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David Brčić, Zlatko Sovreski and

Ljudevit Krpan

Received: 23 March 2022

Accepted: 26 April 2022

Published: 5 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sustainability

Article

Distributionally Robust Model and Metaheuristic Frame for
Liner Ships Fleet Deployment
Mihaela Bukljaš 1,*, Kristijan Rogić 2 and Vladimir Jerebić 3
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Abstract: The container shipping industry market is very dynamic and demanding, economically,
politically, legally, and financially. Considering the high cost of core assets, ever rising operating costs,
and the volatility of demand and supply of cargo space, the result is an industry under enormous
pressure to remain profitable and competitive. To maximize profits while maintaining service levels
and ensuring the smooth flow of cargo, it is essential to make strategic decisions in a timely and
optimal manner. Fleet deployment selection, which includes the profile of vessel hire, as well as their
capacity and port rotation, is one of the most important strategic and tactical decisions container
shipping operators must make. Bearing in mind that maritime business is inherently stochastic and
uncertain, the key aims of this paper are to address the problem of fleet deployment under uncertain
operating conditions, and to provide an integrated and optimized tool in the form of a mathematical
model, metaheuristic algorithm, and computer program. Furthermore, this paper will show that the
properties of the provided solutions exceed those offered in the literature so far. Such a solution will
provide the shipping operator with a decision tool to best deploy its fleet in a way that responds
more closely to real life situations and to meet the maximum demand for cargo space with minimal
expense. The final goal is to minimize the operating costs while managing cargo flows and reducing
the risks of unfulfilled customer demands.

Keywords: liner shipping; fleet deployment; distributional robust optimization; chance constrained
optimization; metaheuristics

1. Introduction

Global World trade reached 28.5 trillion USD in 2021. This is an increase of 25% com-
pared to 2020 [1]. Maritime transport, being a derivate of global industry and commerce, has
contributed 93% of its volume, or 11.08 billion tons, to the transport of goods, and derives
73% of its value from this business. At the same time, container shipping fleets, amount-
ing to a total of 5418 fully cellular ships with a combined capacity of 24,140,554 TEUs,
comprises 17.1% of the global maritime transport volume [2].

Due to high financial stakes, the core value of the assets, significant operational
expenses (OPEX), and, above all, the fierce competition of the market, the control of
container shipping is achieved through three levels: strategic, tactical, and operational [3].
Fleet deployment (vessel fleet deployment—VFD), is a tactical-level concern, the main task
of which is to assign ships or fleets to a sequence of ports so as to maximize the revenue.

To optimize the transport of containers and maintain an uninterrupted flow of cargo,
container shipping operators have established worldwide service lines. These services
enable reliable sailing schedules, continuous delivery, and safe and cost-effective trans-
portation, making goods available at a specific time. However, container line services are
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regulated in advance, usually for a planning horizon of three to six months, which means
that the network is designed before the demand for delivery and distribution of goods is
fully known. For this reason, determining the demand for the cargo space within the line
service is a key element in the design of these networks, the primary goal of which is to
minimize the total costs while meeting the demand and maximizing profits.

Today, the major cargo shipping lines stretch in the east–west direction, connecting
the industrial centers of Europe, North America, and Asia, while the north–south routes
reaching South America and Africa are also growing strongly. These lines facilitate the
heaviest trade and supply chains for goods globally, and their maintenance, efficiency,
and profitability are unimaginable without modern container ships, which require quality
infrastructure in the areas they serve.

Determining infrastructure requirements and fleet capacity under conditions of un-
stable demand is one of the essential tasks in planning and managing these supply chains.
Seaborne transportation is a crucial element in transportation planning, especially con-
tainer transportation, because of its share in total sea transportation. Therefore, the problem
of fleet capacity planning and deployment has direct influence on the profitability and
competitiveness of a single operator. This problem is even more conspicuous under the
conditions of variable demand and insufficient fleet capacities that have become common
during the pandemic period.

This paper studies the problem of container ship fleet deployment under uncertain
shipment requirements. The aim is to minimize the sum of the cost of chartering the vessel
and the operating costs of the route, while controlling the risk of excessive demand for the
consignment, i.e., the risk of demand exceeding the ship capacity.

Maritime industry has always presented a challenge for any form of “traditional”
optimization due to its innate stochastic nature, the uncertainty of events, and quick
changes in business demands and conditions. There is even a commonly accepted term,
“maritime endeavor”, to describe the particularity of the shipping business. The results and
robust model developed and presented in this paper may be applicable to other segments
of the shipping industry. However, due to its highly dynamic operations and the stochastic
nature of the variables involved, container shipping is most sensitive to decision errors
due to unknown data. Therefore, an advanced, distributionally robust model for fleet
deployment is essential for the profitable management of container shipping liner services.

2. Literature Review

A view of containerized trade and its historical trends since 1996 is presented in
Figure 1, revealing continuous growth in trading volumes, with the exception of the years
following the 2009 global economic crisis and the recent COVID-19 pandemic shutdowns.
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The continuous volume increases, despite the crisis, clearly indicate the importance of con-
tainerized modal transport within the supply chains. Its resilience and the previously mentioned
properties are today, without question, the major engine for the globalization processes.

However, due to high financial stakes, the core value of the assets, significant operational
expenses (OPEX) and above all, fierce competition on the market, the control of the container
shipping is done through three levels: strategic, tactical, and operational [3]. The Fleet deploy-
ment, (vessel fleet deployment—VFD), being of tactical level has the main task of assigning
ship or fleet of ships to the sequence of ports in such a way as to maximize the revenue.

The problem of optimal VFD decision-making is one of the key issues in the shipping
industry, as confirmed by the research done by Wang and Meng [4], and Zhang et al. [5].
The VFD problem is usually addressed by deterministic container delivery requirements [3].
Liner shipping could be taken as an example. Receiving and delivering of containers on
the shipping routes is the main duty of liner shipping. The shipping company mainly
provides container-shipping services with deadlines for worldwide shippers. The key
problem of ship fleet deployment is the optimization of the allocation of quantities and
types of different ships for each ship service route, to achieve the lowest possible cost by
efficient ship management [6].

