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Abstract: The current investigation evaluated the discharge coefficient of a combined compound
rectangular broad-crested-weir (BCW) gate (Cdt) using the computational fluid dynamics (CFD)
modeling approach and soft computing models. First, CFD was applied to the experimental data
and 61 compound BCW gates were numerically simulated by resolving the Reynolds-averaged
Navier–Stokes equations and stress turbulence models. Then, six data-driven procedures, including
M5P tree, random forest (RF), support vector machine (SVM), Gaussian process (GP), multimode
ANN and multilinear regression (MLR) were used for estimating the coefficient of discharge (Cdt) of
the weir gates. The results showed the superlative accuracy of the SVM model compared to M5P,
RF, GP and MLR in predicting the discharge coefficient. The sensitivity investigation revealed the
h1/H as the most effective parameter in predicting the Cdt, followed by the d/p, b/B0, B/B0 and
z/p. The multimode ANN model reduced the root mean square error (RMSE) of M5P, RF, GP, SVM
and MLR by 37, 13, 6.9, 6.5 and 32%, respectively. The graphical inspection indicated the multimode
ANN model as the most suitable for predicting the Cdt of a BCW gate with minimum RMSE and
maximum correlation.

Keywords: combined weir gate; compound broad-crested weir; CFD simulation; soft computing
based models; discharge coefficient

1. Introduction

Hydrometry, which is the knowledge of assessing volumetric or hefty flow under
pressure in open canals, is important for managing water resources. Various methods
have been employed to measure flow in open channels, including pressure differences,
hydraulic structures (flumes and weirs), velocity-area and tracer dilution [1–3]. Among
these, gates and weirs are most widely used for flow measurement and discharge control
in open canals [4,5]. The shape of the critical section and the upstream potential energy are
the most effective parameters to determine the flow discharge in the crucial section (Dayev
et al., 2021; Alkhatib and Gogus, 2014) [6,7]. Broad-crested weirs (BCW) can be used as dam
channels and often as a dam. The BCW is a specially shaped weir (weir with a broad crest)
designed to fit complex channel cross-sections [8]. The control section can also be shaped
according to the range of variation of the discharge and head. Furthermore, the BCW,
especially when the upstream side is inclined, can easily transmit the floating elements
and sediment better than the sharp-crested weir [7]. Various investigations conducted
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on broad-crested weirs reported that the combined weir gate could adjust the upstream
water level, flow control, and discharge measurement to meet agricultural needs [9–13].
According to Sakaruya and Kokpinar [14], the topmost benefit of a combined weir gate is
the minimization and prevention of upstream sediment accumulation, which enhances the
structure’s efficiency.

Several studies have been conducted to investigate the combined sharp-crested weir
and gate [14–18]. Negm et al. [15] studied unrestricted flow over sharp-crested weirs and
underneath gates. They investigated the effect of the geometrical and hydraulic parameters
on the structures and reported that the rate of upstream water depth to gate opening (H/d)
had major effects on the discharge. Ferro [19] presented discharge equations for a simple
broad-crested-weir gate using incomplete self-similarity theory and dimensional analysis.
Alhamid [16] investigated various combinations of weir-like gate proportions for both
unrestricted and inundated flow and developed a discharge Equation considering the
effective parameters.

Soft computing approaches such as artificial intelligence (AI)-based models and multi-
variate analysis are widely employed in hydrology nowadays for decision-making [20–29].
The AI models have helped in the reduction in operation costs and time for decision-making
rather than assessment through experimentation [30,31]. These techniques efficiently use
the parameters and their backgrounds for problem estimation instead of merely resolving
the prime equations [32,33]. Therefore, they can be used directly for resolving problems
despite the many parameters and their interactions which create ambiguity and complexity
in finding the solutions [25]. Discharge coefficient prediction using AI models has been
successfully tested for triangular-labyrinth side weirs [34–39], semi-elliptical side weirs [40],
trapezoidal-labyrinth side weirs [41–46], rectangular side weirs [47–53], and other types
of weirs and gates [54–59]. However, the literature suggests that despite several existing
acceptable techniques for estimating the discharge coefficient of hydraulic structures, the
flow passing over a rectangular compound broad-crested-weir gate has not been considered
using these techniques.

The main purpose of the present study was to develop new simple methods to predict
this combined structure discharge coefficient (Cdt). The validated computational fluid
dynamics (CFD) model was used to achieve this goal for a combined structure. This study
proposed random forest (RF), M5P, support vector machine (SVM), genetic programming
(GP), multilinear regression (MLR) and multimode artificial neural networks (ANN) to
predict the Cdt in the compound BCW gate. All the effective parameters were changed
to make different combinations of this structure. The BCW gate can be used as a flood
control reservoir and a measuring device for minimizing the sediments and preventing
their accumulation. An accurate prediction of the Cdt in the compound BCW gate could
significantly improve its operational management and, thus, water resources management.

