual-slope solar, still having
N-series connected, partly covered CPC-based PVT collectors equipped with a helically
coiled heat exchanger carrying nanofluids for analytical modeling purposes. As reported by
the authors, total yield produced by the proposed system increased by an amount of 65.7%
and 28.1% for single wall carbon nanotubes (SWCNT) and multiwall carbon nanotubes
(MWCNT), respectively, whereas the daily production cost was found to be minimal.
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In another study, Wang et al. [120] proposed an innovative hybrid joint cooling heating
and power system (CCHP) driven by CPC-PVT collectors. The authors evaluated the
performance of the proposed system by developing thermodynamic models and conducting
thermal simulations. The energy and ecological benefits obtained by using the hybrid
collector were assessed. It was demonstrated that the integration of the CPC-PVT collector
with the CCHP system caused an increment of 8.1% and 0.9% in the energy and exergy
efficiencies of the proposed hybrid system, respectively. Compared to the CCHP system
with no solar energy, the Levelized primary energy saving ratio and the maximum carbon
dioxide diminution ratio attained by the proposed hybrid system were 28.6% and 36.7%,
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respectively. Thus, the hybrid system was confirmed to be more beneficial as compared to
the traditional gas-fired CCHP system.

Haiping et al. [121] used a CPC-based low concentration PVT system for preheating
the saline water, which was further heated by a series-connected solar thermal collector. The
performance parameters of the system, including vaporization coefficient, electric power
and efficiency, and freshwater yield, were determined experimentally. Chen et al. [122]
optimized the thermo-ecological cost (TEC) of a novel internal combustion engine (ICE)-
based CCHP system integrated with a CPC-PVT collector. The goal was achieved by
optimizing the operational strategies as well as the designs and installations of ICE and
CPC-PVT collectors. Two operational modes called the following electrical load (FEL) and
the following thermal load (FTL) were used to compare the TECs of different outcomes
of the proposed system. From the results of a case study, the authors demonstrated that
the system employing 400 kW ICE and 100% PV-covered ratio attained the minimum
value of TEC.

7. Innovative Design Configurations

Following innovative design, configurations have been proposed by different researchers.

7.1. Hybrid CPC-PVT Collectors with Special CPC Designs

Some authors evaluated the performance of hybrid PVT systems using unique CPC
designs. In this regard, Nilsson et al. [123] assessed the performance of a specially designed
ACPC based PVT collector, called MaReCo (Maximum Reflector Concentration) collector,
shown in Figure 10, manufactured by Solarus corporation for the atmospheric conditions of
a Swedish city, Lund, using two different reflector materials, i.e., anodized aluminum and
laminated aluminum steel. The experimental data indicated that the front ACPC reflector
collected the most radiation in the summer season, whereas the back reflector collected
maximum radiation in the spring and autumn seasons. However, no notable difference
was found between the annual output of the two reflectors. The configuration, including
PV cells facing the front side reflector, was reported to be optimal. Nasseriyan et al. [124]
performed the numerical and experimental study of the MaReCo CPC-PVT collector for
Swedish atmospheric conditions. The numerical research consisted of computational fluid
dynamics (CFD) modeling of the low concentrating PVT collector. The CFD results were
validated by performing experiments at the University of Gavle, Sweden. The authors
demonstrated that both thermal and electrical efficiencies exhibited a decreasing trend
with increasing heat-transfer fluid temperature. The temperature of PV cells was reported
to decrease from its stagnation value of 105 ◦C to 42 ◦C by circulating HTF at a mean
temperature of 35.1 ◦C and flow rate of 2.2 L/min, allowing a 25% increment in electrical
efficiency of solar cells. Moreover, the thermal and electrical yields were shown to increase
by 3% and 2%, respectively, by using back insulation and removing the front glass from the
solar receiver.

