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Abstract: Three industrial solid wastes including red mud, carbide slag, and phosphogypsum com-
bined with ordinary Portland cement were used as curing agents to solidify/stabilize loess polluted
by a high concentration of copper ions. The unconfined compressive strength, resistivity, permeability
coefficient, copper ion leaching concentration, pH value, and other engineering application evaluation
indexes were analyzed to preliminarily assess the applicability of the curing agent in the remediation
of soil contaminated with a high concentration of copper ions. The mineral phases and functional
groups of solidified soil were detected using XRD and FTIR, showing that the strength, electrical
resistivity, and pH value of solidified soil decrease following the addition of copper ions. Moreover,
the strength and resistivity of solidified soil increase with the curing age, and the pH value decreases
with age. For solidified contaminated soil, when the total content of curing agent increases from 10 to
20%, the maximum 28 d strength increases from 1.35 to 5.43 MPa, and in this study, its permeability
coefficient, copper ion leaching concentration, and pH value were found to be within the limits set by
relevant national standards. In conclusion, red mud-carbide slag-phosphogypsum combined with
cement has a good stabilizing effect on sites polluted with a high concentration of copper ions.

Keywords: solidification/stabilization; red mud; carbide slag; phosphogypsum; unconfined compressive
strength; electrical resistivity

1. Introduction

In recent years, copper production and consumption in China has ranked first in the
world [1]. Waste gas, water, and residue discharged from copper-zinc-ore-smelting areas
and wastewater discharged from electroplating and metal processing inevitably cause
serious copper pollution to the original site of the factory [2]. Soil polluted with heavy
metals does not only seriously deteriorate its engineering properties [3] but the heavy
metals in soil will also cause contamination to surrounding soil with rainwater scouring
and groundwater circulation and may affect food safety and human health [4]. Therefore,
there is an urgent need to develop effective technologies for the remediation of soil polluted
with heavy metal ions to reduce environmental pollution.

In recent years, environmental geotechnical workers have conducted much research
regarding potential remediation technologies of heavy-metal-contaminated soil. Various
remediation schemes have been developed. Among them, physical remediation methods
such as the soil exchange method, thermal desorption method [5], and glass solidification [6]
method have had a significant effect on the remediation of heavy-metal-contaminated sites,
but their shortcomings in energy consumption make them unconducive to the treatment of
large amounts of contaminated soil. The chemical leaching [7] method has the potential
risk of leaching the solution to the environment, while the electric remediation method,
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as an advanced remediation method without secondary pollution, presents the problem
of the high cost of power consumption, and bioremediation [8] and phytoremediation
technology [9] has the defect of a long remediation cycle, which is not conducive to the
treatment of projects with a tight construction period. This study is based on the treatment
of large-scale and high-concentration heavy-metal-contaminated sites, and S/S technology
has the following characteristics: strong economic applicability, convenient operation, a
short construction period, and a friendly environment.

Cement [10], lime [11], and other traditional building cementitious materials are used
to solidify inorganic wastes, such as heavy-metal-contaminated soil, showing excellent
engineering characteristics and a strong solidification efficiency of harmful substances.
However, the strength of cement slurry is seriously reduced by heavy metals, and the high
concentration of heavy metals exceeds the curing capacity of cement, resulting in an in-
creased leaching concentration [12]. The energy consumption of the cement-manufacturing
industry accounts for about 8% of the total energy consumption in China and releases a
large amount of greenhouse gases that pollute the environment [13]. Red mud is a powdery
solid waste produced during alumina production from bauxite ore [14]. The annual output
of red mud is as high as 175.5 million tons, the global red mud reserve is close to 4 billion
tons and its methods for its application in all aspects have gradually enriched [15]. Many
scholars [16,17] have found that red mud has certain pozzolanic activity and can be used as
a source of solidified body strength through the micro analysis of geopolymers produced
by red mud as raw materials and some building materials. Many experimental studies
prove the favorable performance of solidifying poor foundations and repairing heavy
metal-polluted soil. Mukiza et al. [18] used red mud instead of any cement to test the
strength of road-base material, showing that red-mud-solidified soil meets the strength
requirements of China’s first-class highways. Zhang et al. [19] used red mud, carbide slag,
and electrolytic manganese slag as subgrade materials, which exhibited strong compressive
strengths and durability. Suo et al. [20] used red mud and cement to solidify soil with a
high concentration of copper ions, and the engineering characteristics and leaching toxicity
of the solidified soil fully met the requirements.