2. Theoretical Background

Figure 1a shows a rectangular, compound broad-crested weir. According to the
upstream hydraulic head, there can be two cases. First, if the passage of the outlet discharge
is only through the central weir (h1 < Z) (Figure 1b), the broad-crested weir performs like a
basic weir, and there will be no flow over the compound section.

In this case, the critical depth (yc) will be lower than the central weir height (Z) and
weir discharge (Qw) though the broad-crested weir can be as follows [60,61];

Qw =
2
3

CdwCvB(
2
3

g)
1/2

h1
3/2 (1)

where
Cdw =

3
2

Q

B( 2
3 g)1/2H3/2

1

(2)



Sustainability 2023, 15, 433 3 of 19

Cv = (
H1

h1
)

3/2
(3)

where Cdw denotes the weir discharge coefficient, Cv denotes the weir velocity coefficient.
Furthermore, h1, g, B and H1 are the water height above the central weir, acceleration
gravity, central weir width and head overall energy at the weir head assessment section,
respectively.
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Figure 1. (a) Definition sketch of compound BCW: (b,c) two diverse flow cases through the compound
BCW segment.

In another case, the water height above the central weir (h1) surpasses the central weir
height (Z), and the weir acts as a compound weir (Figure 1c). Furthermore, the critical flow
depth (yc) will be greater than the central weir height (Z). In this case, the BCW discharge
(Qw) is obtained by Equation (4) [5,61]:

Qw = CdwCv(
g

B0
)

1/2
[

BZ + B0

(
2
3

h1 −
BZ
3B0

− 2Z
3

)]3/2
(4)

Cdw =
Qw

( g
B0
)

1/2
[

BZ + B0(
2
3 H1 − BZ

3B0
− 2Z

3 )
]3/2 (5)

Cv =

[
BZ + B0(

2
3 H1 − BZ

3B0
− 2Z

3 )

BZ + B0(
2
3 h1 − BZ

3B0
− 2Z

3 )

]3/2

(6)

Similarly, the Equation of discharge pertaining to gates (Qg) can be obtained by
utilizing the Equation of energy, as below [62]:

Qg = cdgdb
√

2gH (7)
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where Cdg is the gate discharge coefficient and d, b and H are the gate opening height, gate
breadth and level of upstream water, respectively. The investigation of the compound BCW
and gate collectively for the two mentioned cases of compound BCW are elaborated below.

2.1. Case 1

As mentioned above, when the passage of outlet discharge is only via the central
weir, the complex BCW performs as a basic weir. Thus, the combined structure (Figure 2b)
discharge (Qt) is the sum of Equation (1) and Equation (7) and can be written as Equation (8).
The discharge coefficient for the combined compound BCW gate (Cdt) can be presented by
Equation (9):

Qt = Qw + Qg (8)

Cdt =
Qt

2
3 CvB( 2

3 g)1/2h3/2
1 + db

√
2gH

(9)
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Figure 2. (a) Sketch for simultaneous flow over compound BCW and below gate: (b,c) are two diverse
flow cases through the combined compound BCW gate.

2.2. Case 2

When the passage of outlet discharge is through the compound section, the complex
BCW can pass more water. Therefore, the discharge Equation is different. In this case, the
discharge related to the compound BCW gate (Qt) (Figure 2c) is the sum of Equation (4)
and Equation (7):

Qt = Qw + Qg (10)

Cdt =
Qt

Cv(
g

B0
)

1/2
[

BZ + B0(
2
3 h1 − BZ

3B0
− 2Z

3 )
]3/2

+ db
√

2gH
(11)

2.3. Governing Equations and Numerical Method

A three-dimensional CFD code was used to simulate a combined BCW–gate. The
FLOW 3D code uses the finite volume scheme to resolve Reynolds-averaged Navier–Stokes
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(RANS) [63]. The Navier–Stokes equations are known as the equations of motion in fluid
velocity mechanisms (u, v, w) in the three synchronous directions with some additional
terms:

∂u
∂t +

1
VF

{
uAx

∂u
∂x + vAyR ∂u

∂y + wAz
∂u
∂z

}
− ζ

Ayv2

xVF
= − 1

ρ
∂p
∂x + Gx + fx − bx − RSOR

ρVF
(u − uw − δus)

∂v
∂t +

1
VF

{
uAx

∂v
∂x + vAyR ∂v

∂y + wAz
∂v
∂z

}
− ζ

Ayuv
xVF

= − 1
ρ (R ∂p

∂y ) + Gy + fy − by − RSOR
ρVF

(v − vw − δvs)

