Spatial and Temporal Effects of Digital Technology Development on Carbon Emissions: Evidence from China
Abstract
:1. Introduction
2. Literature Review
3. Methodology and Data
3.1. Spatial Correlation Test
3.2. Spatial Econometric Models
3.3. Variables and Data Description
3.3.1. Explained Variable
3.3.2. Core Explanatory Variable
3.3.3. Control Variables
4. Results and Discussion
4.1. Results of the Spatial Correlation Test
4.2. Results of Spatial Econometric Model Selection
4.3. Empirical Results on Time Lag Effects
4.4. Empirical Results of Spatial Spillover Effects
5. Conclusions and Policy Implications
5.1. Conclusions
5.2. Policy Implications
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Long, X.; Naminse, E.Y.; Du, J.; Zhuang, J. Nonrenewable energy, renewable energy, carbon dioxide emissions and economic growth in China from 1952 to 2012. Renew. Sustain. Energy Rev. 2015, 52, 680–688. [Google Scholar] [CrossRef]
- Zhou, J.; Lan, H.; Zhao, C.; Zhou, J. Haze pollution levels, spatial spillover influence, and impacts of the digital economy: Empirical evidence from China. Sustainability 2021, 13, 9076. [Google Scholar] [CrossRef]
- Chen, X.; Gong, X.; Li, D.; Zhang, J. Can information and communication technology reduce CO2 emission? A quantile regression analysis. Environ. Sci. Pollut. Res. 2019, 26, 32977–32992. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Huang, W.; Chen, Z. The peak of CO2 emissions in China: A new approach using survival models. Energy Econ. 2019, 81, 1099–1108. [Google Scholar] [CrossRef]
- Schwab, K. The Fourth Industrial Revolution; Currency: Redfern, Australia, 2017. [Google Scholar]
- Altinoz, B.; Vasbieva, D.; Kalugina, O. The effect of information and communication technologies and total factor productivity on CO2 emissions in top 10 emerging market economies. Environ. Sci. Pollut. Res. 2021, 28, 63784–63793. [Google Scholar] [CrossRef]
- Ishida, H. The effect of ICT development on economic growth and energy consumption in Japan. Telemat. Inform. 2015, 32, 79–88. [Google Scholar] [CrossRef]
- Lu, W.C. The impacts of information and communication technology, energy consumption, financial development, and economic growth on carbon dioxide emissions in 12 Asian countries. Mitig. Adapt. Strateg. Glob. Chang. 2018, 23, 1351–1365. [Google Scholar] [CrossRef]
- Schulte, P.; Welsch, H.; Rexhaeuser, S. ICT and the demand for energy: Evidence from OECD countries. Environ. Resour. Econ. 2016, 63, 119–146. [Google Scholar] [CrossRef] [Green Version]
- Granell, C.; Havlik, D.; Schade, S.; Sabeur, Z.; Delaney, C.; Pielorz, J.; Usländer, T.; Mazzetti, P.; Schleidt, K.; Kobernus, M.; et al. Future internet technologies for environmental applications. Environ. Model. Softw. 2016, 78, 1–15. [Google Scholar] [CrossRef]
- Sun, H.; Kim, G. The composite impact of ICT industry on lowering carbon intensity: From the perspective of regional heterogeneity. Technol. Soc. 2021, 66, 101661. [Google Scholar] [CrossRef]
- Zhang, B.; Wang, B.; Wang, Z. Role of renewable energy and non-renewable energy consumption on EKC: Evidence from Pakistan. J. Clean. Prod. 2017, 156, 855–864. [Google Scholar]
- Zhang, J.; Wang, B.; Latif, Z. Towards cross-regional sustainable development: The nexus between information and communication technology, energy consumption, and CO2 emissions. Sustain. Dev. 2019, 27, 990–1000. [Google Scholar]
- Zhou, X.; Zhou, D.; Wang, Q.; Su, B. How information and communication technology drives carbon emissions: A sector-level analysis for China. Energy Econ. 2019, 81, 380–392. [Google Scholar] [CrossRef]
