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Abstract: Taking the invention patents of the C9 League from 2002 to 2020 as samples, a random
survival forest model is established to predict the dynamic time-point of patent transfer cycle. By
ranking the variables based on importance, it is found that the countries citing, the non-patent
citations and the backward citations have significant impacts on the patent transfer cycle. C-index,
Brier score and integrated Brier score are used to measure the discrimination and calibration ability of
the four different survival models respectively. It is found that the prediction accuracy of the random
survival forest model is higher than that of the Cox proportional risk model, Cox model based on lasso
penalty and random forest model. In addition, the survival function and cumulative risk function
under the random survival forest are adopted to predict and analyze the individual university patent
transfer cycle, which shows that the random survival forest model has good prediction performance
and is able to help universities as well as enterprises to identify the patent transfer opportunities
effectively, thereby shortening the patent transfer cycle and improving the patent transfer efficiency.

Keywords: random survival forest; patent transfer cycle; cox proportional risk model; Cox model
based on lasso penalty; random forest model

1. Introduction

Promoting patent industrialization is a key link to facilitate the close integration of
science and technology with economy. As a main part of the national innovation system,
Chinese universities produce generous patents every year, but the industrialization rate is
low and the transfer cycle is long, resulting in a large number of scientific research resources
that cannot be fully utilized [1]. Due to the temporality of a patent, if effective technology
transfer cannot be carried out within a specific time span, the patent will become invalid,
which can cause a huge waste of scientific and technological resources for universities,
enterprises and the country [2]. For one thing, as the exclusive right of developed tech-
nology, the technology preemption function of patents is essential for the development of
enterprises [3]. Clarifying the time from patents’ application to authorization can prevent
other enterprises from using their patented inventions for commercial purposes, thus
reducing competition among enterprises [4]. For another, the cost of maintaining invention
patents is relatively expensive for universities, so it is also necessary for universities to sell
patents to recover the investment cost of the inventions [5]. Therefore, both universities
and enterprises have strong motivations to realize the patent’s transformation. Clarifying
the fluctuation of patent transfer probability over time can help universities actively seek
potential patent grantees in the market at an appropriate time, and then realize patent
industrialization. Based on the above reasons, establishing a patent transfer cycle prediction
model and analyzing its influencing factors is of great theoretical and practical significance
for both universities and enterprises.

The patent transfer cycle, also known as the patent transfer speed and technology time
distance, is generally defined as the time difference between the patent application and its
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transformation. Wang et al. [6] calculated that the technical age of patents ranged from
0 to 20 years from application to licensing, and the average age for Chinese enterprises
to choose external technologies was 3.04 years. Lee and Lim [7] concluded that 90%
of the patents generated by the Korean public R & D plan could be transferred to the
company within 1.61 years based on quantitative analysis. The above researches are not
directed towards the patent transfer cycle, but involve this problem in part of the research
process, and simply calculate the average time of the patent transfer cycle, granting less
consideration to the fluctuation of the patent transfer probability as time progresses. Based
on the background above, this paper introduces the random survival forest model into
the analysis of an individual university patent transfer cycle, and conducts a dynamic
time-point prediction of the patent transfer cycle through modeling, aiming at providing
suggestions for both universities and enterprises on identifying the opportunity of patent
transformation, thereby shortening the patent transfer cycle and improving the patent
transfer efficiency.

2. Background
2.1. Influential Factors of University Patent Transfer Cycle

University patent transfer is a complex process from technology discovery to industrial
application. The existing research mainly discusses the influencing factors of patent transfer
cycle from the characteristics of patents and the inventor’s team.

Firstly, the successful transformation of a university patent depends on the patent’s
own features. Although universities apply numerous patents, the quality of patents is
varied; the patents with high quality are easier to be transferred in the technology trading
market [8]. Therefore, patent quality is an important factor affecting the patent transfer
cycle. Moreover, due to the territoriality of patent right, patents distributed in different
countries can be protected in multiple markets, which can expand their geographical
protection scope and reduce legal risk of intellectual property in international business
activities for the enterprises [9]; therefore, patents with a larger family size more easily
obtain successful transformation and possess a shorter transfer cycle. The successful
transfer of university patents also depends on the characteristics of the inventor’s team.
Previous studies have shown that the participation of university inventors would accelerate
the commercialization process of patents [10]. Since patent commercialization activity
depends on the social network provided by the inventor, more inventors means more
transfer channels [11], which would shorten the patent transfer cycle as well.