Alves et al. [125] developed 2D and 3D finite element models of MaReCo collectors for
evaluating the effect of different climatic zones on the energy efficiency of concentrating
PVT systems in Europe. The authors demonstrated that the shape of cooling channels and
rate of fluid flow controlled the thermal and overall performances of hybrid concentrating
PVT systems. Cabral et al. [126] estimated the performance of an ACPC-PV collector
consisting of 20 MaReCo collectors attached to the building’s south wall in a Swedish
university. The thermal and electrical outputs of the hybrid collector were connected to
the district heating structure and the regional grid, respectively. The yearly thermal and
electrical yields of the collector were assessed from simulations and experimental data.
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tor [127].

Wang et al. [128] presented the design and detailed performance evaluation study of
an EMR-CPC-based concentrating PVT system using an unsteady-state thermal model.
The authors tested two identical EMR-CPC-PVT units fitted with two-axis and single-axis
tracking devices and found the conversion efficiencies to be 13% and 12%, respectively. The
thermal efficiencies calculated using steady-state and unsteady-state models were found to
be 55.3% and 55%, respectively. As reported by the authors, the steady-state model failed
to precisely forecast the proposed system’s full-day variation of thermal efficiency. The
EMR-CPC system is shown in Figure 11.
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Zhang et al. [90] theoretically evaluated the effects of truncation positions of EMR-CPC
on the thermal and electrical performances of a concentrating PVT system consisting of
specially designed EMR-CPCs. The authors used a 2D coupled thermal-electrical model to
predict the temperature dispersal across PV modules and the energy and exergy efficiencies
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of the proposed concentrating PVT system. The optimum height of EMR-CPC for producing
the best energy and exergy efficiencies was determined. As reported by the authors, when
the height was truncated below the optimum value, the asymmetry in PV temperature and
irradiance distribution along the hybrid receiver increased swiftly. When compared with
an equivalent flat PV module, the overall exergy efficiency of the proposed concentrating
EMR-CPC based PVT system was found to be slightly higher.

7.2. Bifacial Absorbers in CPC-PVT Collectors

Bifacial solar cells have the potential to generate electricity from both front and back
surfaces, thus increasing the generation of electricity per square meter of solar cell [129].
The integration of an optical concentrator with bifacial solar cells was found to generate
50% more electrical power due to the simultaneous collection of direct and albedo radi-
ation [130]. Joao et al. [131] evaluated the performance of bifacial solar cells integrated
with symmetric and asymmetric CPCs. The authors built three separate prototypes com-
prising symmetric/asymmetric CPCs and bifacial solar cells. Two prototypes were used
for indoor testing under a solar simulator. The performance parameters like fill factor,
open-circuit voltage, and electrical efficiency were the same for both reflectors. However,
the short circuit current was higher in the case of an asymmetric concentrator due to a
non-uniform illumination issue. In the case of both designs, the fill factor was found to
be lower compared to conventional solar cells. The third prototype with an asymmetric
CPC was used for outdoor experiments. Some researchers have proposed asymmetric
compound parabolic concentrating collectors with vertical bifacial absorbers for better
optical performance [132–134].

Cabral and Karlsson [135] evaluated the thermal and electrical performances of sym-
metric truncated CPC-based PVT collectors having vertical bifacial receivers using ray-
tracing simulations and numerical modeling. The authors compared the performance of
a CPC-based PVT system with a pure parabolic reflectors-based system. The CPC-based
system was shown to yield relatively 8% to 13% more energy than an equivalent parabolic
system. In another study, Cabral et al. [136] evaluated the impact of uneven solar flux
distribution incidents on the surface of a PV module in a CPC-PVT system with a vertical
bifacial receiver, shown in Figure 12.
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Figure 12. (a) Cross section of CPC geometry for bifacial absorber, (A) circular section 90◦, (B) circular
section 30◦, (C) parabolic section; (b) Bifacial PVT receiver [136,137].

The authors also evaluated the thermal and electrical performances of the proposed
collector for supplying hot water to a single-family residence in Egypt by employing nu-
merical modeling techniques. It was demonstrated that the performance of CPC collectors
was susceptible to partial shading conditions, due to higher incidence angles. Arnaoutakis
et al. [138] integrated a dielectric-filled CPC to the back side of a planar bifacial silicon solar
module. The authors used a hexagonal sodium yttrium fluoride doped with 25% Er3+ as
an upconversion phosphor. The external quantum efficiency increased from 1.33% to 1.8%
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by integrating concentrating optics with upconversion solar cells when the solar irradiance
was 0.024 W/cm2 with excitement at 1523 nm.