- Salahuddin, M.; Alam, K. Internet usage, electricity consumption and economic growth in Australia: A time series evidence. Telemat. Inform. 2015, 32, 862–878. [Google Scholar] [CrossRef]
- Belkhir, L.; Elmeligi, A. Assessing ICT global emissions footprint: Trends to 2040 & recommendations. J. Clean. Prod. 2018, 177, 448–463. [Google Scholar]
- Park, Y.; Meng, F.; Baloch, M.A. The effect of ICT, financial development, growth, and trade openness on CO2 emissions: An empirical analysis. Environ. Sci. Pollut. Res. 2018, 25, 30708–30719. [Google Scholar] [CrossRef]
- Hilty, L.M. Information Technology and Sustainability: Essays on the Relationships between Information Technology and Sustainable Development; Books on Demand: Norderstedt, Germany, 2008. [Google Scholar]
- Bastida, L.; Cohen, J.J.; Kollmann, A.; Moya, A.; Reichl, J. Exploring the role of ICT on household behavioural energy efficiency to mitigate global warming. Renew. Sustain. Energy Rev. 2019, 103, 455–462. [Google Scholar] [CrossRef] [Green Version]
- Pick, J.B.; Nishida, T. Digital divides in the world and its regions: A spatial and multivariate analysis of technological utilization. Technol. Forecast. Soc. Chang. 2015, 91, 1–17. [Google Scholar] [CrossRef]
- Liao, H.; Wang, B.; Li, B.; Weyman-Jones, T. ICT as a general-purpose technology: The productivity of ICT in the United States revisited. Inf. Econ. Policy 2016, 36, 10–25. [Google Scholar] [CrossRef] [Green Version]
- Zhao, T.; Zhang, Z.; Liang, S. Digital economy, entrepreneurship, and high-quality economic development: Empirical evidence from urban China. Manag. World 2020, 36, 65–76. (In Chinese) [Google Scholar]
- Shao, S.; Fan, M.; Yang, L. Economic restructuring, green technical progress, and low-carbon transition development in China: An empirical investigation: Base on the overall technology frontier and spatial spillover effect. Manag. World 2022, 38, 4–10+46–69. (In Chinese) [Google Scholar]
- Hao, Y.; Peng, H. On the convergence in China’s provincial per capita energy consumption: New evidence from a spatial econometric analysis. Energy Econ. 2017, 68, 31–43. [Google Scholar] [CrossRef]
- Su, Y.; Li, Z.; Yang, C. Spatial interaction spillover effects between digital financial technology and urban ecological efficiency in China: An empirical study based on spatial simultaneous equations. Int. J. Environ. Res. Public Health 2021, 18, 8535. [Google Scholar] [CrossRef] [PubMed]
- Bryant, C.E.; Javalgi, R.G. Global economic integration in developing countries: The role of corruption and human capital investment. J. Bus. Ethics 2016, 136, 437–450. [Google Scholar] [CrossRef]
- Li, K.; Zu, J.; Musah, M.; Mensah, I.; Kong, Y.; Owusu-Akomeah, M.; Shi, S.; Jiang, Q.; Antwi, S.K.; Agyemang, J.K. The link between urbanization, energy consumption, foreign direct investments and CO2 emanations: An empirical evidence from the emerging seven (E7) countries. Energy Explor. Exploit. 2021, 40, 477–500. [Google Scholar] [CrossRef]
- Chen, H.; Tackie, E.A.; Ahakwa, I.; Musah, M.; Salakpi, A.; Alfred, M.; Atingabili, S. Does energy consumption, economic growth, urbanization, and population growth influence carbon emissions in the BRICS? Evidence from panel models robust to cross-sectional dependence and slope heterogeneity. Environ. Sci. Pollut. Res. 2022, 29, 37598–37616. [Google Scholar] [CrossRef]
- Poumanyvong, P.; Kaneko, S. Does urbanization lead to less energy use and lower CO2 emissions? A cross-country analysis. Ecol. Econ. 2010, 70, 434–444. [Google Scholar] [CrossRef]