The VDF problem could be expressed by determining the quantities of different types
of vessels to be employed (on or off hired), the quantity of different types of vessels to
be deployed on each service route and the number of voyages to be performed on the
main haul route within the stochastic environment. To maintain the competitiveness, a
predetermined level of shipping service is supposed to be guaranteed. The probability of
meeting all shipping requirements serves as an indicator of the level of shipping services.
Uncertainty lies mainly in systems from trade policy and oil prices. Noticing the importance
of stochastic requirements in the shipping industry; some scientists study the problem of
deploying a stochastic fleet of ships [7].

The probability distribution of a random factor must in practice be estimated from
historical data and replacing the unknown probability distribution with an estimate may not
meet the chance constraint underlying the actual probability distribution. Therefore, this
work will utilize a robust distribution framework for the problem of ship fleet deployment
under uncertainty sets [8].

Being a relatively young field of operational research, during the last two decades, ro-
bust optimization has become largely popular, as a modeling substratum for the protection
against variable uncertainties in mathematical optimization [9–20].

As previously said, the VFD problem could be summarized as a task to determine
how many vessels to deploy on a respective service route, their capacity structure, and the
number of voyages to be completed to minimize the expenses, maximize the profit and
maintain the service level along the planned horizon.

The first steps to develop a model for the VDF problem reach back to the early 1990s
with the works of Perakis and Jaramillo [21], Cho and Perakis [22] and Powel and Per-
akis [23]. All based on linear programming. Later, Gelareh and Meng [24], Wang et al. [25],
Meng and Wang [26] tried to improve the above.

All the previous research was deterministic in its nature and did not provide an
answer to uncertainty demands of VFD. To maintain the service level and the operator’s
competitiveness, all shipping demands must be met with high probability. However, due
to trade policies, economic, political, and financial factor as well as fuel price fluctuation,
the container market is inherently stochastic. To capture such uncertainty, numerous works
emerged at the beginning of 2000s. The papers by Christiansen et al. [27,28], Meng and
Wang [29], Meng et al. [30] and Wang et al. [31] have established the chance constraints to
meet the stochastic demands, but under the known probability distribution only. Ng [9,32]
introduced works that somehow dealt with the unknown distribution. In practice, the
probability distribution of uncertain or random factors must be estimated based upon historical
data to replace the unknown probability [33]. Therefore, distributional robust (further DR)
framework models are convenient for modeling under uncertain or ambiguous demands.
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It is necessary to highlight the works of Delage and Ye [7] for developing the DR
approaches, as well as Jiang and Guan [34], Zhang et al. [35] and Sui and Zheng [36]. They
have proposed a new distributional robust framework to establish an approximation, cost
saving method.

Liner carriers should regularly adjust their shipping networks to respond to their
competitors. Also, they should adjust the offer to change the seasonal requirements of
customers. This is done by selecting and changing the ship routes. The most modern
approaches imply a separation into two separate problems. In these cases, an integrated
mathematical model and a mathematical model for repositioning the liner fleet are used,
which jointly optimizes the choice of vessels for routes and the costs of moving ships
according to their tasks (according to demand). In this way, the simultaneous optimization
of the setup and relocation can result in a significant reduction in costs during self-solving
business problems [37].

In the study conducted by Dong et al. [38], the combined problem of fleet allocation
and inventory management (FDIMP) that occurs in Roll-on Roll-off (Ro-Ro) delivery is
considered. In addition to several predetermined trade routes with a series of port calls,
many loading and unloading ports possess stocks to be kept within their borders. The
current planning practice is to visit all ports every time a trade route is serviced. Here,
instead, the authors sought to determine the sailing routes of each voyage along the trade
route, that is, which ports to visit, where some ports along the trade route can be bypassed
on certain voyages. They proposed a new mixed integer model for this new and more
flexible version of FDIMP in Ro-Ro shipping. The flexible model gives much better results
than the basic model without any flexibility of arc skipping. The results of their research
show the potential economic effect of changing the way of planning, i.e., by introducing the
possibility of bypassing ports, which can be possibly obtained if stronger cooperation with
shipowners or customers is achieved. Significant cost savings are achieved, from inflexibility
to even tight inventory constraints, and significant further savings are also achieved.

The subject of optimization within the shipping industry is of great importance. Even
though initial works on this problem date to the 1990s, it was only recently that the
researchers began to explain the significant amount of uncertainty that is present in the
actual demand for ships [32].

Distribution-robust optimization provides the basis for creating machine-learning
models that can derive the sum of related data distributions. This is achieved by enabling
the model to mitigate its maximum expected loss among all distributions in the uncertainty
segment [9].

The distribution-robust optimization has several stunning advantages. It allows mod-
elers to embed error estimation problems into optimization problems. It therefore results
in a more realistic representation of uncertainty and alleviates the course of the optimizer
characteristic of classical stochastic programming. The distribution-robust optimization
problems can be often solved accurately and in polynomial time—in stark contrast to
unsolvable approximate models obtained by discretizing stochastic problems adapted to
a single nominal distribution. The distribution robust optimization models can adapt to
the size of industry-relevant problems and are already used in a few fields of practice,
including vehicle routing, fleet management, portfolio selection, revenue management,
scheduling, environmental policies, smart grid management, and so on [10].

The distributional robust model is quite attractive for a myriad of reasons. The first
reason to use this model is fidelity. The distributional robust model is more reliable than its
counterparts since they find the presence of distributional uncertainties. They also have
great advantages when it comes to information about the type and magnitude of estimation
errors. Using the distributional robust model, it is easy to manage all the expectations since
the solutions of this model will display risks that fall below the worst-case optimal risk
when the uncertainty set has an unknown true distribution [12]. This model has a very
high-performance guarantee that other models do not have, and it also has an outstanding
computational traceability.
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In this paper, the distributional robust model was used for planning fleet capacities
and deployment in container shipping. If compared to the above mentioned basic and
advanced papers, mathematical model is more flexible, enabling the circular routes, which
is not the case in [36,39]. Also, the models provided do not offer complete heuristic
solution to problems that may be used for a broad spectrum of shipping deployment
problems. Pseudo code and MIP model have a great benefit of being easily processed by
several, readily available computer programs, and their modifications do not require either
excessive time-consuming labor nor computational power. Such approach in the modelling
process enables control of demand overflow risks, where there is a presumption that the
ship capacity demand probability distributions are indeterminate. The works previously
presented in literature [21,31,34,40,41] cannot offer such an option. A robust distribution
framework was also used to establish a new approximation method that could significantly
save costs. The paper contribution mainly covers the following [11]:

• formulation of distributional robust model;
• demonstration that this approximation is more general than the most modern method.
• development of metaheuristic frame.
• development of computer-based program for solving the fleet deployment problem

under uncertainty within acceptable CPU time.