7.3. Partially Covered Hybrid CPC-PVT Collectors

In partially covered hybrid solar collectors, a fixed percentage of the total receiver
area is covered by PV cells, whereas the rest of the space acts as a thermal collector by
directly converting the solar radiation into heat energy. Atheaya et al. [139] derived
the characteristic equation for a partially covered CPC-based PVT collector using the
energy balance principle. The comparative performance analysis between the partially
covered CPC-PVT collector and the conventional CPC thermal collector indicated that
overall exergy efficiency was maximum for the CPC-PVT collector, whereas the thermal
efficiency was maximum for the conventional CPC thermal collector, considering water
as HTF for both systems. In a later study, Atheaya et al. [140] evaluated the exergy of a
partially covered CPC-PVT system for fixed temperature mode, shown in Figure 13. The
authors developed an analytical expression for electrical efficiency and mass flow rate for
performance prediction under constant temperature mode. A comparative performance
analysis was conducted among the proposed system and the fully covered CPC-PVT
system, standard CPC thermal collector, and partially covered PVT water collectors for
the weather of New Delhi, India. The fully covered CPC-PVT collector was found to
have lower mass flow rate as compared to other collectors under consideration during
performance comparison.
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Tripathi and Tiwari [142] performed a comparative energy and exergy performance
assessment between different arrangements of N partially covered series-connected CPC-
PVT collectors utilizing water and molten salt as a cooling medium. The performance of
25% covered CPC-PVT collector with molten salt was found to be suitable for solar cooking
purposes. However, maximum net overall thermal energy and exergy gains were observed
to be maximum for CPC integrated thermal collectors. Atheaya et al. [141] evaluated the
performance of a partially covered CPC-based PVT collector having an inverted absorber
for constant flow rate. The authors estimated the fluid outlet temperature, thermal and
electrical energies, and electrical and overall exergy efficiencies of the proposed system
from the analytical models. As reported by the authors, the partially covered CPC-PVT
water collector having a glazed inverted absorber exhibited the highest thermal efficiency.
Tripathi et al. [143] compared the total energy and exergy performance of N CPC-PVT
partially covered collectors and N-CPC thermal collectors connected in series by using
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ethylene glycol as HTF at constant outlet temperature mode. The comparative analysis
revealed that N series-connected CPC collectors’ maximum annual overall energy and
exergy efficiencies were higher than those of N partly covered CPC-PVT collectors joined
in series.

Tiwari et al. [144] evaluate the hourly thermodynamic performance of organic Rankine
cycle integrated with inverted absorber CPC-PVT collector for varying concentrations using
Heptane/R245fa as HTF. The maximum outlet temperature, thermal efficiency, exergetic
efficiency, and heat gain were observed for a concentration ratio of 6.0. Singh et al. [145]
conducted the sensitivity analysis of a single gradient solar distiller unit integrated with
N similar partly covered CPC-PVT collectors, using computational programming for the
meteorological conditions of New Delhi, India. The effects of mass flow rate variation,
number of collectors, packing factor, and water depth on the electric and thermal outputs
were evaluated. The authors demonstrated that electrical output increased by 81.63% when
the packing factor was increased from 0.4 to 0.6 for constant values of other parameters.
Similarly, electrical power was shown to increase with increasing values of mass flow rate
when other parameters were maintained at fixed values. Joshi and Tiwari [146] evaluated
the impact of cooling condensing jackets on the energy and exergy yields of single slope
solar still integrated with different configurations of N similar CPC-PVT systems. The
authors optimized the design parameters of the proposed system for maximizing annual
energy and exergy yields. The highest energy yield was obtained in the case of a flat plate
thermal CPC-PVT collector integrated solar still.