Carbide slag is a by-product of acetylene production by calcium carbide hydrolysis.
Taking advantage of its high Ca(OH)2 content, carbide slag can be used to replace lime or
cement in the remediation of urban industrially polluted site soil, as it better meets the
requirements of site remediation regarding the strength and solidification efficiency of
toxic pollutants [21]. Kou et al. [22] used carbide slag combined with cement and slag as
cementitious material which shows strong mechanical properties and is conducive to the
formation of hydration products. Zhang et al. [23] used the carbide slag treated by wet
grinding as the alkali activator for blast furnace slag, which improved the compressive
strength of cementitious materials well and increased the hydrate content. Suo et al. [24]
studied the solidification stability of 1% copper ion-contaminated soil solidified by car-
bide slag and various industrial waste residues. The results showed that the addition of
carbide slag can improve the solidification efficiency of Cu2+ and ensure a low leaching
concentration. Sun et al. [25] solidified soil contaminated with 2% copper with 20% carbide
slag, achieving a higher strength than the strength of 0.5 MPa required by the Ministry
of Environmental Protection of China for general solidified bodies. Phosphogypsum is
a by-product of the process of extracting phosphoric acid from phosphate rock. Wang
et al. [26] showed experimentally that the strength characteristics and heavy metal stabi-
lization ability of phosphogypsum combined with red mud in curing soil contaminated
with a high concentration of copper lead and zinc ions are better than those of fly ash and
red mud. Jin et al. [27] developed a ternary cementitious system composed of ground blast
furnace slag, calcium carbide slag and phosphogypsum. It was found that the excitation
of calcium carbide slag and phosphogypsum led to a sufficient hydration reaction of the
cementitious system, and the compressive strength was able to reach 45.6 MPa. In this
paper, carbide slag and phosphogypsum are applied to the activator of red mud as the
curing agents of heavy metal-contaminated sites.
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In this work, we developed a high-efficiency curing agent for stabilizing/solidifying
soil polluted with a high concentration of copper ions. The unconfined compressive
strength, permeability coefficient, copper ion leaching concentration, and pH value of
solidified soil test specimens of red mud, carbide slag, and phosphogypsum with different
ratios and dosages were obtained through indoor tests such as the evaluation indexes to
evaluate the curing performance of the curing agent. The results were compared with the
performance index requirements of solidified soil mechanics and national and international
environmental safety standards to prove the applicability of the curing agent and provide
data support for landfill disposal and resource utilization of solidified soil.

2. Materials and Methods
2.1. Materials

As the material for soil samples, loess of Taiyuan City, Shanxi Province, China, was
used in this study with a plastic limit of 10.8%, liquid limit of 28.2%, plasticity index of
10.8, and pH value of 7.3. The test results for soil with different ion concentrations are
shown in Table 1. Red mud (pH 9.89) was produced using the Bayer process by Aluminum
Co., Ltd. (Xiaoyi, China). Carbide slag (pH 12) was taken from the calcium carbide slag
yard of Chemical Co., Ltd. (Yushe, China). Phosphogypsum (pH 4.61) was obtained
from a chemical enterprise (Shandong, China). Ordinary Portland cement (42.5R/N) was
purchased from the Lion Cement Company in Taiyuan. Heavy metal pollution ions were
derived from a Copper nitrate trihydrate (Cu(NO3)2·3H2O) reagent (Aladdin Industry
Corporation, Shanghai, China), and distilled water (pH 7) was used for the tests. Particle
size distribution curves, the main chemical compositions, and the content of raw materials
are shown in Figure 1 and Table 2.

Table 1. Ion concentrations in loess particles (mg·kg−1).

Ca2+ Mg2+ CO2−
3 HCO−

3 SO2−
4 Cl−

157.57 95.74 0 219.60 168.25 177.25
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Table 2. Main chemical composition and content of raw materials (%).

Material Al2O3 CaO Fe2O3 K2O MgO Na2O SO3 SiO2

Loess 6.02 7.84 2.75 1.62 1.72 1.38 0.22 54.78
Cement 5.01 44.63 2.43 0.66 1.65 0.11 2.94 37.06

Red mud 24.34 18.26 9.40 0.64 1.26 9.61 0.19 20.17
Carbide slag 1.15 64.52 0.21 0.25 3.05

Phosphogypsum 0.06 14.48 0.27 0.19 0.13 0.08 46.25 19.62

2.2. Test Scheme Design

The National Soil Pollution Survey Bulletin (2014) shows that copper pollution sites
account for 0.05% of all contaminated sites, according to the Chinese soil environmental
quality standard (GB15618-2018), the risk screening value for soil contamination of copper
is 200 mg/kg when the soil pH > 7.5. However, copper pollution sites with more than
10 g/kg have been reported [28]. Therefore, the solidification and remediation effect of soil
heavily polluted with copper ions are studied in this article, and soil uniformly polluted
at a high concentration of 10 g/kg copper was manually configured as the soil sample to
be solidified.