3. Model Construction

The aim in this paper is to develop an efficient optimization model which regards
the repositioning of container ships between the existing line services based on the robust
optimization techniques and methods. This model contains a defined and developed
mathematical model of robust optimization for vessel/fleet repositioning between the
existing line services under certainty conditions. In this model the efficient evolutionary
algorithm has been developed and implemented to find the optimal acceptable solution to the
problem of fleet/vessel repositioning. By implementing this model and algorithm it is possible
to obtain higher profit maximization than with traditional discrete optimization methods.

As said, to achieve the best feasible robust solution to fleet deployment problem, as close
to optimal as possible, the authors have adopted the mixed approach. The mathematical
model, metaheuristic algorithm supported by computer simulation in CPLEX MATLAB.

Based on the defined goal of this paper, scientific contributions will be obtained, which
are manifested through the following hypotheses:

• it is possible to develop an innovative mathematical model of robust fleet deployment
that will offer feasible solution(s) fast and cost-efficiently;

• it is possible to create efficient metaheuristic algorithm(s) in the decision-support
system in solving the problem of fleet deployment.

3.1. Problem Description

To develop a distributional robust (further DR), chance-constrained (further CC) model
for fleet deployment [4] the first step is the problem description.

Let K = {1, . . . , K} denote the set of vessel types, available to container shipping liner
company (further - operator) and k the specific ship type. Vk is the ship capacity in TEUs
(Twenty-foot Equivalent Unit is the capacity unit in intermodal transport and represents ISO
steel container of dimensions 6.1 × 2.44 × 2.59 m and 38.5 m3 of volume) for Ship k. An
operator should determine the finite number of ships k ∈ K and deploy them on routes
r ∈ R, while following the sailing schedule. Beside their own ships, an operator’s broker
may charter the available ships from the market for the duration of the planning horizon.
The charter rate for Ship k is Cin

k (USD/ship). Nmax
k and NCImax

k denote the number of ships
k, either owned or chartered. Such a number is often limited due to expenses involved or
the ships availability on the open charter market.
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3.2. Scenario for Container Shipment Demand

The uncertainty for container shipping demand (further demand only) is embedded
into the model by finite number of demand scenarios. In any of scenarios, the demand
values for each pair origin-destination ports (O-D pair) are set for the duration of the
planning horizon. The assumption is that the demand of certain O-D pairs throughout the
planning horizon is a discrete variable ξod ((o, d) ∈W). ξod is limited to a certain range under
the known probability values. Let s ∈ S = {1, 2, 3, . . . , S} be a set of demand scenarios. The
realization of random variable ξod within scenario s ∈ S is denoted by ωod

s . The probability
of s ∈ S is Ps = ∑S

s=1 Ps = 1.

3.3. Model Buildup

As mentioned before, maritime business is uncertain and stochastic and therefore,
it is necessary to provide a model for fleet deployment which will be close to real living
conditions. The main goal here is to cut down the costs to a minimum level while managing
cargo demand risk. In this case a stochastic dynamic program will not be used, but in
order to solve this multi region system, the distributional robust optimization has been
deployed which can incorporate demand temporal dependence motivated by real data. In
the first part, the charter income will be set while taking into consideration the demand
realization. The model will be used to structure the expenses such as cargo handling costs,
vessel operating costs, and investments. Based on all the given costs, an optimization
model which has the objective of maximizing the income will be obtained.

3.3.1. Decision Variables

nown
kr = number of owned ships k (k ∈ K) assigned to route r (r ∈ R);

nin
kr = number of chartered ships k (k ∈ K) assigned to route r (r ∈ R);

xkr = number of voyages by ship k (k ∈ K) on route r (r ∈ R); and
zhod

s = number of container units carried by ships hod ∈ Hod between O-D pair (o, d) ∈W as
per demand scenario.

3.3.2. Parameters

ckr = operating expenses of ship k on route r per voyage (USD/Voyage);
chod

= cargo handling expenses O-D port pair (o, d) ∈ W on container flow hod ∈ Hod

(USD/TEU);
Cin

k = charter rate for hired in ship k during planning horizon (USD/Ship);
Cout

k = charter rate for hired out ship k during planning horizon (USD/Ship);
f od = freight rate between O-D port pair (o, d) ∈W (USD/TEU);
Nmax

k = number of owned ships of type k;
NCImax

k max = number of available ships of type k on charter market;
ckr = number of sailing days for ship k on route r (in days);
T = length of planning horizon (short-term—6 months);
Uod

s = minimum number of TEUs for shipment between O-D port pair (o, d) ∈W by scenario
s (TEU);
Vk = container capacity of ship k (TEU);
Nr = minimum number of voyages on route r during the planning horizon to keep the
requested level of service (service schedule); and
ρhod

ir = binary coefficient, shows if container flow path hod ∈ Hod

contains the subset of route r (ρhod

ir = 1) or not (ρhod

ir = 0).
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3.4. Optimization Model

The operator’s revenue generally has two sources. The income of chartering out the
vessel to other operators and the income from the container freight. Charter income is set by

∑
k∈K

cout
k (Nmax

k − ∑
r∈R

nown
kr ) (1)

While taking into consideration scenario s and demand realization ωod
s for O-D port

pair (o, d) ∈W, the container freight income is given by equation:

∑
(o,d)∈W

∑
hod∈Hod

f odzhod

s

(
ωod

s

)
(2)

The expenses may be structured as simple as: cargo handling costs, vessel operat-
ing costs (OPEX) and investments into chartered vessels. Cargo handling costs include
container loading, discharging or restoring expenses.