- Kasman, A.; Duman, Y. CO2 emissions, economic growth, energy consumption, trade and urbanization in new EU member and candidate countries: A panel data analysis. Econ. Model. 2015, 44, 97–103. [Google Scholar] [CrossRef]
- Shafiei, S.; Salim, R. Non-renewable and renewable energy consumption and CO2 emissions in OECD countries: A comparative analysis. Energy Policy 2014, 66, 547–556. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.W.; Brahmasrene, T. ICT, CO2 emissions economic growth: Evidence from a panel of ASEAN. Glob. Econ. Rev. 2014, 43, 93–109. [Google Scholar] [CrossRef]
- Raheem, I.D.; Tiwari, A.K.; Balsalobrelorente, D. The role of ICT and financial development on CO2 emissions and economic growth. Work. Pap. Afr. Gov. Dev. Inst. 2019, 27, 1912–1922. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salahuddin, M.; Alam, K.; Ozturk, I. The effects of Internet usage and economic growth on CO2 emissions in OECD countries: A panel investigation. Renew. Sustain. Energy Rev. 2016, 62, 1226–1235. [Google Scholar] [CrossRef]
- Zhang, C.; Liu, C. The impact of ICT industry on CO2 emissions: A regional analysis in China. Renew. Sustain. Energy Rev. 2015, 44, 12–19. [Google Scholar] [CrossRef]
- Asongu, S.A.; Roux, S.L.; Biekpe, N. Enhancing ICT for environmental sustainability in Sub-Saharan Africa. Technol. Forecast. Soc. Chang. 2017, 127, 209–216. [Google Scholar] [CrossRef] [Green Version]
- Iqbal, K.; Hassan, S.T.; Wang, Y.; Shah, M.H.; Syed, M.; Khurshaid, K. To achieve carbon neutrality targets in Pakistan: New insights of information and communication technology and economic globalization. Front. Environ. Sci. 2022, 9, 654. [Google Scholar] [CrossRef]
- Ozcan, B.; Apergis, N. The impact of internet use on air pollution: Evidence from emerging countries. Environ. Sci. Pollut. Res. 2018, 25, 4174–4189. [Google Scholar] [CrossRef]
- Khan, D. Effects of information and communication technology and real income on CO2 emissions: The experience of countries along Belt and Road. Telemat. Inform. 2019, 45, 101300. [Google Scholar]
- Chen, L. How CO2 emissions respond to changes in government size and level of digitalization? Evidence from the BRICS countries. Environ. Sci. Pollut. Res. 2022, 29, 457–467. [Google Scholar] [CrossRef]
- Higón, D.A.; Gholami, R.; Shirazi, F. ICT and environmental sustainability: A global perspective. Telemat. Inform. 2017, 34, 85–95. [Google Scholar] [CrossRef]
- Shahnazi, R.; Shabani, Z.D. The effects of spatial spillover information and communications technology on carbon dioxide emissions in Iran. Environ. Sci. Pollut. Res. 2019, 26, 24198–24212. [Google Scholar] [CrossRef]
- Yang, X.; Wu, H.; Ren, S.; Ran, Q.; Zhang, J. Does the development of the internet contribute to air pollution control in China? Mechanism discussion and empirical test. Struct. Chang. Econ. Dyn. 2021, 56, 207–224. [Google Scholar] [CrossRef]
- Shobande, O.A. Decomposing the persistent and transitory effect of information and communication technology on environmental impacts assessment in Africa: Evidence from Mundlak specification. Sustainability 2021, 13, 4683. [Google Scholar] [CrossRef]
- N’Dri, L.M.; Islam, M.; Kakinaka, M. ICT and environmental sustainability: Any differences in developing countries? J. Clean. Prod. 2021, 297, 126642. [Google Scholar] [CrossRef]
- David, P.A. The dynamo and the computer: An historical perspective on the modern productivity paradox. Am. Econ. Rev. 1990, 80, 355–361. [Google Scholar]