When hazardous waste is treated by solidification/stabilization technology, first the
engineering characteristics and environmental safety required by the landfill and resource
utilization of the solidified body should be met, and the compatibilization ratio should be
reduced as much as possible (i.e., ratio of the volume of the solidified body to the volume of
hazardous waste before the solidification agent is added), to avoid incurring an additional
burden to the final disposal of the solidified body. In this study, a low total content of
inorganic binder of 10% (mass ratio relative to the dry weight of polluted loess) and a
medium content of curing agent of 20% were preliminarily set, and cement proportions of
0.45, 0.55, and 0.65 (i.e., proportion of cement in the curing agent) were chosen. The specific
mixing schemes are shown in Figure 2. Scheme “P0R0” acted as the control group, and no
curing agent was added. For each mixing ratio scheme, 1% copper ion-polluted loess and
uncontaminated loess were simultaneously solidified, and subsequent tests were carried
out. For simplicity, solidified 1% copper ion-contaminated soil was denoted as “RCP1%”,
and solidified uncontaminated soil was denoted as “RCP0%”.
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2.3. Specimen Praparation

All materials were air dried and crushed, passed through a 2-mm geotechnical sieve,
weighed, mixed with loess, cement, red mud, calcium carbide slag, and phosphogypsum
according to the mixing amount of each component shown in Figure 2, and the obtained
mixtures were thoroughly mixed. Then, according to the optimal moisture content deter-
mined by a compaction test, 12% of distilled water (relative to the total mass of solidified
soil) was weighed. Moreover, copper nitrate trihydrate (Cu(NO3)2·3H2O) powder was
weighed (Cu2+ concentration: 10 g/kg, relative to the mass of loess) and dissolved in
distilled water. The copper nitrate solution was evenly sprayed into the solidified soil
sample, which was thoroughly mixed by continuously stirring for 10 min and then poured
into an airtight bag and equilibrated for 24 h to fully integrate water and Cu2+ with the
particles in the mixture. Then, 200 g of this mixture (according to the maximum dry density)
was weighed and poured into a Φ × H = 50 × 50 mm cylindrical column mold for static
pressure forming, and six parallel samples were prepared for each scheme. Then, the
compacted test specimens were removed using a demoulding machine and wrapped in
cling film. Finally, they were cured in a curing container with a constant temperature and
humidity (temperature 20 ◦C, humidity 95%) for standard curing. After 7, 14, and 28 days
of curing, the specimens were removed from this container for subsequent tests.

2.4. Test Contents and Methods

Strength is an important property of soil or geomaterials [29]. The unconfined com-
pressive strength was measured using the microcomputer-controlled electronic universal
testing machine WDW-100 according to the test code for highway materials stabilized
with inorganic binder (JTG E51–2009) [30]. The resistivity reference for the test method
can be found in [31]. The permeability coefficient was tested using a flexible wall perme-
ameter (PN3230M). The leaching toxicity test refers to the method mentioned in the solid
waste-extraction procedure for leaching toxicity—the sulphuric acid and nitric acid method
(HJ/T299–2007) [32], and the pH was determined according to the standard test method
for the identification of the corrosivity of hazardous wastes (GB5085.1–2007) [33].

A phase analysis with XRD was performed using a Bruker D8 ADVANCE X-ray
diffractometer with CuKa radiation, 40 kV voltage, a 200 mA current, and a scan range of
2θ = 10◦–90◦. FTIR measurements of the raw materials were performed before and after
the hydration reaction using a Nicolet NEXUS-670 FTIR spectrometer in the wave number
range of 4000–500 cm−1 at a resolution of 1 cm−1. The general Tessier progressive extraction
method [34] was used to analyze five categories of heavy metal components, namely
exchangeables, carbonates, iron oxides, manganese oxides, organic, and residue forms.