∑
(o,d)∈W

∑
hod∈Hod

chod
zhod

s

(
ωod

s

)
(3)

Let ckr denote the voyage operating cost for ship k on route r. The ckr contains fuel cost,
daily labour cost, harbour and light dues. Ships OPEX plus charter fees may be expressed
as follows:

∑
r∈R

∑
k∈K

ckrxkr + ∑
k∈K

cin
k nin

kr (4)

Therefore, the optimization model with the objective of maximizing the income may
be obtained as per Equation (5):

Z0 = max ∑
s∈S

Ps ×


∑

k∈K
cout

k

(
Nmax

k − ∑
r∈R

nown
kr

)
+ ∑

(o,d)∈W
∑

hod∈Hod
f odzhod

s

(
ωod

s

)
− ∑

(o,d)∈W
∑

hod∈Hod
chod

zhod
s

(
ωod

s

)
− ∑

r∈R
∑

k∈K
ckrxkr + ∑

k∈K
cin

k nin
kr

 (5)

Subject to:
∑
r∈R

nown
kr ≤ Nmax

k (6)

∑
r∈R

nin
kr ≤ NCImax

k (7)

xkr ≤
(

nown
kr + nin

kr

)
∗
[

T
tkr

]
, ∀r ∈ R , ∀k ∈ K (8)

∑k∈K xkr ≥ N ∀r ∈ R (9)

∑
k∈K

xkrVk ≥ ∑
(o,d)∈W

∑
hod∈Hod

ρhod

ir zhod

s

(
ωod

s

)
i = 1, . . . , mr∀r ∈ R, ∀s ∈ S (10)

uod
s ≤∑hod∈Hod zhod

s

(
ωod

s

)
≤ ξod

(
ωod

s

)
, ∀(o, d) ∈W , ∀s ∈ S (11)

nown
kr , nin

kr, xkr ∈ Z+U{0}, ∀r ∈ R , ∀k ∈ K (12)

zhod

s ≥ 0 , ∀hod ∈ Hod , ∀s ∈ S (13)

Equation (5) is the objective function for the optimization model. It is also known
as the model of the expected value. Constraint sets (6) and (7) ensure that the number of
owned and chartered ships does not exceed the available number of vessels. Expression (8)
returns with the max number of voyages for ships of k type on route r, where

[
T
tkr

]
denotes
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the maximal integer smaller than or equal to T
tkr

. Constraint (9) specifies the number of
voyages on route r needed to maintain the sailing schedule.

The left side in constraint (10) represents the total transport capacity of a ship deployed
on liner route r ∈ R; while the right side is the total number of containers being transported
on any section i of route r ∈ R, including the container loaded in the previous ports (still on
board) and those loaded or transshipped in port pi

r. Therefore, this constraint ensures that the
number of containers offered for transport does not exceed the capacity of deployed ships.

Traditionally, liner operators join conferences or form alliances to gain market access,
increase operational flexibility, and better cope with the competition or even economic
crisis. As a result, due to the signed obligation, a contractual number of containers must
be shipped out from the ports on route, while the rest is optional. The right side of
constraint (11) is the demand realization for O-D port pair (o, d) ∈W as per scenario s. The
right side of inequality ensures that the number of carried containers cannot exceed the
demand, while at the same time, the left side makes sure that the agreed number of units
must be shipped out.

Constraints (12) and (13) define the range of decision variables. Finally, the objective
function could be written as follows:

Z1 = min ∑
r∈R

∑
k∈K

(cout
k nown

kr + ckrxkr + cin
k nin

kr)

+ ∑
s∈S

∑
(o,d)∈W

∑
hod∈Hod

Ps

(
chod − f od

)
zhod

s

(
ωod

s

) (14)

s.t. constraints (6)–(12).

3.5. Robust Optimization Model

Robust optimization (further RO) has brought several solutions gradually less sensitive
to the realization of data from the set of given scenarios. RO includes two major sets of
variables: design and control variables. The design variables are the decision variables
whose optima are not subject to realization of uncertain parameters. As such, they cannot
be adjusted upon the realization of certain data that have been observed, while control
variables are subject of adjustment after the uncertain parameters are identified. Their
optima depend both on the realization of uncertain parameters and on the optimal value of
the design variables.

Let x ∈ Rn1 denote the vector of decision variables, and y ∈ Rn2 the vector of control
variables. The general model of linear programing (further LP) has the following structure:

mincTx + dTy (15)

s.t.
Ax = b (16)

Bx + Cy = e (17)

x, y ≥ 0 (18)

Constraint (16) marks the fixed, structural coefficients, while (17) denotes control
constraints, where coefficients are subject to uncertainty. The problems, modeled by RO
include scenario s ∈ S = {1, 2, 3, . . . , S}. Furthermore, the set of controlled variables for
each scenario s ∈ S and set {ε_1, ε_2, . . . , ε_s} of error vectors. Error vectors measure the
allowed infeasibility or reduced feasibility level in control constraints of scenario s ∈ S.

Then, the general form of robust optimization model (ROM) has the following structure:

minσ(x, y1, y2, . . . , ys) + ωρ(ε1, ε2, . . . , εs) (19)

s.t.
Ax = b (20)
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Bsx + Csys + εs = e (21)

x, ys ≥ 0 (22)

Since ROM considers several scenarios, the objective function from Equation (15)
becomes random variable of the value ζs = cTx + dTys, with probability ps.

The next step is to introduce an objective weight coefficient ω, with the purpose
of obtaining the range of solutions that may vary during the search for the optimum
ROM solution. They are the tradeoff solution to gain robustness of the model. Expres-
sions σ(x, y1, y2, . . . , ys) and (ε1, ε2, . . . , εs), proposed by Yu and Li [39] are given by the
following equations:

σ(x, y1, y2, . . . , ys) = ∑
s∈S

psζs + λ ∑
s∈S

ps

∣∣∣∣∣ζs −∑
ś∈S

pśζś

∣∣∣∣∣ (23)

ρ(ε1, ε2, . . . , εs) = ∑
s∈S

psmax{0, εs} (24)

The same authors have developed an efficient model for solving the absolute error
from (23) within the frame designed as follows:

min ∑
s∈S

psζs + λ ∑
s∈S

ps

[(
ζs −∑

ś∈S
pśζś

)
+ 2ϑs

]
+ ω ∑

s∈S
psεs (25)

Ax = b (26)

Bsx + Csys + εs = e, ∀s ∈ S (27)

ζs −∑ś∈S pśζś + ϑs ≥ 0, ∀s ∈ S (28)

x, ys, εs ϑs ≥ 0, ∀s ∈ S, ∀s ∈ S (29)

The above introduction was essentially made to simplify the distinction between
control and design variables proposed in this paper. Variables nown

kr , nin
kr and xkr are design

variables and zhod
s is control variable.