∂w
∂t + 1

VF

{
uAx

∂w
∂x + vAyR ∂w

∂y + wAz
∂w
∂z

}
= − 1

ρ
∂p
∂z + Gz + fz − bz − RSOR

ρVF
(w − ww − δws)

(12)

where Gx-z, fx-z and bx-z denote body accelerations, viscous accelerations and flow losses in
porous media, respectively. Furthermore, Ax, Ay and Az refer to the cross-sectional extent
of the flow; ρ denotes the density of water, indicates the fractional volume open to flow in
fractional area/volume obstacle representation (FAVOR), RSOR denotes the source term, p
denotes the pressure, and the concluding terms constitute the inclusion of mass at a source
signified by a geometry component. The term Uw = (uw, uw, ww) is the velocity of the
source component, and the term Us = (us, vs, ws) is the velocity at the surface of the source
relative to the source itself. R in Equation (12) is the coefficient that depends on the choice
of coordination system.

The volume of fluid (VOF) and FAVOR are the volume-fraction techniques employed
for the condition of the depicting cell in the water surface and determination of the geometry,
respectively [64]. Using this method, the CFD code enables us to ignore the surrounding
air and its effect on the flowing water and create a sharp boundary between the air and
water without the existence of fine interlocks [65–67]:

∂F
∂t

+
1
v f

[
∂

∂x
(FAXu) +

∂

∂y
(FAyv) +

∂

∂y
(FAzw)

]
(13)

Hirt and Sicilian [68] formulated the FAVOR method which is used to ascertain the
level of the solid body inside an individual cell. In addition, this method can also determine
the volume of cells unoccupied by a solid body. The CFD code used presents six turbulence
models, including k−w, k−ε, RNG (the design is devised on Re normalization groups with
the Equation of stress), one Equation model, large-eddy simulation (LES) and the Prandtl
mixing-length model [69].

3. Methods

The current investigation aimed to simulate a combined compound rectangular broad-
crested-weir gate using FLOW-3D software. In order to do this, validation of numerical
code was carried out using experimental results. The literature review indicated that the
compound BCW-gate structure has not been studied before. Therefore, the experimental
results of a single compound broad-crested weir by Salmasi et al., [12] were used for the
calibration of CFD code. Salmasi et al. [12] experimentally studied a single broad-crested
weir and estimated its properties, as given in Table 1. To achieve the actual BCW, an
attempt was made to deduce the relationship 0.1 < h1/L ≤ 0.35 (where h1 and L refer to the
hydraulic head on the weir’s central section and the compound weir’s length, respectively)
to establish the physical and arithmetic design [70]. The flow separation was decreased by
rounding with a radius of 0.065 m at the weir entrance to develop physical and numerical
models of the weir [5]. Figure 3 shows the geometry of the experimental study conducted
by Salmasi et al., [12].

Table 1. Variables and their range used in the study of Salmasi et al., [12].

Parameters L (cm) B0 (cm) B (cm) p (cm) Z (cm)

Range of
variables 40 25 6, 8 and 12 10, 13 and 16 9
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To select a turbulence model with high accuracy based on the experimental results,
the K–ω and RNG models’ outcomes were compared with those of the experimental
measurements. Then, the most accurate model was used for the study. Instantaneous
Navier–Stokes equations employing renormalization group theory were used to extract the
RNG model [71]. For dissipation of the turbulent kinetic energy, the RNG two equations
model uses an additional term in the transport equations [72]. The RNG equations appear
as follows:

∂

∂t
(ρk) +

∂

∂xi
(ρkui) =

∂

∂xj

[
αkµe f f

∂k
∂xj

]
+ Gk + Gb − ρε − YM + Sk (14)

∂

∂t
(ρε) +

∂

∂xi
(ρεui) =

∂

∂xj

[
αεµe f f

∂ε

∂xj

]
+ C1ε

ε

k
(Gk + C3εGb)− C2ερ

ε2

k
− Rε + Sε (15)

where K denotes kinetic energy, ε stands for rate of kinetic energy dissipation, µe f f denotes
effective viscosity, GK and Gb stand for the generation of turbulent kinetic energy arising
because of average velocity gradients and buoyancy, separately, YM is the fluctuating
dilation in compressible turbulence, Sε and SK are the source terms set by the user, αk and
αε are inverse effective Prandtl numbers for the turbulent kinetic energy and its dissipation,
and c1ε, c2ε and c3ε are constants. Furthermore, the Rε refers to the main difference between
the numerical models used.