To sum up, the research above has generally confirmed the impact of patent features
and inventor team characteristics on the university patent transfer cycle, and mainly focused
on the factors affecting the university patent transfer cycle and the patent convertibility
prediction, granting less consideration to the dynamic effect of patent transfer cycle over
time. Nevertheless, when specifically analyzing the issue of university patent transfer,
in addition to concern about whether the patent has transferred, the transfer cycle and
opportunity of patent transformation also needed to be involved [12]. Thus, this paper
aims to incorporate the factors affecting the patent transfer cycle into the survival analysis
models based on the existing research, and to predict and evaluate the individual university
patent transfer cycle through the model with the best prediction performance.

2.2. Review on the Analysis Method of University Patent Transfer Cycle

Survival analysis was widely adopted by predecessors in the study of patent trans-
fer cycle. For instance, McCarthy and Ruckman (2017) conducted a survival analysis
of 54,953 biological patents in the United States from application to licensing using Cox
proportional risk model, found that the size of licensors, the number and scope of patent
forward citations would shorten the patent licensing cycle, and proposed that further
research should be carried out on the patent transfer cycle in subsequent studies [13].
Danish et al. (2020) fitted the technology transfer possibility curve through the Cox pro-
portional risk model, and found that the possibility of patent transfer increased first and
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then decreased [14]. These survival analysis methods quantitatively analyze the impact of
explanatory variables on the patent transfer cycle, but they generally rely on the restrictive
assumptions, such as the proportional assumption, and the interaction between covariates
are supposed to be taken into account [15]. In addition, the transfer cycle of an individual
patent has not been analyzed or predicted in the studies above.

As a derivative method of random forest [16], random survival forest, proposed
by Hemant et al. [15], has apparent advantages over other survival analysis methods,
especially in high-dimensional data processing. Considering that the university patent
samples are large, the characteristic indicators are varied, and the patent transfer cycle
does not conform to the normal distribution, which generally contains censored data
(whereas the random survival forest model can process the censored data and is superior
to the traditional survival methods in determining the nonlinear impact of variables and
identifying the interaction of different indicators [15]), random survival forest method is
adopted to establish the patent transfer cycle predicting model and obtain the importance
ranking of each patent indicator variable. Afterwards, the prediction performances of
various survival analysis methods are compared by applying the sample data of university
patent transfer.

3. Research Methods
3.1. Survival Analysis

Survival analysis is a statistical analysis method widely applied in varied fields of
science, which studies the time until an event of interest occurs. The time span from the
starting point to the end point of the event is called survival time.

In survival analysis, survival time is mainly characterized by survival function and
risk function. The survival function is defined as:

S(t) = P(T > t), 0 < t < ∞ (1)

It is expressed as the probability that the survival time T exceeds t, where T is a
non-negative random variable. The risk function is defined as:

λ(t) = lim
h→0+

P(t ≤ T < t + h|T ≥ t)/h (2)

It indicates the instantaneous rate at which the outcome event occurs for the individual
which is still alive at time t, that is, the risk of the individual experiencing the outcome
event at time t. The risk function is defined as: Λ(t) =

∫ 1
0 λ(s)ds, the three functions can be

converted into each other [17].
In this paper, patent application time is taken as the starting event of the survival

analysis and the patent transformation time is taken as the ending event of the survival
analysis, with the time interval between the two being the patent transfer cycle. If a
patent has not transferred at the end of the observation, it would be regarded as a right
censored individual and its transfer cycle would be a right censored data. If the patent has
transferred, its transfer cycle would be a complete data.

Based on the existing representative literatures [18–22], it is considered that the Cox
proportional risk model [23], Cox proportional risk model with penalty [24], random forest
model based on machine learning [25], and random survival forest model [26] are popular
in survival analysis research. In addition, since previous studies have shown that the lasso
method can obtain better prediction results than the forward and the backward stepwise
regression methods [27], the lasso method is adopted to establish a proportional risk model
with penalty in this paper. Therefore, Cox proportional risk model, Cox proportional risk
based on lasso penalty, random forest model and random survival forest are selected to
establish the university patent transfer cycle model, and their predicting accuracy are
compared in an effort to select the model with the optimal prediction performance.
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(1) Cox proportional risk model

Cox proportional risk model is generally adopted to analyze the influencing factors of
individual survival time and to predict the survival or death risk of individuals. Its general
form is:

h(t|z) = h0(t) exp(βT z) (3)

wherein, h0(t) is an unknown benchmark risk function, that is, the risk function when all
covariates are taken as 0 or a benchmark value. Equation (3) shows that the benchmark
function of death events would be expanded by exp{βx} times under the influence of
variable x.