Following ζs from (25) and objective function (14), the proposed fleet deployment
model is:

∑
r∈R

∑
k∈K

(cout
k nown

kr + ckrxkr + cin
k nin

kr)+

∑
s∈S

∑
(o,d)∈W

∑
hod∈Hod

Ps

(
chod − f od

)
zhod

s

(
ωod

s

) (30)

Therefore, new ROM is formulated as:

min ∑
r∈R

∑
k∈K

(cout
k nown

kr + ckrxkr + cin
k nin

kr)+

∑
s∈S

∑
(o,d)∈W

∑
hod∈Hod

Ps

(
chod − f od

)
zhod

s

(
ωod

s

)
+

λ ∑
s∈S

Ps

 ∑
(o,d)∈W

∑
hod∈Hod

(
chod − f od

)
zhod

s

(
ωod

s

)
−

∑
ś∈S

∑
(o,d)∈W

∑
hod∈Hod

Pś

(
chod − f od

)
zhod

ś

(
ωod

ś

)
+ 2ϑs

+ ω ∑
s∈S

∑
r∈R

mr
∑

i=1
psεir

s

(31)

s.t. (6)–(8), (11), (12) and:

∑
k∈K

xkrVk + εir
s ≥ ∑

(o,d)∈W
∑

hod∈Hod

ρhod

ir zhod

s

(
ωod

s

)
i = 1, . . . , mr∀r ∈ R , ∀s ∈ S (32)
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 ∑
(o,d)∈W

∑
hod∈Hod

(
chod − f od

)
zhod

s

(
ωod

s

)
−

∑
ś∈S

∑
(o,d)∈W

∑
hod∈Hod

Pś

(
chod − f od

)
zhod

ś

(
ωod

ś

)
+ ϑs

 ≥ 0 (33)

εir
s ≥ 0, ϑs ≥ 0 ≥ 0 (34)

The constraint set (32) are control constraints for determination of container flow assign-
ment for each section i of route r, as per certain scenarios s. If total capacity of ships deployed
on route r (left side) is bigger than the assigned container flow for observed section i on route r,
then the aberration is εir

s = 0. Otherwise, εir
s = ∑(o,d)∈W ∑hod∈Hod ρhod

ir zhod
s (ωod

s )−∑k∈K xkrVk
and this shows that the ships are not loaded up to capacity. That way we have an
infeasible solution.

The robust optimization model is by its nature an integer model of LP and could be
solved by numbers of the existing solvers, such as CPLEX, MATLAB, Gurobi and such.
Therefore, the following two novel hypotheses are proposed that differ from the previously
developed models, all with the aim of maximizing the cargo intake, hence increasing the
overall revenue:

Proposition 1. The variance ∑s∈S ps[(ζs − ∑
ś∈S

pśζ ś) + 2ϑs] in optimization model (31) decreases

if value of λ increases.

Proof. Let us assume that λ1 < λ2 and x1, y1
s , ε1

s , ϑ1
s (∀s ∈ S) and x2, y2

s , ε2
s , ϑ2

s (∀s ∈ S)
are the optimal solution for x, ys, εs, ϑs (∀s ∈ S) from the optimization model shown
by Equation (25). Moreover λ1, λ2 are being respectively assigned as well. Objective
functions of optimization models λ1 and λ2 are expressed with Z

(
x1, y1

s , ε1
s , ϑ1

s
)∣∣

λ=λ1 and
Z
(

x2, y2
s , ε2

s , ϑ2
s
)∣∣

λ=λ2 , respectively as follows.

Z(x1, y1
s , ε1

s , ϑ1
s )|λ=λ1 = ∑

s∈S
psζ

1
s + λ1 ∑

s∈S
ps

[(
ζ1

s −∑
ś∈S

pśζ
1
ś

)
+ 2ϑ1

s

]
+ ω ∑

s∈S
psε1

s (35)

Z(x2, y2
s , ε2

s , ϑ2
s )|λ=λ2 = ∑s∈S psζ

2
s + λ2 ∑s∈S ps[(ζ

2
s −∑ś∈S pśζ

1
ś ) + 2ϑ2

s ] + ω ∑s∈S psε2
s (36)

In addition, Z
(

x1, y1
s , ε1

s , ϑ1
s
)∣∣

λ=λ2 and Z
(
x2, y2

s , ε2
s , ϑ2

s
)∣∣

λ=λ1 are given as:

Z(x1, y1
s , ε1

s , ϑ1
s )|λ=λ2 = ∑

s∈S
psζ

1
s + λ2 ∑

s∈S
ps

[(
ζ1

s −∑
ś∈S

pśζ
1
ś

)
+ 2ϑ1

s

]
+ ω ∑

s∈S
psε1

s (37)

Z(x2, y2
s , ε2

s , ϑ2
s )|λ=λ1 = ∑

s∈S
psζ

2
s + λ1 ∑

s∈S
ps

[(
ζ2

s −∑
ś∈S

pśζ
1
ś

)
+ 2ϑ2

s

]
+ ω ∑

s∈S
psε2

s (38)

Therefore:
Z(x1, y1

s , ε1
s , ϑ1

s )|λ=λ1 ≤ Z(x2, y2
s , ε2

s , ϑ2
s )|λ=λ1 (39)

Z(x2, y2
s , ε2

s , ϑ2
s )|λ=λ2 ≤ Z(x1, y1

s , ε1
s , ϑ1

s )|λ=λ2 (40)

Summarizing both (39) and (40), we could write (41):

Z(x1, y1
s , ε1

s , ϑ1
s )|λ=λ1 + Z(x2, y2

s , ε2
s , ϑ2

s )|λ=λ2 ≤ Z(x2, y2
s , ε2

s , ϑ2
s )|λ=λ1 + Z(x1, y1

s , ε1
s , ϑ1

s )|λ=λ2 (41)

If (A-1)–(A-4) are inserted into (41) the new inequation is:

(λ1 − λ2)

{
∑
s∈S

ps

[(
ζ1

s −∑
ś∈S

pśζ
1
ś

)
+ 2ϑ1

s

]
−∑

s∈S
ps

[(
ζ2

s −∑
ś∈S

pśζ
2
ś

)
+ 2ϑ2

s

]}
≤ 0 (42)
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From the initial assumption λ1 < λ2, the following is easily derived:

∑
s∈S

ps

[(
ζ1

s −∑
ś∈S

pśζ
1
ś

)
+ 2ϑ1

s

]
≥ ∑

s∈S
ps

[(
ζ2

s −∑
ś∈S

pśζ
2
ś

)
+ 2ϑ2

s

]
(43)

Therefore, Var
∣∣
λ=λ1 = Var

∣∣
λ=λ2 . �

Similarly to the above, the next hypothesis may be proposed.