CFD code uses the standard k–w model. This empirical-based model was presented
by Wilcox [73]. Because of its formulation, it is used for better computation of shear flow
spreading the low Reynolds number’s effect and compressibility. Furthermore, transport
equations are used in the k–w model for estimating turbulent kinetic energy (k) and its
dissipation rate (w).

∂

∂t
(ρk) +

∂

∂xi
(ρkui) =

∂

∂xi

[(
µ +

µt

σk

)
∂k
∂xj

]
+ Gk − Yk + Sk (16)

∂

∂t
(ρω) +

∂

∂xi
(ρωui) =

∂

∂xj

[(
µ +

µt

σω

)
∂ω

∂xj

]
+ Gω − Yω + Sω (17)

where Gω is generation of ω, Yω is dissipation of ω due to turbulence, Yk is dissipation of k
due to turbulence, σω and σk are the Prandtl number of turbulent (here they are constant;
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equal to 2), Sω is the source term set by the user and µt is viscosity of turbulence. Figure 4
shows the results of RNG and k−w models in estimating Cdw.
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Figure 4. Estimated Cdw using numerical models; (a) Broad crested weir with B/B0 = 0.24, (b)Broad
crested weir with B/B0 = 0.32.

Figure 4 shows that both models provide acceptable results in estimating Cdw and
can be used to simulate a combined compound BCW gate. The root mean square (RMSE)
values were 0.2685 for k-w against 0.3122 for RNG, when the k-w model was used for the
simulation of the combined compound BCW-gate structure by CFD code.

The studied parameters were combined structure width, length and height (B0, L,
P + Z), central weir height and width (Z and B) and gate opening height and width (d
and b). For upstream water level (H), different values were considered and two types of
compound weir performance (simple weir and compound weir (Figure 2) were studied.
Considering the mentioned parameters, the results are presented using dimensionless
parameters. The structure’s total section width (B0), the height of the structure (Z + P) and
combined structure length (L) were considered as 0.25, 0.25 and 0.4, respectively. Table 2
shows the studied dimensionless parameters and values.

Table 2. The studied dimensionless parameters and their values.

Parameters’ Values Dimensionless Parameters

d/P 0.36, 0.43, 0.52, 0.62
b/B0 0.28, 0.4
Z/P 0.31, 0.56
B/Bo 0.24, 0.32, 0.48
h1/H 0.15, 0.2, 0.33, 0.42, 0.45, 0.54
d/P 0.36, 0.43, 0.52, 0.62

Using these parameters, 61 numerical models were simulated using CFD code. For
the arithmetic simulation, a grid of 1,200,000 elements was employed. After altering the
mesh size and selecting the optimal size, the number of elements was selected. Specified
pressure with specified water level and outflow was selected as Xmin and Xmax boundary
conditions. Ymin, Ymax and Zmin were selected as boundary conditions. Furthermore, the
symmetry was the Zmax boundary condition. Figure 5 shows one of the used models and
its boundary conditions.
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Figure 5. Combined compound BCW gate and boundary conditions used; Xmin: P (specified pressure);
Xmax: O (outflow); Ymin, Ymax and Zmin: W (wall); Zmax: S (symmetry).

A constancy criterion such as the Courant number was used for temporal stage
calculation. Both convergence criteria and stability were used to control the time step
during the iterations. Flow kinetic energy monitoring was also used to survey the steady
state condition. After calibration of CFD code with experimental results, k-w model was
used to simulate the combined compound BCW gate. Combined structure discharge
coefficients (Cdt) were generated using the simulation results for the two mentioned cases.
Using the generated Cdt values, six soft computing-based models, including RF, M5P, SVM,
GP, MLP and multimode ANN, were used to predict Cdt. The mentioned dimensionless
parameters were the inputs of the soft computing models.

3.1. Soft Computing Models and Artificial Intelligence Techniques
3.1.1. M5P Model

M5P is a simple tree group technique for solving nonlinear and complex issues. This
novel tree technique was introduced by Quinlan [74] for forecasting complex phenomena
encompassing a huge quantity of datasets and variables. M5 tree is a piecewise simple
model and takes a halfway situation between the linear and nonlinear designs [75]. Pruning
is additionally associated with this technique to avoid overfitting. The separating technique
is used at each node to accomplish higher information with minor deviation inside the
subset down to the individual branch. This design has three significant advances: growth of
tree, trimming and smoothing. Jothiprakash and Kote [76] explored the impact of trimming
and smoothing and reported the favorable circumstances of unpruned and unsmoothed in
hydrological studies. The tree model is created by unravelling the measures responsible for
yielding standard deviation of the range class values to the nodes. In this strategy, linear
connections are created at each node. Generally, it creates an excellent tree structure with a
larger extent of precision.