Meraj et al. [147] established the numerical model of a milk pasteurization system
fitted with N fully covered CPC-PVT systems for evaluating its performance in the mete-
orological conditions of New Delhi, India. The authors analyzed the effect of operating
parameters such as packing factor, number of collectors, and mass flow rate on the pas-
teurization temperature of the milk. The milk pasteurization temperature was found to
increase with an increase in the number of collectors with a lower packing factor. Saini
et al. [148] numerically assessed the thermal and electrical energy yields of N partially cov-
ered series-connected CPC-PVT collectors using five different solar cell materials, including
monocrystalline silicon, polycrystalline silicon, amorphous silicon, cadmium telluride, and
copper-indium-gallium-selenide. The authors compared the electrical efficiency of the
proposed system using all the above-mentioned types of solar cells on an hourly basis
for weather circumstances in New Delhi, India. The electrical and thermal energy and
exergy gains of proposed system using monocrystalline silicon solar cells were found to be
superior in comparison with other solar cell types.

8. Observations and Future Prospects

A comprehensive review of the available literature related to the design and appli-
cations of CPCs for solar PV and hybrid PVT applications was conducted to explore the
challenges being faced by the research community and for making appropriate recommen-
dations for future research and development in this field, leading to the commercialization
of CPC-based solar systems.

8.1. Observations about Existing Systems

Although several research articles related to the applications of CPCs are available
in the literature, this review article focused on the CPC-based hybrid PVT systems only.
Various databases were searched to identify the relevant research data. The country-wise
number of publications for different years is plotted in Figure 14. The data for the years
up to 2015 are combined together due to a low number of publications per year during
this period. Figure 14 shows that the number of relevant published research articles was
limited to below 15 up to the year 2015. Beyond the year 2015, the number of publications
per year started increasing. This indicates the increased interest of the research community
in the applications of CPC-based solar PVT systems. The increased research interest can
be attributed to the efforts for exploring renewable energy sources to reduce the share of
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conventional fossil fuels-based power stations in the total energy generation. The published
research data achieved the highest value in the years 2019 to the present date. Although
the research on CPCs started in the United States, the hybrid PVT systems were not tested
experimentally in the United States. With the passage of time, the research and development
projects related to CPCs also started in other parts of the world. At present, India, China,
and the UK are contributing the highest in terms of published research articles.
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The number of research articles published by different countries expressed as a per-
centage of total published research articles for the period starting from 1976 to date is
shown in Figure 15. It is evident from Figure 15 that India, China, and the UK are the
leading research contributors with 25%, 23%, and 22% of research publications, respectively.
In comparison, the share of Sweden and Malaysia in the total published research is 7% and
6%, respectively. The percentage of the rest of the countries is below 5%.

Sustainability 2022, 14, x FOR PEER REVIEW 25 of 32 
 

 
Figure 15. The percentage of country-wise research contribution. 

8.2. Recommendations for Prospective Systems 
The possible future research opportunities and challenges are mentioned below. 

• A variety of CPC designs are available in the literature ranging from simple 2D 
troughs to more complex 3D geometries. Each design configuration has its own pros 
and cons. Optimization studies using efficient computational algorithms are required 
to be performed for the design optimization of existing designs. The parabolic shape 
of reflectors gives rise to non-uniform solar flux distribution at the receiver surface, 
which in turn causes a reduction in net outputs of CPC-based systems. Despite ex-
tensive research, the problem of non-uniform illumination has still not been fully 
solved and requires the attention of prospective researchers. 

• The increased temperature of concentrated solar cells is responsible for lower electri-
cal outputs of CPC-PVT systems. Air and water are currently being used as HTFs for 
removing the excess heat generated in the solar cells during the photovoltaic conver-
sion process. With the development of nanofluids possessing superior thermophysi-
cal properties, the heat extraction process from concentrated solar cells can be accom-
plished more efficiently. Future research should focus on the thermal and electrical 
performance assessment of CPC-PVT systems using different nanofluids and diverse 
heat exchanger configurations. 

• A noticeable obstruction in the universal acceptance of concentrated solar systems is 
the comparatively higher upfront costs associated with these systems. Research stud-
ies using modern optimization techniques should be conducted with the sole inten-
tion of minimizing the cost functions of low concentrating PVT systems purposely 
designed for single-family houses and smaller multi-family apartment buildings. 
This will not only reduce the burden on the national grid but also provide a chance 
for exporting the surplus power to the grid network through net metering technol-
ogy, resulting in a financial benefit to the consumers, which can potentially act as a 
motivational factor in multiplying the share of solar systems in the energy mix of a 
country.  