3. Results
3.1. Basic Engineering Indexes
3.1.1. Unconfined Compressive Strength

Figure 3 shows the variation of the unconfined compressive strength (UCS) of con-
taminated and uncontaminated solidified soil test specimens and the age for schemes with
different curing agent proportions, revealing that the strength of RCP1% was less than that
of RCP0% at the same curing age. Moreover, it shows that the presence of Cu2+ hinders the
extent of the reinforcing effect of the curing agent. A large number of studies on curing
heavy-metal-contaminated soil with inorganic binder [34–36] show that the strength of the
solidified soil contaminated with heavy metals, such as copper, lead, and zinc, is lower
than that of solidified soil without heavy metals at the same ratio, and the greater the heavy
metal concentration is, the stronger the deterioration of strength. Table 3 summarizes the
strength ratios of RCP1% to RCP0% at 7, 14, and 28 days for all curing schemes, showing
only slight differences between the ratios of schemes “P4.5R3”, “P5.5R2”, and “P6.5R1”
with a total content of 10%, which all exhibited strength ratios of about 0.2. When the
cement proportion increased from 0.45 (scheme “P4.5R3”) to 0.65 (scheme “P6.5R1”), the
strength values of RCP0% and RCP1% increased by 1.77 times at 7 d of age. When the
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total content of the curing agent increased to 20%, the ratio of RCP1% to RCP0% increased
slightly with age. When the proportion of cement increased from 0.45 (scheme “P9R6”) to
0.65 (scheme “P13R2”), the strength values of RCP0% and RCP1% increased by 1.29 and
2.03 times at 7 d of age, respectively.
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Figure 3 shows that the strength of the RCP solidified soil test block increased gradu-
ally with age, whether copper ions had been added or not. The gradual increase in strength
indicates that the hydration of active components in the curing agent occurred step by step,
and that it was not a short-term physical and chemical reaction. The formed hydration prod-
ucts will continue to participate in the reaction with newly dissolved active components,
which is a dynamic reaction process [37]. However, the strength of scheme “P0R0” without
the curing agent decreased gradually with age, indicating that the contaminated soil as
such had no good adhesion properties. Without admixture, the invasion of pollutants
leads to soil softening [38], resulting in soft and weak soil and serious secondary disasters.
Therefore, such sites should be repaired in time.

Figure 3 and Table 3 show that RCP1%, RCP0%, and their strength ratio of scheme
“P13R2” reached a high level, which may be due to the high cement proportion of 0.65,
which greatly improved the production of cement hydration products and provided a
sufficient alkalinity and Ca(OH)2 content for the pozzolanic reaction, which is conducive
to the dissolution of active components in RCP. The strength (3.14 MPa) of RCP1%7d in
scheme “P13R2” meets the Chinese standard for road bases with a medium and low traffic
volume and the strength requirements of 3–5 MPa for base fillers in the Netherlands. The
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strength of RCP1% at 28 d of age (5.43 MPa) meets the requirements in the UK for the
strength of the base course filler of 4.5 MPa and the Chinese standard for super heavy
roads of 5–7 MPa. Therefore, 20% solidified soil can meet the strength requirements of
the resource utilization of solidified soil. The strength of RCP1% with a content of 10%
meets the strength requirements of the United States and Great Britain of 0.35 and 0.7 MPa,
respectively, for contaminated soil treated and stabilized using the landfill method.

3.1.2. Permeability Coefficient

The permeability coefficient is an important factor that controls the migration rate
of heavy metal ions and the dissolution of pollutants in the solidified body. Figure 4
shows the permeability coefficients of solidified soil under the osmotic pressure of 200,
300, and 400 kPa for the different schemes. All the test blocks had small permeability
coefficients in the range of (1–10) × 10−7 cm·s−1, and the different mixing schemes did not
exhibit any significant differences. Moreover, the permeability coefficient increased only
slightly with the increase in osmotic pressure, indicating a strong adhesion of the hydration
products to solid particles, which can resist the scouring of high-pressure leachate. Many
studies [38,39] have found that the greater the concentration of heavy metal ions, the
greater the permeability coefficient. However, different mixing schemes in this study
showed different tendencies, probably because many curing agents were used in this study,
and various reactions were complex. Aggregate filling, hydration product cementation,
particle agglomeration, particle compaction under confining pressure, and osmotic pressure
jointly affect the structure of seepage channels in solidified soil [40].
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3.1.3. Electrical Resistivity