3.1.2. Random Forest (RF)

RF, pioneered by Breiman [77], is widely used for resolving intricate engineering issues
due to its flexibility. It employs a massive number of trees. The root nodes receive more
diverse bootstrap (known as bagging) samples than the original data set. The assigned
subset of the estimator parameters is unravelled randomly at the individual node. RF is
simple, less training sensitive, yet meticulous in prediction [78]. Only two user-defined
parameters: the number of trees grown (k) and the number of input parameters (m),
are required. The formulation of this method employs a trial and error process. WEKA
3.9 software was used in this study for implementing RF.

3.1.3. Gaussian Process (GP)

GP is a set of random variables in which some variables have a multivariable Gaussian
distribution. The chief objective of GP is to develop systems that can predict variables
based on historical data. The uniqueness of GP lies in its specification through its mean
and covariance function. It can be updated whenever new observational information is
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available [79]. GP depends on probability, which makes estimating input data easier and
provides accuracy for probable variances. The statistical significance of the prediction
is raised broadly by the estimated variances. GP can have vast dimensionality and pro-
duce data using the random domain of subset ranges. Choosing a suitable covariance
function and its parameters is important because the main role of the GP belongs to the
covariance function underlying the geometric structure of the training samples. The hyper-
parameters (mean and covariance functions) must be determined from the data to improve
accuracy [80–82].

3.1.4. Support Vector Machine (SVM)

SVM, a prevailing method in data mining, is a supervised-learning technique for
solving regression and classification problems. It relies on the structural risk minimization
principle [83–85]. SVM has been effectively used for linear and complex problems in
various engineering and medical fields over the last few decades. Inadequate adjustment
of user-defined constraints in SVM may result in overfitting and underfitting. To ascertain
the best fit model, numerous trials were carried out to fix the user-defined parameters.

3.1.5. Multiple Linear Regression (MLR)

MLR employs the least square technique. The following is the Equation of the MLR
model:

R = c0x1
c1 x2

c2 x3
c3 x4

c4 . . . xn
cn (18)

where R stands for dependent variable and x1, x2, . . . , xn stand for independent variables.
MLR was developed in this study using XLSTAT software.

3.1.6. Artificial Neural Networks (ANN)

The main benefit of ANN is its simplicity and ability to approximate any input/output [12].
The significant disadvantage of ANN techniques is that it shows information regarding the
weight matrix that is currently beyond the discerning ability of human beings. In this way,
normally, they are considered black box models. In addition, the ANN approach is aimed
at finding user-defined parameters, such as the number of latent layers and neurons in
latent layers, by trial and error, which is very time-consuming. The detailed theory about
ANN occurs in Haykin [86]. Furthermore, the network is constrained by components, for
example, learning rate, momentum, neuron numbers in layers and the number of hidden
layers. Many trials were performed to find the best-fit model. The ANN was developed
using the WEKA software. Figure 6 depicts the general structure of ANN with input,
middle and output layers.
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4. Application of the Methods

The prediction performance of the models was evaluated using the coefficient of corre-
lation (CC), mean absolute error (MAE), root mean square error (RMSE), Nash–Sutcliffe
model efficiency coefficient (Nash) and scattering index (SI) values, as defined below.

cc =
n∑ cdtobs

cdtpred−(∑ cdtobs
)(∑ cdtpred

)√
n(∑ cdtobs

)2 − (∑ cdtobs
)2
√

n(∑ cdtpred
)2 − (∑ cdtpred

)2
(19)

MAE =
1
n

∣∣∣cdtobs
− cdtpred

∣∣∣ (20)

RMSE =

√
1
N
(

n

∑
i = 1

(cdtobs
− cdtpred

)2) (21)

Nash = 1 −

n
∑

i = 1
(cdtobs

− cdtpred
)2

n
∑

i = 1
(cdtobs

− cdtobs
)2

(22)

SI =
RMSE
cdtobs

(23)

where cdtobs
is observed values, cdtpred

is predicted values, cdtobs
is average observed values

and n is the number of observations. If the values of CC and Nash Sutcliffe model efficiency
are near 1, then the model is the best performing (if CC, Nash = 1, then the model is ideal).
The lower values of MAE, RMSE and SI reflect the model’s suitability for prediction (if
error is zero, then the model is ideal).

A total of 61 observations were used in this study for model development and val-
idation. The models were constructed using 41 observations, whereas the remaining
20 observations were used for the testing. These groups were used for model development
and validation. Table 3 summarizes the descriptive statistics of the training and testing
phases, including maximum, minimum, standard deviation, mean, Kurtosis and skewness.
The input data set consisted of d/p, b/B0, z/p, B/B0 and h1/H whereas the Cdt of the BCW
gate was considered output.