(2) Cox model based on lasso penalty

Lasso method reduces the dimension by punishing the number of regression coeffi-
cients to screen out independent variables with much significance, making the model’s
decision coefficient R2 larger. The Cox model based on lasso penalty is represented by the
minimum of the sum of squares of the residuals plus a penalty function for the regression
coefficient, namely:

min
β

n

∑
i=1

(
yi −

P

∑
j=1

βjxij

)2
, subject to

p

∑
j=1

∣∣∣βj

∣∣∣≤ λ (4)

(3) random forest model

The random forest model has high classification accuracy and generalization ability.
Random forest algorithm first extracts multiple samples from the original training set
samples by means of bootstrap resampling; then, the decision trees are built and combined
for each bootstrap sample, and finally the final prediction result is maintained by voting.

(4) random survival forest model

The random survival forest is applicable to the right censored survival data and
is the derivative of the random forest algorithm. Its tree building rules are similar to
those of the random forest. Firstly, a bootstrap resampling method is adopted to extract
multiple training sample sets from the original samples with or without placement, which
are recorded as Di (i = 1, 2, . . . , B). Then, for each sub sample set Di (i = 1, 2, . . . , B), a
model of patent transfer cycle survival tree is established. In the generation process of
trees, the criterion of maximizing log rank test statistics is applied to split nodes. The
constraint that the number of nodes d0 > 0 is used as the condition for the end of tree
growth. To prevent bias, the tree is not pruned after generation. For a survival tree, set
(T1,h, δ1,h), . . . (Tn(h),h, δn(h),h) is the information about the patent transfer in the leaf node,
where Ti,h represents the length of time for the patent transfer, δi.h is the dummy variable.

When δi,h is taken as 0, Ti,h is the right censored data, which indicates that there is
no transfer of the patent after Ti,h. When δi,h is taken as 1, it suggests that the transfer
occurs at Ti,h. Calculate the cumulative hazard function of each leaf node in the survival
tree as follows:

H(t|xi) =
Λ
Hh(t) = ∑

tl,h≤y

dl,h

Yl,h
, xi ∈ h (5)

where, dl,h represents the number of patents transferred at tl,h, Yl,h represents the number
of patents not transferred before tl,h, tl,h < t2,h < . . . < tN(h),h represent the discrete time
points in leaf node h. Finally, the cumulative hazard function obtained from the random
survival forest is:

He
∗(t|xi) = Hh(t) =

1
B

B

∑
b=1

Hb
∗(t|xi ) (6)
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3.2. Model Evaluation Indicators

Three indicators commonly applied in survival analysis: Brier score, integrated Brier
score and consistency index are adopted to evaluate the prediction ability and goodness of
fit of the models [28].

(1) Consistency index (C-index)

Harrell’s Concordance index (C-index) is applied to measure the global discriminating
ability of the model. C-index is independent on selecting a fixed time node to evaluate
the model, and particularly takes the situation of individual censored into account. The
C-index is defined as follows:

CI =
∑i,j∈Ω I

{
Λ
Ti <

Λ
Tj

}
+ 0.5I

{
Λ
Ti =

Λ
Tj

}
|Ω| (7)

where I is an indicative function, Ω represents the set of (i, j) (valid pair) legal individuals

meeting specific conditions,
Λ
Ti,

Λ
Tj and Ti, Tj represent the predicted and actual survival

times of individuals i and j, respectively. The prediction error rate of a C-index is generally
between 0.5 and 1. A C-index from 0.5 to 0.7 is classified as having low accuracy, 0.7 to 0.9
as having moderate accuracy, and 0.9 to 1.0 as having high accuracy [29].