In a large number of studies in China, electrical resistivity test technology has been
applied as a nondestructive and convenient test method to the typical complex three-phase
system of soil [41], and a good correlation between the resistivity value of solidified soil
test specimens, UCS, and pollutant concentration has been established. Many studies [42]
found that the addition of heavy metal ions greatly improves the conductivity of soil and
greatly reduces its resistivity. The higher the ion concentration, the more intense the decline
in resistivity. Figure 5 shows the change in resistivity with the age of contaminated and
uncontaminated solidified soil test specimens, revealing that the resistivity of RCP1% was
much lower than that of the RCP0% test specimens due to the addition of 1% copper
ions. The presence of heavy metals hindered cement hydration, resulting in poor particle
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adhesion and a loose structure, but also led to a greater pore solution through pores and
a smooth conductive path. In addition, the high concentration of the heavy metal pore
solution increased the conductivity of the pore water, which greatly reduced the resistivity
of the solidified soil.
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Figure 5 shows that the resistivity of the RCP solidified soil test specimens increased
gradually with age whether copper ions were added or not, revealing that with an in-
crease in the curing time, the amount of hydration products of the curing agent grad-
ually increased, the degree of cementation increased, and the porosity and saturation
decreased, resulting in a denser soil structure and a stronger blocking effect on the al-
ternating current [43]. It has been proved that resistivity test technology can be used in
nondestructive evaluation methods to estimate the hydration degree of a curing agent
in solidified/stabilized soil. A comparison of Figures 3 and 5 in combination with the
proportion scheme of the curing agent in Figure 2 shows that with the increase in the
cement proportion in the curing agent, the strength and resistivity maintained the same
growth trend, and both increased with the increase in age. Moreover, 1% copper ions
also reduce the strength and resistivity of solidified soil. The plot of the strength and
resistivity of solidified and unsolidified soil test specimens at the age of seven days shown
in Figure 6 reveals that both change trends were in good agreement, which proves that
the resistivity test technology can be used as an accurate test method to characterize the
strength characteristics of solidified soil.
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3.2. Environmental Safety Evaluation Index
3.2.1. PH of Solidified Soil

Figure 7 shows the change of the pH values of RCP1% and RCP0% with age, clearly
revealing that the pH value of RCP1% was lower than that of RCP0% at the same age.
This can be explained by the high concentrations of Cu2+ that reacted with OH− in pore
solutions to form the [Cu(OH)4]2− complex, which consumes a large number of basic
anions. In addition, the reaction of Cu2+ with carboxyl (-OH) and hydrated groups (-OH2)
to release H+ also reduces the pH value of solidified soil [41]. Moreover, the inhibitory
effect of Cu2+ on cement hydration reduced the generation of Ca(OH)2. Cu2+ not only
reduced the pH of solidified soil but also led to the unstable decomposition of hydration
products. The low pH value has a weak effect on the excitation and dissolution of active
minerals in solid waste, which is not conducive to the pozzolanic reaction and greatly
affects the improvement of its strength.

Moreover, Figure 7 shows that whether the solidified soil contained heavy metal
ions or not, the change in the pH value was different from that of strength and resistivity,
as the pH decreased gradually with an increase in age, which is consistent with the pH
change law of red mud, calcium carbide slag, and lime, which are reported as curing agents
in other studies [26,43]. The decrease in the pH value with the curing age is due to the
pozzolanic reaction of siliceous and aluminum compounds in raw materials in an alkaline
environment, which consumes Ca(OH)2 to convert it into secondary cementitious products
such as C–S–H and C–A–S–H with low alkalinity, resulting in a decrease in the pH value
of the soil. However, Figure 7 shows that the pH at the age of 28 days remained above
10.5, revealing that the pH value is still able to ensure the thermodynamic stability of
cementitious products and the important role of pozzolanic products in soil-pore filling,
particle adhesion, and soil-strength development.

Alongside the mixing ratios of the curing agents presented in Figure 2, it is found
that the pH values of schemes “P9R6”, “P11R4”, and “P13R2” with a total content of 20%
were higher than those of schemes “P4.5R3”, “P5.5R2”, and “P6.5R1” with a total content
of 10%, but the pH values of all these schemes were lower than the pH limit defined in
the standard for the corrosive identification of hazardous wastes (GB 5085.1-2007). This
shows that the higher the amount of the curing agent, the more alkaline the solidified soil.
The higher alkaline environment is conducive to the dissolution of reactive SiO2/Al2O3 in
RCP and accelerates the pozzolanic reaction rate [42]. A higher pH value can ensure the
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stability of C–S–H [44] and leads to a higher mechanical strength. At the same time, the
alkaline environment has a better stabilization effect on heavy metal ions and strong acid
resistance [42]. Therefore, the positive effect of an increased amount of curing agent on
strength and impermeability should not be considered unilaterally, and the risk of corrosion
that the pH of the cured body may cause to the surrounding environment should also
be evaluated.
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3.2.2. Leaching Toxicity