Table 3. Features of the training and testing dataset.

Range
Training Data Set

d/p b/B0 Z/P B/B0 h1/H Cdt

Mean 0.4657 0.3502 0.4722 0.3629 0.3332 0.7945
Median 0.4375 0.4000 0.5625 0.3200 0.3333 0.8051

Standard deviation 0.0996 0.0599 0.1203 0.1045 0.1309 0.0800
Kurtosis −0.9827 −1.9691 −1.7536 −1.7811 −1.2383 −0.1968

Skewness 0.7604 −0.3599 −0.5784 0.0931 0.0572 −0.6304
Minimum 0.3684 0.2800 0.3158 0.2400 0.1579 0.6155
Maximum 0.6250 0.4000 0.5625 0.4800 0.5429 0.9303

Confidence level (95.0%) 0.0314 0.0189 0.0380 0.0330 0.0413 0.0252

Testing Data Set

Mean 0.4809 0.3520 0.4885 0.3600 0.3936 0.8188
Median 0.4375 0.4000 0.5625 0.3200 0.4286 0.8329

Standard deviation 0.1039 0.0603 0.1160 0.1054 0.1251 0.0748
Kurtosis −1.4170 −2.0180 −1.2418 −1.8330 −0.5960 −1.2048

Skewness 0.5357 −0.4421 −0.9453 0.1533 −0.4966 −0.2163
Minimum 0.3684 0.2800 0.3158 0.2400 0.1579 0.6915
Maximum 0.6250 0.4000 0.5625 0.4800 0.5429 0.9235

Confidence level (95.0%) 0.0486 0.0282 0.0543 0.0493 0.0586 0.0350
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5. Results and Discussion

The models were developed with training data and checked for accuracy on testing
data. WeKA 3.9 software was used for this purpose. The optimum values of user-defined
parameters of the models are shown in Table 4.

Table 4. User-defined parameters of M5P, RF, SVM and GP models.

Approaches Kernel Function User-Defined Parameters

M5P m = 4
RF m = 1 & K = 10

SVM RBF kernel C = 2, γ = 1
GP RBF kernel Gaussian noise = 0.01, γ = 1

Figure 7 also depicts their performance during the two stages. The predicted Cdt of
the BCW gate using soft computing approaches are presented against the modeled (real)
values in the figure to show their performance based on the best fit line (y = x).

Table 5 also shows that the SVM model outperformed the other models in predicting
the Cdt with CC of 0.9585, NSE of 0.8562, MAE of 0.0237, RMSE of 0.0276 and SI of
0.0337 during testing. The SVM reduced the RMSE of M5P, RF, GP and MLR by 32, 7.1,
0.4 and 27%, respectively. However, the difference between GP and SVM was minor.
Figure 7 shows that the SVM-estimated Cdt during training and testing was the closest
to the best-fit line relative to other models. It confirmed the better performance of SVM
compared to the other models. The outcomes of single-factor ANOVA presented in Table 6
show insignificant differences between theactual and predicted values for the different
models.

Table 5. Performance of M5P, RF, GP, SVM and MLR models during training and testing.

Approaches
CC MAE RMSE Nash SI

Training Data Set

M5P 0.9550 0.0171 0.1492 0.9121 0.1878
RF 0.9867 0.0106 0.0135 0.9706 0.0170
GP 1.0000 0.0007 0.0009 0.9999 0.0012

SVM 1.0000 0.0003 0.0005 1.0000 0.0007
MLR 0.9465 0.0183 0.0255 0.8959 0.0320

Testing data set

M5P 0.9148 0.0208 0.0408 0.8354 0.0498
RF 0.9187 0.0240 0.0297 0.8339 0.0363
GP 0.9581 0.0239 0.0277 0.8557 0.0338

SVM 0.9585 0.0237 0.0276 0.8562 0.0337
MLR 0.8549 0.0284 0.0380 0.7280 0.0464

Table 6. Outcomes of the single factor ANOVA test.

Sr No. Method F p-Value F Crit
Variation
between
Groups

1 M5P 0.00483 0.944955 4.098172 Insignificant
2 RF 0.017288 0.896086 4.098172 Insignificant
3 GP 0.132998 0.717366 4.098172 Insignificant
4 SVM 0.124141 0.726533 4.098172 Insignificant
5 MLR 0.028042 0.867899 4.098172 Insignificant



Sustainability 2023, 15, 433 12 of 19Sustainability 2022, 14, x FOR PEER REVIEW 13 of 21 
 

   

 

 

Figure 7. Performance of M5P, RF, GP, SVM and MLR models in predicting Cdt of BCW gate during 

model calibration and validation. 