(2) Brier score and integrated Brier score

In the survival analysis, Brier score (BS) is defined as the mean square of the difference
between the observed survival condition and the predicted survival condition. It is an
indicator which represents the accuracy of model prediction. Brier score is able to evaluate
the model error across multiple time points, and it can be calculated by the individual
survival time t, truncated variable δ and sample size N:

BS(t) =
1
N

N

i=1
{[0− S(t|x)]2 I(ti ≤ t, δi = 1)

G(ti|x)
+ [1− S(t|x)] 2 I(ti > t)

G(t|x) (8)

Integrated Brier score (IBS) is the overall measurement of Brier score, which is obtained
from the time integration of the Brier score:

IBS =
max(t)

0 BS(t)dt (9)

Brier score ranges from 0 to 1, where 0 is the best possible value of an applicable
model and 0.25 is the highest possible value of an informative model [30]. The smaller the
Brier score and integrated Brier score is, the higher the prediction accuracy of the model
would be.

4. Data Preprocessing
4.1. Data Source and Indicator System Construction

This paper selects 79,393 invention patents applied for by the C9 League from 2002 to
2020 as research samples. The research observation period is from the patent application
time to 1 August 2022. The patent data were obtained from the INCOPAT scientific and
technological innovation information platform. The C9 League refers to the nine Chinese
first class universities that have signed the Cooperation and Exchange Agreement on
Talent Cultivation, including Tsinghua University, Peking University, Zhejiang University,
Shanghai Jiao Tong University, Fudan University, Nanjing University, University of Science
and Technology of China, Harbin Institute of Technology, and Xi’an Jiaotong University.
As a representative of Chinese top universities and an important force of national scientific
research output, the scientific research and patent output of the C9 League are of great
significance for the technological strength and innovation development of the regions and
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the country [31]. Consequently, the invention patent application data of the C9 League is
taken as the sample to build the university patent transfer cycle model in this paper.

In terms of the indicators’ selection of patent transfer cycle, based on the previous
research [32,33], 12 specific indicators are selected from three aspects of the patent, which
include technology dimension, legal dimension and market dimension, as shown in Table 1.

Table 1. Variables in predictive model.

Dimension Indicator Symbol Explanation Type

Technical
dimension

Technical width nIPC Classification numbers Numerical
Backward Citation nBWD_citing Number of patents citing Numerical
Forward Citation nFWD_citing Number of patents cited Numerical
Countries citing nBWD_country Number of countries citing Numerical
Countries cited nFWD_country Number of countries cited Numerical

Non-patent citations nNPL Number of non-patent citations Numerical
Inventors nInventor Number of inventors Numerical

Legal dimension Claims nClaim Number of claims Numerical
Litigation Litigation Whether the patent has been sued Nominal

Market dimension

Family size Family_size Number of patents in the same family Numerical
Family country nFamily_country Number of countries in the same family Numerical

PCT application PCT Whether the patent is submitted
through Patent Cooperation Treaty Nominal

4.2. Software Realization

During the 20-year observation period, few university patents have been transferred
and many more of them have not been transferred. Due to the imbalance of the binary
classification outcome variables in the training set, that is, whether the patent has been
transferred, it will be difficult for the model to grasp the characteristics of sample indicators,
thus reducing the efficiency and prediction accuracy of the model [34]. In order to meet
the settings and improve the calculation efficiency of the model, this study applies the
SMOTE algorithm proposed by Chawla [35] to solve the problem of unbalanced outcome
variables, which is implemented using the smotefamily package of R. Cross validation is
implemented using the CoxBoost package of R.

The establishment and evaluation of survival models are realized by R 4.0.1, among
which the survival package is applied to establish Cox proportional risk model, glmnet
package is applied to establish Cox model based on lasso penalty, ranger package is applied
to establish random forest model, randomForestSRC package is applied to establish random
forest model, and pec package is applied to compare the models above.

5. Results and Analysis
5.1. Importance of Variables

Since cross validation can be adopted to reduce the deviation and variability of esti-
mation performance, which is caused by the single test set and training set splitting, and
ensure that the results obtained do not depend on the random splitting of the selected
data [36], this paper compares the prediction error under each parameter selection through
5-fold cross validation. According to the calculation, the number of variables selected at
each decision tree node of the random survival forest is 4, the number of variables selected
when the node split is 10, there are 200 trees in the forest, and each survival tree has
15 terminal nodes on average. Furthermore, the importance of variables (VIMP), which is
defined as the difference between the prediction errors with and without noise, is sorted by
calculating the OOB (out-of-bag) error rate. Lager VIMP values indicate variables with high
predictive ability, whereas zero or negative values identify non-predictive variables [37].
Calculate the 12 predictive variables under the importance measurement, which is shown
in Figure 1.