Figure 8 shows the pH values of RCP1% and RCP0% and the copper ion leaching
concentration of RCP1%. The leaching toxicity of scheme “P4.5R3” with a lower amount
of curing agent was 0.085 mg/L, and the proportion of cement was only 0.45, which is far
less than the copper ion leaching limit (100 mg/L) of the identification standard for the
leaching toxicity of hazardous wastes (GB5085.3-2007) [45]. The solidification efficiency
reached up to 99.99%, and it was also found that with an increase in the proportion of
cement and the total content, the leaching toxicity decreased, indicating that the curing
agent had a high solidification stability for copper ions and is able to meet the requirements
of environmental safety. It has been reported that the solidification effect of Cu2+ in
polluted soil is significantly affected by the pH, and the ion mobility in a weak alkaline
environment is the lowest [46]. The addition of cement and carbide slag increased the pH
of the contaminated soil. Cu2+ was better bound to the surface of the gel, and Cu(OH)2
precipitates under alkaline conditions, thereby reducing the leaching toxicity of copper ions.
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3.2.3. Heavy Metal Speciation

A comprehensive quantitative analysis of heavy metals is commonly used to assess
the impact of heavy metals on the environment, but it cannot perfectly reflect its potential
ecological harm. Heavy metals exist in different forms in soil, and each form has a different
impact on the ecosystem [47]. Therefore, it is necessary to analyze each heavy metal form
after curing to better understand the curing process and improve its effectiveness. The
Tessier test program considers the possible effects of various environmental conditions
on trace elements in soil. The exchangeable form refers to the exchange of heavy metals
adsorbed onto clay minerals and other components of soil. This form has the greatest level
of activity and can be used to evaluate the bioavailability of heavy metals in soil. The
carbonate form refers to heavy metals combined with carbonate precipitation, which is
sensitive to the acidity and alkalinity of soil. When the soil pH decreases, carbonate-bound
heavy metals dissolve, thus increasing their mobility and bioavailability. In the bound
state of iron and manganese oxides, heavy metals are adsorbed onto the iron or manganese
oxides in the soil by strong ionic bonding. The change in the soil environment can release
some heavy metals, which is potentially harmful to crops, and this bound state is relatively
stable compared with the first two states. The organic form refers to the complexation and
chelation between heavy metals and organic matter in the soil. This form is relatively stable
and in general is not easily absorbed and utilized by organisms. The residual form refers to
heavy metals in silicate, primary and secondary minerals, and other soil lattices and can
be stably combined in sediments for a long period in a normal environment, with little
mobility and bioavailability and minimal toxicity [34].

The speciation distributions of Cu in unsolidified contaminated soil and the RCP1%
specimens of scheme “P13R2” at 7 and 28 days of curing age are shown in Table 4. This
clearly shows that after adding the curing agent the content of the first two unstable
forms in the RCP1%7d test specimens was lower than that of unsolidified soil, while the
content of the more stable iron and manganese oxidation fraction and residue fraction
were greatly increased, indicating that the RCP curing agent can reduce the sensitivity
of heavy metals to environmental changes such as acidity and alkalinity. However, the
proportion of each form to the total metal content in Figure 9 revealed that the proportion
of the carbonate-bound form was the highest, regardless of whether it was solidified or
not. Therefore, in the resource utilization of solidified contaminated soil, environmental
safety in the highly acidic soil environment and groundwater environment needs to be
considered. Regarding the influence of age on the form and content of heavy metals in RCP
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solidified soil, the decrease in the exchangeable form and carbonate form and the increase
in the more stable form of the latter three in the solidified soil after 28 d of age were very
small. The transformation of the ion morphology is a long-term and slow process, which
also changes with the transformation of the morphology of the hydration product of the
curing agent.

Table 4. Speciation distribution of Cu in specimens (mg·kg−1).

Samples Exchangeable Form Carbonate Form Fe–Mn Oxide Form Organic Form Residual Form Sum

Unsolidified 462.19 9407.39 771.634 107.34 53.45 10,802
RCP1%7d 32.17 6585.67 1383.30 8.27 165.62 8175

RCP1%28d 23.99 6563.98 1612.72 12.10 370.19 8583
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3.3. Material Characterization
3.3.1. XRD

To elucidate the internal mechanism by which the curing agent improves the engineering
characteristics of contaminated soil, the mineral components of the raw materials before and
after hydration were analyzed with XRD. The XRD spectrum of the raw materials in Figure 10
shows that the mineral phases of red mud are minerals such as Ca3Al2(SiO4)(OH)8, Fe2O3,
and Al(OH)3. Red-mud minerals contain a large number of active Al–O and Si–O chemical
bonds, which can be broken and released in an alkaline environment [48] due to the high
pozzolanic activity [49] The high OH− content of calcium minerals, such as Ca(OH)2 and
CaCO3, in carbide slag is used as an activator for the release of active substances from red
mud [50]. In phosphogypsum, many gypsum phases were detected, and sulfate is known
to be a crucial element of ettringite, the hydration product of common inorganic materials.
Phosphogypsum makes up for the vacancy of sulfate in other curing agents.
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Figure 10. Mineralogical phases of granulated raw materials.