Table 5 also shows that the SVM model outperformed the other models in predicting 

the Cdt with CC of 0.9585, NSE of 0.8562, MAE of 0.0237, RMSE of 0.0276 and SI of 0.0337 

during testing. The SVM reduced the RMSE of M5P, RF, GP and MLR by 32, 7.1, 0.4 and 

27%, respectively. However, the difference between GP and SVM was minor. Figure 7 

shows that the SVM-estimated Cdt during training and testing was the closest to the best-

fit line relative to other models. It confirmed the better performance of SVM compared to 

the other models. The outcomes of single-factor ANOVA presented in Table 6 show insig-

nificant differences between theactual and predicted values for the different models. 

  

Figure 7. Performance of M5P, RF, GP, SVM and MLR models in predicting Cdt of BCW gate during
model calibration and validation.

Table 5 and Figure 7 also show that the GP model’s performance was comparable to
the SVM model and surpassed the M5P, RF and MLR models with a CC of 0.9581, NSE of
0.8557, MAE of 0.0239, RMSE of 0.0277 and SI of 0.0338 at the testing stage. The RF model’s
performance surpassed the M5P and MLR models with a CC of 0.9187, NSE of 0.8339, MAE
of 0.0240, RMSE of 0.0297 and SI of 0.0363 at the testing stage. The least-square technique
was used for developing the MLR equation. The final form of the MLR model is listed in
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Equation (24). The performance of the MLR model was the worst of all the models with the
lowest CC (0.8549) and NSE (0.7280), and the highest MAE (0.0284), RMSE (0.0380) and SI
(0.0464).

cdt = 0.79(
d
p
)
−0.28

(
b

B0
)
−0.05

(
z
p
)

0.04
(

B
B0

)
0.02

(
h1

H
)

0.18
(24)

5.1. Sensitivity Investigation

A sensitivity study was carried out to ascertain the effect of the independent variable
on the dependent variable. This is very important in preparing AI models since they
are more sensitive to inputs than empirical methods. Therefore, finding the influencing
input variables in developing AI models is highly significant. Many methods have been
employed for sensitivity studies. In this investigation, the best-performing model (SVM)
was selected for the sensitivity study by eliminating one input parameter from the input
combination each time. The performance assessed in the absence of one of the inputs of
each model is shown in Table 7. The results suggest that h1/H is the most influencing
parameter in predicting the Cdt of BCW gate, followed by d/p, b/B0, B/B0 and z/p.

Table 7. Results of sensitivity investigation using SVM.

Input Combination Removed
Parameter Statistical Parameters (Testing Data Set)

d/p b/B0 z/p B/B0 h1/H CC MAE RMSE

None 0.9585 0.0237 0.0276

d/p 0.6472 0.0456 0.0580

b/B0 0.8553 0.0292 0.0381

z/p 0.9449 0.0212 0.0264

B/B0 0.9006 0.0254 0.0330

h1/H 0.3575 0.0671 0.0743

5.2. Results of Multimode ANN Model

A new multimode ANN model was developed using RF, M5P, GP, SVM, and MLR
predicted values. In this novel model, the RF, M5P, GP, SVM and MLR predicted values
were used as inputs and the Cdt values were the output. The multimode ANN model
was developed using a hit-and-miss process. Figure 8 indicates the structure of the novel
multimode model in which five neurons in the input layer and four neurons in the latent
layer were selected for predicting Cdt of BCW gate.
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Figure 9 shows the observed and estimated Cdt using novel multimode ANN models
during the training and testing stages. The novel multimode ANN estimated Cdt with
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CC = 0.9998 and 0.9618, RMSE of 0.0016 and 0.0258, MAE of 0.0013 and 0.0217, NSE as
0.9996 and 0.8746 and SI of 0.0020 and 0.0315 during training and testing, respectively.
Overall, the performance of the novel multimode ANN was better than the RF, M5P, GP,
SVM and MLR models in predicting Cdt of BCW gate. Comparison with Table 5 revealed
that the novel multimode ANN reduced the RMSE of M5P, RF, GP, SVM and MLR by 37,
13, 6.9, 6.5 and 32%, respectively.

Sustainability 2022, 14, x FOR PEER REVIEW 16 of 21 
 

 

Figure 9. Agreement plot of multimode ANN prediction with observed Cdt of BCW gate during 

training and testing. 