Sustainability 2023, 15, 218 7 of 13

Sustainability 2023, 14, x FOR PEER REVIEW 7 of 14 
 

package is applied to establish Cox model based on lasso penalty, ranger package is ap-

plied to establish random forest model, randomForestSRC package is applied to establish 

random forest model, and pec package is applied to compare the models above. 

5. Results and Analysis 

5.1. Importance of Variables 

Since cross validation can be adopted to reduce the deviation and variability of esti-

mation performance, which is caused by the single test set and training set splitting, and 

ensure that the results obtained do not depend on the random splitting of the selected 

data [36], this paper compares the prediction error under each parameter selection 

through 5-fold cross validation. According to the calculation, the number of variables se-

lected at each decision tree node of the random survival forest is 4, the number of variables 

selected when the node split is 10, there are 200 trees in the forest, and each survival tree 

has 15 terminal nodes on average. Furthermore, the importance of variables (VIMP), 

which is defined as the difference between the prediction errors with and without noise, 

is sorted by calculating the OOB (out-of-bag) error rate. Lager VIMP values indicate vari-

ables with high predictive ability, whereas zero or negative values identify non-predictive 

variables [37]. Calculate the 12 predictive variables under the importance measurement, 

which is shown in Figure 1. 

 

Figure 1. Result of random survival forests. 

It can be observed from Figure 1 that the number of countries citing, non-patent cita-

tions and backward citations are the three major predictive factors of the patent transfer 

cycle, which have significant impacts on the prediction results. The number of inventors, 

technical width, number of claims, number of countries cited, forward citations, and fam-

ily size are the moderate predictors of patent transfer cycle. Whether the patent is submit-

ted through Patent Cooperation Treaty or whether it has experienced litigation are unim-

portant predictors, which have little impact on the patent transfer cycle. In order to make 

full use of the effective information, all variables are taken into the random survival model 

to predict the results. 

Figure 2 shows the overall survival function of the OOB (out-of-bag) patent data, 

which are generated in the bootstrap process after data preprocessing and test-train data 

set splitting. The red curve in Figure 2 represents the overall survival rates of the patents, 

and the green curve represents the Nelson–Aalen estimator, that is, the cumulative inci-

dence of patent transformation calculated by the cumulative risk function, which merely 

Figure 1. Result of random survival forests.

It can be observed from Figure 1 that the number of countries citing, non-patent
citations and backward citations are the three major predictive factors of the patent transfer
cycle, which have significant impacts on the prediction results. The number of inventors,
technical width, number of claims, number of countries cited, forward citations, and family
size are the moderate predictors of patent transfer cycle. Whether the patent is submitted
through Patent Cooperation Treaty or whether it has experienced litigation are unimportant
predictors, which have little impact on the patent transfer cycle. In order to make full use of
the effective information, all variables are taken into the random survival model to predict
the results.

Figure 2 shows the overall survival function of the OOB (out-of-bag) patent data,
which are generated in the bootstrap process after data preprocessing and test-train data set
splitting. The red curve in Figure 2 represents the overall survival rates of the patents, and
the green curve represents the Nelson–Aalen estimator, that is, the cumulative incidence of
patent transformation calculated by the cumulative risk function, which merely includes the
data of patents transferred in the observation period. All the individual university patents
in the sample can be predicted through random survival forest, the survival function,
cumulative risk function and risk function.
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5.2. Model Prediction Comparison

C-index, Brier score and integrated Brier score are applied to evaluate the prediction
performance of random survival forest model, Cox proportional risk model, Cox model
based on lasso penalty and random forest model. The prediction performance of four
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models was averaged in the 5-fold cross validation and repeated 100 times. The original
data set was randomly divided into training set and test set according to the ratio of 7:3,
and C-index is calculated on the train set and test set, respectively. The results are obtained
by repeating 100 tests, as shown in Figure 3.
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It can be observed from Figure 3 that the C-index of the random survival forest model
on the train set has reached medium accuracy, and the median (0.7075) is larger than that
of the random forest model (0.6953), Cox model based on lasso penalty (0.6833) and Cox
proportional risk model (0.6835). On the test set, the prediction performance of the random
survival forest model is also superior, the median of C-index is 0.7016, higher than that of
the random forest model (0.6934), the Cox model based on lasso penalty (0.6838), and the
Cox proportional risk model (0.6831).