- Dietz, T.; Rose, E.A. Effects of population and affluence on CO2 emissions. Proc. Natl. Acad. Sci. USA 1997, 94, 175–179. [Google Scholar] [CrossRef] [Green Version]
- Franzese, R.J.; Hays, J.C. Spatial econometric models of cross-sectional interdependence in political science panel and time-series-cross-section data. Political Anal. 2007, 15, 140–164. [Google Scholar] [CrossRef]
- Kang, Y.Q.; Zhao, T.; Yang, Y.Y. Environmental Kuznets curve for CO2 emissions in China: A spatial panel data approach. Ecol. Indic. 2016, 63, 231–239. [Google Scholar] [CrossRef]
- Zhang, G.L.; Zhang, N.; Liao, W. How do population and land urbanization affect CO2 emissions under gravity center change? A spatial econometric analysis. J. Clean. Prod. 2018, 127, 209–216. [Google Scholar] [CrossRef]
- Lesage, J.; Pace, R.K. Introduction to Spatial Econometrics; Chapman and Hall/CRC: London, UK, 2009. [Google Scholar]
- Ma, L.; Zhang, X. The spatial effect of haze pollution and the impact of economic and energy structure in China. China Ind. Econ. 2014, 4, 19–31. (In Chinese) [Google Scholar]
Variable | Unit of Measurement | Mean | Std. Dev. | Min | Max |
---|---|---|---|---|---|
lnCE | Million Tons | 5.647 | 0.774 | 3.785 | 7.438 |
lnDigt | −1.575 | 0.702 | −4.169 | −0.103 | |
lneg | RMB/Person | 10.811 | 0.435 | 9.706 | 12.009 |
lnti | Percent | 0.308 | 0.595 | −0.892 | 1.842 |
lnurb | Percent | 4.033 | 0.201 | 3.554 | 4.495 |
lnfdi | Billion RMB | 5.463 | 1.727 | −1.220 | 9.259 |
lnis | Percent | 3.757 | 0.235 | 2.785 | 4.078 |
lnes | Percent | 4.081 | 0.570 | 0.573 | 5.169 |
Year | Carbon Emissions | Digital Technology Development Index | ||||
---|---|---|---|---|---|---|
Bin | Geo | Eco | Bin | Geo | Eco | |
2011 | 0.266 *** (2.476) | 0.200 *** (2.484) | −0.015 (0.209) | 0.248 *** (2.502) | 0.188 *** (2.535) | 0.413 *** (5.166) |
2012 | 0.253 *** (2.378) | 0.204 *** (2.545) | 0.003 (0.403) | 0.240 *** (2.385) | 0.169 ** (2.289) | 0.421 *** (5.170) |
2013 | 0.251 *** (2.566) | 0.212 *** (2.862) | −0.046 (−0.130) | 0.113 * (1.285) | 0.067 (1.141) | 0.389 *** (4.813) |
2014 | 0.227 *** (2.376) | 0.197 *** (2.714) | −0.033 (0.023) | 0.155 ** (1.567) | 0.048 (0.935) | 0.365 *** (4.559) |
2015 | 0.231 *** (2.359) | 0.201 *** (2.706) | −0.032 (0.030) | 0.172 ** (1.785) | 0.083 * (1.310) | 0.330 *** (4.112) |
2016 | 0.218 ** (2.212) | 0.187 *** (2.504) | −0.029 (0.060) | 0.215 ** (2.136) | 0.125 ** (1.759) | 0.341 *** (4.200) |
2017 | 0.201 ** (2.093) | 0.166 ** (2.302) | −0.030 (0.054) | 0.233 ** (2.237) | 0.116 * (1.624) | 0.307 *** (3.732) |
2018 | 0.182 ** (1.945) | 0.167 *** (2.333) | −0.007 (0.318) | 0.185 ** (1.836) | 0.083 (1.268) | 0.256 *** (3.171) |
2019 | 0.172 ** (1.846) | 0.161 ** (2.244) | 0.007 (0.479) | 0.215 ** (2.087) | 0.122 ** (1.692) | 0.238 *** (2.975) |
Test | Statistic | p-Value |
---|---|---|
LM—Spatial lag | 135.873 | 0.000 |
Robust LM—Spatial lag | 17.533 | 0.000 |
LM—Spatial error | 143.120 | 0.000 |
Robust LM—Spatial error | 24.781 | 0.000 |
LR—SDM—SLM | 58.020 | 0.000 |
LR—SDM—SEM | 57.960 | 0.000 |
Wald | 27.190 | 0.000 |
Hausman | 43.540 | 0.000 |
Variable | (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) |
---|---|---|---|---|---|---|---|---|
CEt-1 | 0.668 *** (0.046) | 0.669 *** (0.046) | 0.737 *** (0.062) | 0.710 *** (0.061) | ||||
W × CEt−1 | −0.228 ** (0.147) | −0.266 ** (0.120) | −0.469 *** (0.170) | −0.319 ** (0.148) | ||||
W × CE | 0.041 (0.094) | 0.017 (0.089) | 0.036 (0.105) | 0.054 (0.095) | 0.058 * (0.102) | 0.019 * (0.099) | 0.043 * (0.077) | 0.058 ** (0.081) |