Figure 11 shows the XRD spectra of RCP0% and RCP1% soil prepared according to
scheme “P13R2” after curing and hydration in which the hydration products C–S–H, C–A–
H, and AFt were identified. The formed hydration products have good adhesion properties
and can bind the soil particles in the bulk state into blocks with a high overall strength,
which is helpful to meet the strength requirements of solidified soil in engineering applica-
tions. In addition, copper-containing phases, such as Cu(OH)2, CaCu4 (SO4)2(OH)6·3H2O,
CaCuSiO4·H2O, and CaCuAl(Si2O6)(OH)3, were detected in RCP1% at 7 d and 28 d, indi-
cating that Cu2+ underwent a series of chemical reactions in the solidified soil to combine
with the compound. Copper ions combined with minerals have a higher leaching stability
than can be achieved with simple physical surface adsorption, which is conducive to the
solidification and stabilization of copper ions and reduces its leaching concentration.
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3.3.2. FTIR

Figure 12 shows the FTIR spectra of the raw materials of RCP curing agents, revealing
an obvious absorption peak in the range of 4000–1330 cm−1. The stretching vibration
of the O–H group appeared near 3600 cm−1, indicating the existence of the OH− anion
group [51]. At the absorption peak near 3600 cm−1 of the RCP curing agents, the peak
strength of carbide slag was the largest. The high intensity of this peak in calcium carbide
slag is mainly related to its chemical composition of Ca(OH)2. The intensities of the peak
near 3600 cm−1 in phosphogypsum and red mud were low, which was probably due to
the presence of O–H in water. In phosphogypsum, the absorption peak at 3560 cm−1 was
related to Si–OH absorption [49], and the peak near 1600 cm−1 was a result of the H–O–H
bending vibration of the interlayer water [52]. SO4

2− absorption peaks were detected in the
ranges of 1210–1040 and 680–570 cm−1. In red mud, the SiO4

4− absorption was detected in
the range of 1175–860 cm−1, and the absorption bands at 549–400 cm−1 correspond to the
vibrations of Si–O and Al–O. Red mud and carbide slag, but not phosphogypsum, exhibited
strong absorption peaks at 1530–1320 and 890–800 cm−1 due to the antisymmetric stretching
vibration of the CO3

2− bond, probably resulting from CaCO3 or other carbonate substances.
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Figure 13 reveals that the positions of the absorption peaks in the FTIR spectra of
RCP0% and RCP1% at 7 and 14 d were roughly the same. The broad absorption band
near 3440 cm−1 was related to the Al–OH stretching vibration in the octahedral structure
of ettringite (AFt) [35]. The absorption peak of the carbonate bending vibration near
1450 cm−1 in RCP solidified soil was enhanced compared with those of the raw materials
of the curing agent, which may be due to the large proportion of loess materials rich in
calcium carbonate and the formation of new carbonate minerals. The SO4

2− absorption
peaks near 1100 and 695 cm−1 decreased with an increase in the curing age, indicating that
SO4

2− was consumed in the formation of AFt. The strong absorption peaks near 1000 and
874 cm−1 corresponded to the anti-symmetric Si–O–T (T = Si, Al) stretching vibration of
[TO4], indicating the formation of C–S–H and C–A–S–H gels [52]. Moreover, the generated
[AlO4]− was negatively charged and interacted with positively charged Ca2+ and Na+ in
the pore solution to form cementitious hydration products [21,51]. Heavy metal cations
in contaminated soil also interact with alumina tetrahedrons or replace other cations to
form a stable mineral structure [52–54], which is also an important mechanistic explanation
for the stabilization of contaminating ions. The absorption bands near 530 and 472 cm−1
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corresponded to vibrations of Si–O and also decreased with an increase in the hydration
time, implying that more active silicate minerals in red mud dissolve and participate in the
formation of hydration products, such as C–S–H and C–A–S–H [55]. Red mud, carbide slag,
and phosphogypsum provide essential elements for the formation of hydration products.
The selection of the curing agent is reasonable as a mutual supplement of components
and elements.
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4. Discussion