In order to calculate the Brier scores of the four models, 100 times bootstrap resamples
were performed on the original samples. Each bootstrap sample was trained on the data in
the bag, the data outside the bag was applied to calculate Brier scores, and finally, obtained
the average value of 100 times test. Since the expiry date for an invention patent right
is 20 years in China, which means that the maximum time for the patent to transfer is
20 years, that is, 240 months, the time for Brier score calculation is set as 0 to 240. As is
shown in Figure 4, the Brier scores of random survival forest model are smaller at most
time points than those of the random forest model, the Cox model based on lasso penalty,
and the Cox proportional risk model; therefore, the prediction performance of the random
survival forest is optimal among the four models.
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In addition, the integrated Brier score is used to summarize the prediction error in the
test set, which is shown in Table 2. The integrated Brier score of random survival forest is
the lowest among the four models, which indicates the best prediction performance.
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Table 2. Integrated Brier score of 4 models.

rfsrc Ranger Lasso-Cox Cox

IBS 0.0828 0.0863 0.1053 0.1052

5.3. Case Analysis

To illustrate the predictability of random survival forests in the issue of patent transfer
cycle, two representative patent samples applied by Tsinghua University and Zhejiang
University are selected for prediction and analysis, which have a large number of patent
applications among the C9 League, with the patent applications both exceeding 20% of the
research sample.

The patent CN105549647B, which discloses a mobile piglet traction local culture envi-
ronment monitoring system, was applied for on 15 December 2015 by Zhejiang University
and transferred to Hefei Shenmu Information Technology Co., Ltd. (Hefei, China) on
3 December 2021, with a lifetime of about 72 months. Put the individual patent data into
the trained random survival forest model, and calculate its survival function as well as
cumulative risk function through its feature indicators, as shown in Figure 5. From the
survival curve in Figure 5, it can be observed that the survival rate of the patent drops
sharply after about 70 months after its application, which indicates that the probability
of patent transfer increases acutely at this point in time. Additionally, the cumulative
risk function of the patent also rises abruptly at around 70 months after its application,
indicating that the probability of the patent being transferred during this period is quite
high. This prediction result is consistent with the fact that the patent is transferred at about
72 months after application.
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Figure 5. Survival function (A) and cumulative risk function (B) of patent CN105549647B.

Patent CN100386728C is a planned type of medical treatment instrument, which was
applied on 24 March 2006 by Tsinghua University and transferred to Beijing Pinchi Medical
Equipment Co., Ltd. (Beijing, China) on 26 October 2016, with a survival time of about
127 months. Put the individual patent data into the trained random survival forest model,
and calculate its survival function as well as cumulative risk function through its feature
indicators, as shown in Figure 6. It can be seen from Figure 6 that the probability of the
patent being transferred at about 120 months after the application is less than 50%, which is
due to the steep decline of the patent’s survival curve and the steep rise of the cumulative
risk function at about 120 months after the application, indicating that the probability of the
patent being transferred during this period is fairly high, and this prediction outcome is in
accord with the fact that the patent is transferred at sbout 127 months after its application.
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To sum up, the survival function and cumulative risk function can be calculated
according to the characteristic index of the patent, so as to judge the probability of the
patent transfer at different time nodes.

6. Discussion

Clarifying the fluctuation of patent transfer probability over time can lead universities
to seek potential patent grantees in the market at an appropriate time, and then realize
patent industrialization effectively, facilitating the close integration of science and technol-
ogy with economy. Considering that the existing relevant research was mainly focused on
studying the factors affecting patent transfer cycle, less consideration has been given to the
change of the probability of patent transfer over time. In addition, the dynamic period of
patent transfer has not been predicted. Based on this background, time-to-event outcomes
can provide more information than simply whether or not an event occurred. In order
to deal with these outcomes, as well as censored observations where the event was not
observed during follow-up, survival analysis methods are adopted in this research.