The entire error distribution was plotted using a box plot to evaluate the outcomes 

(Figure 10). The positive and negative error values indicated the under- and over-predic-

tion tendencies of the models. Table 8 lists the distribution of the overall error. The mini-

mum errors, first quartile, median, third quartile and maximum error are also provided 

in Table 8 and plotted in Figure 10 for all implemented models. The lower quartile value 

in the multimode ANN model was −0.0118, which was lower than the other considered 

models. Figure 10 and Table 8 indicated that the maximum and minimum errors predicted 

by the multimode ANN model were −0.0400 and 0.0470, respectively, which verify the 

capability of this model in predicting the Cdt of a BCW gate. 

Table 8. The statistics of the error distribution of the implemented models during testing. 

Statistic M5P RF GP SVM MLR Novel Multimode ANN 

Minimum −0.0460 −0.0470 −0.0420 −0.0420 −0.0468 −0.0400 

Maximum 0.0960 0.0750 0.0500 0.0510 0.1130 0.0470 

First Quartile −0.0170 −0.0295 −0.0140 −0.0140 −0.0242 −0.0118 

Median −0.0005 −0.0045 0.0110 0.0095 0.0008 0.0090 

Third Quartile 0.0170 0.0153 0.0285 0.0278 0.0242 0.0263 

Mean 0.0016 −0.0029 0.0076 0.0073 0.0037 0.0065 

 

Figure 10. Box plot of the error distribution of the applied models during testing. 

Figure 9. Agreement plot of multimode ANN prediction with observed Cdt of BCW gate during
training and testing.

The entire error distribution was plotted using a box plot to evaluate the outcomes
(Figure 10). The positive and negative error values indicated the under- and over-prediction
tendencies of the models. Table 8 lists the distribution of the overall error. The minimum
errors, first quartile, median, third quartile and maximum error are also provided in Table 8
and plotted in Figure 10 for all implemented models. The lower quartile value in the
multimode ANN model was −0.0118, which was lower than the other considered models.
Figure 10 and Table 8 indicated that the maximum and minimum errors predicted by the
multimode ANN model were −0.0400 and 0.0470, respectively, which verify the capability
of this model in predicting the Cdt of a BCW gate.
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Table 8. The statistics of the error distribution of the implemented models during testing.

Statistic M5P RF GP SVM MLR
Novel

Multimode
ANN

Minimum −0.0460 −0.0470 −0.0420 −0.0420 −0.0468 −0.0400
Maximum 0.0960 0.0750 0.0500 0.0510 0.1130 0.0470

First
Quartile −0.0170 −0.0295 −0.0140 −0.0140 −0.0242 −0.0118
Median −0.0005 −0.0045 0.0110 0.0095 0.0008 0.0090
Third

Quartile 0.0170 0.0153 0.0285 0.0278 0.0242 0.0263
Mean 0.0016 −0.0029 0.0076 0.0073 0.0037 0.0065

Taylor’s diagram [87] in Figure 11 shows the performance of all the developed models
in predicting Cdt. Three statistical parameters involving RMSE, CC and standard deviation
were used to evaluate the applied models’ accuracy in the Taylor diagram. Figure 11
indicates that the multimode ANN model attained a higher CC with minimal RMSE.
The Taylor diagram also confirmed that the performance of the multimode ANN model
surpassed the other applied models.
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6. Conclusions

Broad-crested weirs are widely used as flood control reservoirs and as measuring
structures. Upstream sediment accumulation reduces the performance of broad-crested
weirs and similar structures. The combined weir-gate devices can minimize sediment
and prevent upstream accumulation [88]. The current study determined the discharge
coefficient (Cdt) of a combined compound rectangular broad-crested weir (BCW) gate. For
this purpose, the experimental results of a simple broad-crested weir were employed for the
code’s calibration, and the k-w model was selected for numerical simulation. The effective
parameters of the combined structure were changed for a comprehensive investigation.
The studied dimensionless parameters were: b/Bo, d/P, B/Bo, Z/P and h1/H. A total
of 61 compound BCW gates were numerically simulated using different values of the
dimensionless parameters. Finally, the results of the calibrated CFD code were used to
develop models for the prediction of a compound BCW-gate Cdt. Six data-driven algorithms,
including M5P tree, RF, Gaussian process, SVM, MLR and multimode ANN, were used.

The results showed better performance from the SVM model than the RF, M5P, GP
and MLR models, in terms of CC, NSE, MAE, RMSE and SI. The sensitivity investigation
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indicated h1/H as the most effective parameter, followed by d/p, b/B0, B/B0 and z/p,
in predicting Cdt using SVM. The novel multimode ANN model outperformed all other
models. It reduced the RMSE by 37, 13, 6.9, 6.5 and 32% of the M5P, RF, GP, SVM and MLR,
respectively. The Taylor diagram and box plot also confirmed the novel multimode ANN
model as the most suitable model in predicting the Cdt of a BCW gate with minimum errors
and maximum correlation.
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