Proposition 2. The mean value of function ∑s∈S psεs in optimization model (31) will decrease if
the objective weight coefficient ω increases.

Proof. The following proof methodology is like the methodology used to prove Proposition 1. �

Let us assume that ω1 < ω2, x1, y1
s , ε1

s , ϑ1
s (∀s ∈ S) and x2, y2

s , ε2
s , ϑ2

s (∀s ∈ S) are
optimal solution for x, ys, εs, ϑs (∀s ∈ S) from optimization model shown by Equation (25)
and respectively connected to ω1 and ω2. The objective functions of optimization models,
denoted Z

(
x1, y1

s , ε1
s , ϑ1

s
)∣∣

ω=ω1 and Z
(
x2, y2

s , ε2
s , ϑ2

s
)∣∣

ω=ω2 , may respectively be shown
by the equations below:

Z(x1, y1
s , ε1

s , ϑ1
s )|ω=ω1 = ∑

s∈S
psζ

1
s + λ ∑

s∈S
ps

[(
ζ1

s −∑
ś∈S

pśζ
1
ś

)
+ 2ϑ1

s

]
+ ω1 ∑

s∈S
psε1

s (44)

Z(x2, y2
s , ε2

s , ϑ2
s )|ω=ω2 = ∑

s∈S
psζ

2
s + λ ∑

s∈S
ps

[(
ζ2

s −∑
ś∈S

pśζ
2
ś

)
+ 2ϑ2

s

]
+ ω2 ∑

s∈S
psε2

s (45)

In addition, Z
(

x1, y1
s , ε1

s , ϑ1
s
)∣∣

ω=ω2 and Z
(
x2, y2

s , ε2
s , ϑ2

s
)∣∣

ω=ω1 are given as:

Z(x1, y1
s , ε1

s , ϑ1
s )|ω=ω2 = ∑

s∈S
psζ

1
s + λ ∑

s∈S
ps

[(
ζ1

s −∑
ś∈S

pśζ
1
ś

)
+ 2ϑ1

s

]
+ ω2 ∑

s∈S
psε1

s (46)

Z(x2, y2
s , ε2

s , ϑ2
s )|ω=ω1 = ∑

s∈S
psζ

2
s + λ ∑

s∈S
ps

[(
ζ2

s −∑
ś∈S

pśζ
2
ś

)
+ 2ϑ2

s

]
+ ω1 ∑

s∈S
psε2

s (47)

Therefore:

Z(x1, y1
s , ε1

s , ϑ1
s )|ω=ω1 ≤ Z(x2, y2

s , ε2
s , ϑ2

s )|ω=ω1 (48)

Z(x2, y2
s , ε2

s , ϑ2
s )|ω=ω2 ≤ Z(x1, y1

s , ε1
s , ϑ1

s )|ω=ω2 (49)

Adding both sides of (48) and (49), results in (50):

Z(x1, y1
s , ε1

s , ϑ1
s )|ω=ω1 + Z(x2, y2

s , ε2
s , ϑ2

s )|ω=ω2 ≤ Z(x2, y2
s , ε2

s , ϑ2
s )|ω=ω1 + Z(x1, y1

s , ε1
s , ϑ1

s )|ω=ω2 (50)

Inserting Equations (44)–(47) into Equation (50) results in:

ω1 ∑s∈S psε1
sω2 ∑s∈S psε2

s ≤ ω2 ∑s∈S psε1
s + ω1 ∑s∈S psε2

s (51)

And that could be shortened as:

(ω1 −ω2)

{
∑
s∈S

psε1
s −∑

s∈S
psε2

s

}
≤ 0 (52)

∑
s∈S

psε1
s ≥ ∑

s∈S
psε2

s (53)



Sustainability 2022, 14, 5551 12 of 18

4. Results

For the computational model of the proposed fleet deployment robust optimization
model, the authors have used the data from a 2013 case study provided by Wang et al. [31].
Those case study data have been also used in the later works, so it is very convenient to
show the advantages or shortcomings of the proposed model. Because of its completeness
and use by other authors the total of eight routes, mostly from the Hong Kong based
shipping operator OOCL, has been used and the planning horizon for the fleet deployment
problem has been set to six months. Traditionally, the service schedule is based on the
weekly calls. The number of voyages required on route r is set to Nr = 26.

The data are presented in Table 1:

Table 1. Dataset Source [7].

Types of Ships

t = 1 t = 2 t = 3 t = 4 t = 5

Vk 2808 3218 4500 5714 8063

ckr 19.8 22.5 30.9 38.8 54.2

cout
k 1.82 2.34 3.21 4.32 5.12

cin
k 2 2.6 3.5 4.7 6

Nmax
k 2 2 9 2 12

NCImax
k 10 10 10 6 6

tk1 25.2 24.1 21.9 21.6 21.0

tk2 20.7 19.7 17.9 17.6 17.2

tk3 15.1 14.4 13.1 12.9 12.6

tk4 38.9 37.1 33.8 33.2 32.4

tk5 63.8 60.9 55.4 54.5 53.2

tk6 22.8 21.7 19.8 19.4 19.0

tk7 58.0 55.4 50.4 49.5 48.4

tk8 2.1 2.0 1.8 1.8 1.8

The demand overflow risk levels on each route r have been set to 1%, 5%, 10% and
15%, respectively.

The mean values of the demand, based on Ng research [7] for given routes r are
µ1 = 78, 000, µ2 = 52, 000, µ3 = 52, 000, µ4 = 130, 000, µ5 = 78, 000, µ6 = 52, 000,
µ7 = 78, 000 and µ8 = 26, 000 containers. The variance of demands is specified as
σr = 0.005× µr × µr, r ∈ R.

For the initial setting purpose, we have assumed that there are no historical data
available or that such data are not reliable and hence unusable. Also, another working
assumption, generally applicable across the robust optimization is that true distribution is
unknown for both MIP and DR ROM. Therefore, each set of cargo demands will have to
follow the preset distribution. Means and variances have been specified as stated above.