W × Digt | 0.278 *** (0.056) | 0.110 ** (0.058) | 0.262 *** (0.071) | 0.115 ** (0.058) | 0.063 (0.048) | 0.054 (0.064) | 0.064 (0.073) | 0.059 (0.063) |
Digt | −0.235 *** (0.047) | −0.071 *** (0.050) | −0.161 *** (0.061) | −0.064 *** (0.049) | −0.287 ** (0.041) | −0.086 * (0.050) | −0.170 ** (0.058) | −0.083 * (0.049) |
eg | −0.110 (0.104) | −0.013 (0.080) | −0.126 (0.099) | −0.017 (0.080) | −0.079 (0.090) | 0.015 (0.082) | −0.019 (0.095) | 0.039 (0.081) |
ti | −0.051 (0.063) | 0.116 ** (0.051) | −0.008 (0.062) | 0.132 *** (0.051) | 0.061 (0.059) | 0.064 (0.051) | 0.084 (0.060) | 0.093 * (0.051) |
urb | 0.699 ** (0.312) | −0.336 (0.268) | 0.239 (0.329) | −0.324 (0.266) | −0.264 (0.316) | −0.728 ** (0.318) | −0.721 ** (0.365) | −0.731 ** (0.313) |
fdi | 0.026 ** (0.013) | −0.001 (0.010) | 0.027 ** (0.012) | 0.001 (0.010) | 0.021 * (0.012) | −0.020 ** (0.010) | 0.015 (0.011) | −0.016 (0.010) |
is | 0.222** (0.103) | 0.123 (0.087) | 0.345 *** (0.106) | 0.123 (0.086) | 0.308 *** (0.103) | −0.017 (0.096) | 0.224 ** (0.108) | −0.032 (0.095) |
es | 0.267 *** (0.036) | 0.099 *** (0.030) | 0.240 *** (0.035) | 0.102 *** (0.029) | 0.197 *** (0.033) | 0.091 *** (0.031) | 0.215 *** (0.034) | 0.106 *** (0.031) |
sigma2_e | 0.006 *** (0.001) | 0.004 *** (0.000) | 0.006 *** (0.000) | 0.004 *** (0.000) | 0.004 *** (0.000) | 0.003 *** (0.000) | 0.003 *** (0.000) | 0.002 *** (0.000) |
R-squared | 0.393 | 0.574 | 0.357 | 0.580 | 0.338 | 0.505 | 0.370 | 0.521 |
Log-likelihood | 299.778 | 340.246 | 292.650 | 341.709 | 287.794 | 289.085 | 269.943 | 291.790 |
Observations | 270 | 240 | 240 | 240 | 210 | 180 | 180 | 180 |
Effect | (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | |
---|---|---|---|---|---|---|---|---|---|
Short-term effect | direct effect | −0.072 ** (0.047) | −0.162 *** (0.058) | −0.057 ** (0.046) | −0.087 ** (0.047) | −0.171 ** (0.055) | −0.076 * (0.046) | ||
indirect effect | 0.114 ** (0.057) | 0.270 *** (0.071) | 0.114 * (0.061) | 0.053 (0.067) | 0.063 (0.075) | 0.051 (0.069) | |||
aggregate effect | 0.042 (0.040) | 0.108 ** (0.052) | 0.057 (0.043) | −0.034 (0.061) | −0.107 (0.067) | −0.024 (0.061) | |||
Long-term effect | direct effect | −0.231 *** (0.048) | −0.215 ** (0.145) | −0.177 *** (0.061) | −0.245 ** (0.183) | −0.288 ** (0.044) | −0.374 (1.157) | −0.181 ** (0.061) | −0.322 * (0.222) |
indirect effect | 0.275 *** (0.058) | 0.358 * (0.196) | 0.264 *** (0.069) | 0.347 * (0.201) | 0.266 (0.049) | 0.276 (6.472) | 0.090 (0.070) | 0.276 (0.249) | |
aggregate effect | 0.043 (0.037) | 0.143 (0.163) | 0.087 ** (0.042) | 0.102 (0.078) | −0.022 (0.029) | −0.098 (6.585) | −0.091 (0.044) | −0.046 (0.123) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, K.; Li, S.; Qin, P.; Wang, B. Spatial and Temporal Effects of Digital Technology Development on Carbon Emissions: Evidence from China. Sustainability 2023, 15, 485. https://doi.org/10.3390/su15010485
Zhang K, Li S, Qin P, Wang B. Spatial and Temporal Effects of Digital Technology Development on Carbon Emissions: Evidence from China. Sustainability. 2023; 15(1):485. https://doi.org/10.3390/su15010485
Chicago/Turabian StyleZhang, Keyong, Sulun Li, Peng Qin, and Bohong Wang. 2023. "Spatial and Temporal Effects of Digital Technology Development on Carbon Emissions: Evidence from China" Sustainability 15, no. 1: 485. https://doi.org/10.3390/su15010485
APA StyleZhang, K., Li, S., Qin, P., & Wang, B. (2023). Spatial and Temporal Effects of Digital Technology Development on Carbon Emissions: Evidence from China. Sustainability, 15(1), 485. https://doi.org/10.3390/su15010485