In an effort to select the model with the optimal prediction performance in university
patent transfer cycle, Cox proportional risk model, Cox model based on lasso penalty,
random forest model and random survival forest model are compared in predicting perfor-
mance when applying the sample data of university patent transfer cycle. It shows that the
prediction performance of the random survival forest is optimal among the four survival
models, which can provide suggestions for both universities and enterprises on identifying
the opportunity of patent transformation, thereby shortening the patent transfer cycle and
improving the patent transfer efficiency.

However, there are also some limitations in this study: Firstly, patents in different
technical fields may have different patterns in their transfer cycles; all kinds of university
invention patent data are used for modeling as an integration in this paper, which can
ensure the robustness of the model to some extent, but the prediction accuracy of an
individual patent might be reduced. Secondly, this study simply takes the patent applied
by C9 League for the model establishment as research samples, whereas the types and
levels of different university patents are varied. Therefore, considering the finiteness of the
sample types in this research, the scope of model application may have some limitations.
In view of these deficiencies, further research is supposed to be performed in future work.

7. Conclusions and Suggestions
7.1. Conclusions

In this paper, the invention patent data of C9 League are taken as the research sample,
and 12 specific variables are selected from the technical dimension, legal dimension and
market dimension of the patents, respectively. Additionally, random survival forest model
is introduced into the study of university patent transfer cycle and its performance is
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compared with that of the Cox proportional risk model, Cox model based on lasso penalty
and random forest model. The conclusions are drawn as follows:

(1) The VIMP is calculated to obtain the importance ranking of each variable. It is
concluded that the three indicators which affect the university patent transfer cycle
most are the number of countries citing, non-patent citations and backward citations.
The three indicators reflect the subsequent improvements of current patents made
based on existing patents, and are essential for the evaluation of patent transfer cycle.
The number of inventors, technical width, claims, family country, forward citation,
countries cited and family size are indicators that also are related to the university
patent transfer cycle, and have a certain effect on the prediction results of the model.
Whether the patent is submitted through Patent Cooperation Treaty or whether it has
experienced litigation events has little impact on its transfer cycle.

(2) The prediction result based on the test set of data illustrates that the prediction perfor-
mance of the random survival forest model is superior to that of Cox proportional risk
model, Cox model based on lasso penalty and random forest model by calculating and
comparing the model evaluation indicators, which include C-index, Brier score and
integrated Brier score. Moreover, the survival function and cumulative risk function
that are generated through the random survival forest model provide the dynamic
time-point prediction of an individual university patent transfer cycle, which indicates
the validity of the random survival forest model.

7.2. Suggestions

Based on the conclusions above, the following suggestions are proposed to improve
the transformation efficiency of university patent:

(1) It is necessary for universities to make subsequent improvements for current patents
based on the existing patents, to strengthen the scientific research teams construction
and enhance patent layout for core technologies.

Besides satisfying the modeling requirements, obtaining the variable importance of
university patent transfer cycle indicators also provides reasonable guidance for patent
application and maintenance. More specifically, university patent applicants need to
increase the number of countries citing, non-patent citations and the backward citations to
reinforce the technological innovation features for the patent. Moreover, the patent layout is
supposed to be well conducted based on the core technology to form a certain technological
advantage through patent applications from the same family, laying a foundation for
increasing the patent forward citations afterwards. It is also essential for universities to
expand the scale of scientific research teams to improve the knowledge and technology
intersections of technical innovation personnel, thus enhancing the technology complexity
and market competitiveness of the patents.

(2) Universities are supposed to strengthen the contact with enterprises to promote the
scientific and technological cooperation between them, seizing the advantageous
opportunity to promote patent transformation.

Random survival forest model can help universities and enterprises to identify the
advantageous opportunity of patent transfer effectively. According to the survival func-
tion and cumulative risk function predicted by random survival forest model, when the
probability of patent transfer is high, it is necessary for universities to increase exchanges
with enterprises to promote patent industrialization by seeking potential patent grantees in
the market through the patent technology transfer platform, technology product exchange
meetings and intermediary institutions for science and technology transformation. Mean-
while, enterprises can introduce patent technology at an appropriate time as well, thereby
achieving technology preoccupation prior to their competitors and improving the market
competitiveness of their products and services. Furthermore, patents with low transfer
probability and long period can also be identified by the random survival forest model and
could be considered to be abandoned in time to reduce the patent maintenance costs.
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