Based on Monte Carlo sampling method (20 iterations used) a base of fictive historical
data has been established to help us obtain empirical mean and covariance (variance
included as well). With those two values at hand, it is possible to get optimal values of
discrete MIP, as well as DR ROM.

Most importantly, the decision solutions such as nown
kr , nin

kr, xkr, zhod
s for both discrete

and especially for robust models are solvable in acceptable CPU time. This means that
using available commercial solvers, such as MATLAB, CPLEX, GUROBI, etc. may provide
solutions for robust optimal fleet deployment.
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For such purpose the MATLAB integrated CPLEX solver code was created to solve
the ROM problem. Figure 2 shows the CPU time for solving the problem and it is visible
that the optimal solution for our dataset is found in 12.58 s only 66,850.
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Finally, Tables 2 and 3 show the solutions obtained for optimal fleet deployment,
concerning the respective route r and ships of type k.

Table 2. Distribution of owned ship types; Source [CPLEX/MATLAB results].

Ship Type Route 1 Route 2 Route 3 Route 4 Route 5 Route 6 Route 7 Route 8

t = 1 (2808 TEU) 0 0 1 0 1 0 0 0

t = 2 (3218 TEU) 0 2 0 0 0 0 0 0

t = 3 (4500 TEU) 0 0 1 1 0 0 0 0

t = 4 (5714 TEU) 0 0 0 0 0 0 0 0

t = 5 (8063 TEU) 0 0 0 0 0 0 0 0

Table 3. Distribution of chartered ship types; CPLEX/MATLAB results.

Ship Type Route 1 Route 2 Route 3 Route 4 Route 5 Route 6 Route 7 Route 8

t = 1 (2808 TEU) 0 2 2 3 0 0 0 0

t = 2 (3218 TEU) 3 2 0 0 5 0 0 0

t = 3 (4500 TEU) 0 0 0 0 0 0 0 0

t = 4 (5714 TEU) 0 0 0 0 0 0 0 0

t = 5 (8063 TEU) 0 0 0 0 0 0 0 0

It is, of course, only natural that the distribution of owned and chartered ships differs
due to the nature of operational costs involved. Table 4 shows the optimal number of
voyages per each ship type.
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Table 4. Distribution of optimal number of voyages per ship type; Source [CPLEX/MATLAB results].

Ship Type Route 1 Route 2 Route 3 Route 4 Route 5 Route 6 Route 7 Route 8

t = 1 (2808 TEU) 0 14 24 25 8 26 26 26

t = 2 (3218 TEU) 26 12 0 0 18 0 0 0

t = 3 (4500 TEU) 0 0 2 1 0 0 0 0

t = 4 (5714 TEU) 0 0 0 0 0 0 0 0

t = 5 (8063 TEU) 0 0 0 0 0 0 0 0

To provide useful support to the decision-making process, the implemented algo-
rithms that solve the underlying decision problem must be able to provide solutions to the
real-world problem cases at reasonable computational times [34]. Therefore, an effective
metaheuristic approach to the size of the ship fleet and the problem of various maintenance
operations including fleet deployment is proposed. The metaheuristic approach is a version
of the greedy randomized adaptive search procedure—GRASP [22,23].

It consists of the initial feasible solutions to a problem by a randomized algorithm.
The solution to the fleet size problem and its combination consists of a viable fleet of
maintenance vessels and their respective maintenance bases. After the construction of
feasible solutions, the solutions are improved by the local search process [34]. The local
version search process performed is a taboo search and explores the neighborhood solutions
to the initial solution. The adjacent solutions are defined by several neighborhood operators
that define changes in the size of the fleet and a combination of the initial solution. The
overall generic pseudo-code for the GRASP procedure is shown in Figure 3.
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Figure 3. A generic GRASP pseudo-code.

Line 1 represents the problem input and iterations are performed within the code lines
from 2 to 6. The criterion for stopping the procedure is set for a certain number of iterations
or alternatively, if the solution is found. Line 3 is GRASP construction phase, as shown in
Figure 3, while line 4 is the local search phase (see Figure 4). For the case that an improved
solution is found, the incumbent is updated in line 5.

Figure 5 represents the search phase of the pseudo code, until the local optimum is
found or the preset number of iterations (repetitions) on all available ships is completed [6].
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5. Discussion

While applying the optimization robust model, the costs and fees were calculated.
Since there are two types of revenues, the income of chartering out the vessels and the
income from the container freight, both are included in the model. A few different types
of expenses were taken into account, such as cargo handling costs, vessel operation costs
(OPEX), and investments into the chartered vessels. These costs were calculated through
the robust optimization model. If we take into consideration the operating costs for ship k
on its route r, we must mention that Ckr has the cost of fuel, cost of daily labor and harbor
and light dues. Based on this, the ship OPEX plus charter fees were also calculated in the
mode. Based on all the formulations set above, we were able to calculate an optimization
model with the objective of maximizing the income, which is shown in Equation (5). This
is how an expected value model was obtained. In Equations (6) and (7) it is made sure that
the number of ships, both owned and chartered ones, did not exceed the available number
of vessels.

Equation (10) represents the total transport capacity of ships deployed on linear routes.
It is clear here that the constraint ensured that there is no exceeding of the capacity from
the number of containers which are offered for transport.

For the fleet deployment problem (P), the following neighborhood operators (N) are
used in the local search process:

• Add a long-term vessel: Add to the solution a single viable vessel for the long-term charter.
• Remove a long-term vessel: Remove from the solution a single long-term chartered vessel.



Sustainability 2022, 14, 5551 16 of 18

• Add a vessel for a short time charter: Add to the solution a single viable vessel for the
long-term charter, but for a strictly specified charter period.

• Remove vessel short-term: Remove from the solution a single viable vessel for the
long-term charter, but for a strictly specified charter period.

• Replace vessels for a short-term 1: Remove one vessel with short-term charter during
the charter period and replace it with another type of vessel chartered on a short-term.

• Replace vessels for a short-term 2: Remove one vessel for short-term charter during
the charter period and insert it in another charter period.

• Replace vessels: Remove from the solution a vessel with a long-term charter and
replace it with another type of vessel on a long-term charter.