9. Conclusions 
A comprehensive review of available research articles related to CPC-based hybrid 

solar PVT collectors was conducted, emphasizing recent developments in the concerned 

Figure 15. The percentage of country-wise research contribution.



Sustainability 2022, 14, 5529 23 of 30

8.2. Recommendations for Prospective Systems

The possible future research opportunities and challenges are mentioned below.

• A variety of CPC designs are available in the literature ranging from simple 2D troughs
to more complex 3D geometries. Each design configuration has its own pros and cons.
Optimization studies using efficient computational algorithms are required to be
performed for the design optimization of existing designs. The parabolic shape of
reflectors gives rise to non-uniform solar flux distribution at the receiver surface, which
in turn causes a reduction in net outputs of CPC-based systems. Despite extensive
research, the problem of non-uniform illumination has still not been fully solved and
requires the attention of prospective researchers.

• The increased temperature of concentrated solar cells is responsible for lower electrical
outputs of CPC-PVT systems. Air and water are currently being used as HTFs for
removing the excess heat generated in the solar cells during the photovoltaic conver-
sion process. With the development of nanofluids possessing superior thermophysical
properties, the heat extraction process from concentrated solar cells can be accom-
plished more efficiently. Future research should focus on the thermal and electrical
performance assessment of CPC-PVT systems using different nanofluids and diverse
heat exchanger configurations.

• A noticeable obstruction in the universal acceptance of concentrated solar systems is
the comparatively higher upfront costs associated with these systems. Research studies
using modern optimization techniques should be conducted with the sole intention of
minimizing the cost functions of low concentrating PVT systems purposely designed
for single-family houses and smaller multi-family apartment buildings. This will not
only reduce the burden on the national grid but also provide a chance for exporting
the surplus power to the grid network through net metering technology, resulting in a
financial benefit to the consumers, which can potentially act as a motivational factor
in multiplying the share of solar systems in the energy mix of a country.

9. Conclusions

A comprehensive review of available research articles related to CPC-based hybrid
solar PVT collectors was conducted, emphasizing recent developments in the concerned
area. The review started with the basic constructional details and classification of CPCs.
The feasibility of CPC-based hybrid PVT collectors was established, followed by optical
performance evaluation and different heat exchanger configurations and applications of
CPC-PVT systems. The following conclusions have been drawn:

• Most researchers used CPCs having geometric CR < 5, whereby sun tracking was not
required. However, due to low CR, the quality of heat generated by these systems was
relatively lower. The produced heat energy was thus suitable only for low-temperature
process heat and preheating applications.

• The CPC-PVT systems produced higher electrical and thermal outputs than equivalent
nonconcentrating collectors. However, a trade-off often has to be made between
electrical and thermal outputs in hybrid systems because an increment in one of the
products is usually achieved at the cost of the other.

• A 3D CPC caused a higher concentration on the target surface than its 2D counterpart.
However, the circular shape of 3D CPC resulted in higher losses.

• The PCM can be employed for the efficient removal and storage of heat energy in
hybrid CPC-PVT collectors.

• Although expensive, active cooling techniques caused effective heat removal from
solar cells and improved the systems’ performance.

• Bifacial absorbers were found to have more output per unit area of the absorber.
However, more research studies are still required for the performance evaluation of
bifacial absorbers in CPC-PVT systems.

• The CPC-PVT systems have found numerous applications in rooftop and building
integrated systems for simultaneously producing heat and electricity.
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• The upcoming research should focus on designing and developing technically feasible
and economically viable CPC-based PVT systems to fulfill future energy requirements
through renewable resources.
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CCHP Combined Cooling, Heating, and Power
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LCPVT Low Concentrating Photovoltaic/thermal
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EMR Eliminating Multiple Reflections
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CFD Computational Fluid Dynamics
HTF Heat Transfer Fluid
TRNSYS Transient System Simulation
SWCNT Single-walled Carbon Nanotubes
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FEL Following Electrical Load
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