The increase in strength and the mechanism of action of the curing agent in curing
heavy metals of RCP combined with cement-solidified soil is the result of the interaction of
cement, red mud, carbide slag, and phosphogypsum and can be explained by the following
factors [56]: 1© The initial strength of the stabilized soil increased mainly due to the high
content of tricalcium silicate (C3S) and dicalcium silicate (C2S) in the cement, and active
minerals were actively incorporated into the hydration reaction to form C–S–H, C–A–H, and
C–A–S–H gels, which could encapsulate contaminated soil particles and have been proven
to have a strong adsorption capacity for heavy metals [57]; 2© The cation exchange between
Ca2+ generated by the cement hydration reaction, Ca2+ generated by carbide slag hydrolysis,
Cu2+ in heavy metal solution and easily exchangeable cations such as Na+ and K+ initially
adsorbed on clay particles leads to a reduction in the thickness of the clay particle diffusion
double layer. As a result, soil particles flocculate and coagulate [44] to increase the structure
density and the strength. Meanwhile, Cu2+ is also preserved on the soil surface; 3© Some
cementitious substances hardened to form the skeleton, enhance strength and can wrap and
bond heavy metal ions to form pellets so that the heavy metals are sealed and form a relatively
stable spatial structure; 4© A large number of Ca(OH)2 generated in pore solutions react
with active substances such as SiO2 and Al2O3 dissolved in soil and red mud to produce
secondary gel products, such as C–S–H, C–A–H, and C–A–S–H. As a result, a space network
structure forms, the adhesion and stability between particles improve, and the volcano ash
reaction occurs, which are the main factors promoting the strength of the solidified body
in the later stage; 5© CaSO4 dissolved in phosphogypsum can combine with Al2O3 in an
alkaline environment to form ettringite. This expansive acicular crystal cannot only fill the
pores but can also increase the intercalation capacity of the hydration products and make the
spatial structure of soil more compact [58], and heavy metal ions enter C–S–H or C–A–S–H
and AFt crystals through replacement, which is the main mechanism of solidification; 6© In a
strong alkaline pore solution saturated with Ca(OH)2, Cu2+ is easily precipitated due to its
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low solubility and may form insoluble salts such as silicate, carbonate, and sulfate, which
will reduce the migration ability of Cu2+ and fix heavy metals. Ca(OH)2 also crystallizes
and precipitates to form Ca(OH)2 crystals. Ca(OH)2 crystals have good cohesion and water
stability, which increases the structure density and the strength of the mixture; 7© In addition,
Ca(OH)2 carbonizes with air or CO2 dissolved in water to produce CaCO3 crystals. CaCO3
crystals also have high strength and water stability and fill the pores of the structure to make
the structure more compact. However, since it is difficult for CO2 in the air to enter the
structure, this process is a long-term and slow process.

5. Conclusions

In this paper, solid wastes (red mud, carbide slag and phosphogypsum) instead of
cement were used as curing agents to solidify/stabilize copper-contaminated soil. The
basic engineering indexes and the environmental safety evaluation index of the tested
specimens with different contents of curing agent were tested. Meanwhile, the hydration
products of solidified soil were characterized with XRD and FTIR. The major conclusions
drawn from this study are as follows:

(1) When the total content of curing agent is 10%, due to the deterioration of copper
ions at a concentration of 1%, the strength ratio of RCP1% to RCP0% is only about 0.2 at 7,
14, and 28 d curing age. For a curing agent with a total content of 20%, the ratio of RCP1%
to RCP0% increases from 0.48 to 0.64 when the proportion of cement increases from 0.45 to
0.65. The resistivity and strength values show the same variation trend.

(2) When the contents of cement, red mud, carbide slag, and phosphogypsum are
13%, 2%, 3%, and 2%, respectively, the maximum strength of RCP1% is 5.43 MPa, and
the permeability coefficients are in the range of (1–10) × 10−7 cm/s. The resistivity and
strength increase with an increase in the total content of curing agent, cement content, and
curing age.

(3) The maximum pH and copper ion leaching concentration value in all schemes
are 12.46 and 0.085 mg/L, which are within the environmental safety limit of hazardous
wastes in China. When the total content of curing agent increases, the pH increases and the
leaching concentration decreases, reaching a solidification efficiency of 99.99%.

(4) The microcharacterization results of solidified soil show that C–S–H, C–A–H, AFt,
and copper-containing compounds, such as Cu(OH)2 and CaCu4(SO4)2(OH)6·3H2O, are
produced by the hydration reaction between soil, the curing agent, and heavy metal ions,
and the speciation of copper ions changes from the exchangeable and the carbonate form
to the iron manganese oxidation and residue form.

In this paper, the applicability of RCP as a Cu2+ curing agent was initially explored.
In future research, it is necessary to continue to study the curing effect and mechanism
of the curing agent on different heavy metal ions in complex contaminated sites, as well
as the long-term stability of solidified soil in a complex natural environment and to carry
out research on the on-site solidification technology of the actual polluted site, to provide
theoretical support for the application of RCP in engineering.
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