The initial feasible solution and its adjacent solutions are called candidate solutions.
Each candidate solution is evaluated through a simulation process consisting of a scenario
generator that generates a series of time datasets and corrective maintenance task sets (if
needed, must be included in the problem formulation) and a calculator that calculates the
value of the objective solution function for the candidates for the given time data [24].

The assessment of the candidate’s solution is then the average sum of the values of the
objective function in all scenarios.

When it comes to the area of robust optimization, the research works in this area [42–47]
must be developed to see that there are not too many formal arguments clearly defining
the uncertainty set. What had to be done is to use the business intuition combined with the
need to adapt the uncertainty set. In this way it would be possible to solve the problem in a
reasonable time. It was also necessary to establish what kind of robustness and uncertainty
sets will be used to solve the problem. What was crucial for this problem is that different
uncertainty sets were defined.

Speaking of the integrated machine learning and metaheuristics, there is a line that
must be explored to get the best results. This line refers to the use of general scheme of integra-
tion by using meta-learning techniques [48]. Since the algorithm already exists, a mechanism
that chooses the best algorithm is used to obtain the results and achieve convergence.

6. Conclusions

The paper deals with the improved approach of approximations related to the problem
of fleet deployment under a set of uncertainties. The target was to research the possibilities
of application of robust optimization model in case of container fleet management to
optimize the fleet capacities and expenses. It was therefore, necessary to formulate a
model of robust optimization with the corresponding sets of uncertainties, and to make a
metaheuristic analysis for such a model. In modelling process transformation of the mixed
integer according to the distribution robust chance constraints was performed.

The key output element is to guarantee a certain level of shipping service that is
measured by the risk of excessive demand. Theoretically, it has been shown that the new
formulation has better performance than the most modern models known to the authors, which
has been proven by numerical experiments. By using such a model, it is possible to achieve
better fleet use with lower costs and optimization of fleet deployment and capacity use.

Future directions of research may include the improvement of approximation methods,
because there are still certain gaps between reliability outside the sample and the given level of
risk. Therefore, more advanced approximation approaches should be adopted. In addition,
randomly distributed, distribution robust programming can be further applied to other areas,
such as the problem of parcel distribution, or the problem of real-time vehicle movement.
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38. Dong, B.; Christiansen, M.; Fagerholt, K.; Bektaş, T. Combined maritime fleet deployment and inventory management with port

visit flexibility in roll-on roll-off shipping. Transp. Res. Part E Logist. Transp. Rev. 2020, 140, 101988. [CrossRef]
39. Yu, C.-S.; Li, H.-L. A robust optimization model for stochastic logistic problems. Int. J. Prod. Econ. 2000, 64, 385–397. [CrossRef]
40. Huang, Z.; Guo, X.; Yang, T.; Lei, S.; Zhao, Z. A decoupling approach for time-dependent robust optimization with application to

power semiconductor devices. Appl. Math. Model. 2021, 99, 129–146. [CrossRef]
41. Kim, M.; Cho, S.; Jang, K.; Hong, S.; Na, J.; Moon, I. Data-driven robust optimization for minimum nitrogen oxide emission under

process uncertainty. Chem. Eng. J. 2021, 428, 130971. [CrossRef]
42. Yang, J.; Su, C. Robust optimization of microgrid based on renewable distributed power generation and load demand uncertainty.

Energy 2021, 223, 120043. [CrossRef]
43. Ratanakuakangwan, S.; Morita, H. Hybrid stochastic robust optimization and robust optimization for energy planning—A social

impact-constrained case study. Appl. Energy 2021, 298, 117258. [CrossRef]
44. Xu, T.; Ren, Y.; Guo, L.; Wang, X.; Liang, L.; Wu, Y. Multi-objective robust optimization of active distribution networks considering

uncertainties of photovoltaic. Int. J. Electr. Power Energy Syst. 2021, 133, 107197. [CrossRef]
45. Doan, X.V. Distributionally robust optimization under endogenous uncertainty with an application in retrofitting planning. Eur. J.

Oper. Res. 2021, 300, 73–84. [CrossRef]
46. Zeng, Q.; Yang, Z.; Chen, C. Robust Optimization Model for Resource Allocation of Container Shipping Lines. Tsinghua Sci.

Technol. 2015, 15, 586–594. [CrossRef]
47. Zheng, F.; Wang, Z.; Zhang, E.; Ming, L. Distributionally Robust Joint Chance Constrained Vessel fleet Deployment Problem.

Asia-Pac. J. Oper. Res. 2021. [CrossRef]
48. García, J.; Peña, A. Robust Optimization: Concepts and Applications; Nature-inspired Methods for Stochastic, Robust and Dynamic

Optimization: London, UK, 2018. [CrossRef]

http://doi.org/10.1080/03088839100000022
http://doi.org/10.1080/03088839600000087
http://doi.org/10.1080/03088839700000069
http://doi.org/10.1016/j.tre.2009.06.004
http://doi.org/10.1007/s10696-011-9089-0
http://doi.org/10.1016/j.tre.2011.12.003
http://doi.org/10.1287/trsc.1030.0036
http://doi.org/10.1080/03088839.2010.486635
http://doi.org/10.1016/j.ejor.2012.06.025
http://doi.org/10.1016/j.tre.2013.09.001
http://doi.org/10.1016/j.trb.2015.01.004
http://doi.org/10.1007/s10107-011-0494-7
http://doi.org/10.1007/s10107-015-0929-7
http://doi.org/10.1016/j.tre.2020.102101
http://doi.org/10.1016/j.tre.2020.101988
http://doi.org/10.1016/S0925-5273(99)00074-2
http://doi.org/10.1016/j.apm.2021.06.010
http://doi.org/10.1016/j.cej.2021.130971
http://doi.org/10.1016/j.energy.2021.120043
http://doi.org/10.1016/j.apenergy.2021.117258
http://doi.org/10.1016/j.ijepes.2021.107197
http://doi.org/10.1016/j.ejor.2021.07.013
http://doi.org/10.1016/S1007-0214(10)70105-X
http://doi.org/10.1142/S021759592250004X
http://doi.org/10.5772/intechopen.75381

	Introduction 
	Literature Review 
	Model Construction 
	Problem Description 
	Scenario for Container Shipment Demand 
	Model Buildup 
	Decision Variables 
	Parameters 

	Optimization Model 
	Robust Optimization Model 

	Results 
	Discussion 
	Conclusions 
	References

