Quantitative Analyses of Chemical Elements in Phragmites australis as Bioindication of Anthropization in Urban Lakes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Field Sampling and Laboratory Analysis
2.3. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Khorshid, M.S.H.; Thiele-Bruhn, S. Contamination status and assessment of urban and non-urban soils in the region of Sulaimani City, Kurdistan. Iraq. Environ. Earth Sci. 2016, 75, 1171. [Google Scholar] [CrossRef]
- Strungaru, S.A.; Pohontiu, C.M.; Nicoara, M.; Teodosiu, C.; Baltag, E.S.; Jijie, R.; Plavan, G.; Pacioclu, O.; Faggio, C. Response of aquatic macroinvertebrates communities to multiple anthropogenic stressors in a lowland tributary river. Environ. Toxicol. Pharmacol. 2021, 87, 103687. [Google Scholar] [CrossRef] [PubMed]
- Rahman, Z.; Singh, V.P. The relative impact of toxic heavy metals (THMs) (arsenic (As), cadmium (Cd), chromium (Cr)(VI), mercury (Hg), and lead (Pb)) on the total environment: An overview. Environ. Monit. Assess. 2019, 191, 419. [Google Scholar] [CrossRef] [PubMed]
- European Commission. Study on the EU’s List of Critical Raw Materials—Final Report; European Commission: Brussels, Belgium, 2020. [Google Scholar]
- Bunker, B.C.; Casey, W.H. The Impact of Oxides on Environmental Chemistry. In The Aqueous Chemistry of Oxides; Bunker, B.C., Casey, W.H., Eds.; Oxford University Press: Oxford, UK, 2016; pp. 537–582. [Google Scholar]
- Uddin, M.M.; Zakeel, M.C.M.; Zavahir, J.S.; Marikar, F.M.M.T.; Jahan, I. Heavy Metal Accumulation in Rice and Aquatic Plants Used as Human Food: A General Review. Toxics 2021, 9, 360. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Fantke, P. Toward harmonizing global pesticide regulations for surface freshwaters in support of protecting human health. J. Environ. Manag. 2022, 301, 113909. [Google Scholar] [CrossRef]
- Zaharia, L.; Toroimac, I.; Cocoş, G.; Ghiţă, O.F.A.; Mailat, E. Urbanization effects on the river systems in the Bucharest city region (Romania). Ecosyst. Health Sustain. 2016, 2, e01247. [Google Scholar] [CrossRef] [Green Version]
- Kastratović, V.; Krivokapić, S.; Durović, D.; Blagojević, N. Seasonal changes in metal accumulation and distribution in the organs of Phragmites australis (common reed) from Lake Skadar, Montenegro. J. Serb. Chem. Soc. 2013, 78, 1241–1258. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, G.-J. Effects of cesium accumulation on chlorophyll content and fluorescence of Brassica juncea L. J. Environ. Radioact. 2018, 195, 26–32. [Google Scholar] [CrossRef]
- Vymazal, J. The use of hybrid constructed wetlands for wastewater treatment with special attention to nitrogen removal: A review of a recent development. Water Res. 2013, 47, 4795–4811. [Google Scholar] [CrossRef]
- Mykleby, P.M.; Lenters, J.D.; Cutrell, G.J.; Herrman, K.S.; Istanbulluoglu, E.; Scott, D.T.; Twine, T.E.; Kucharik, C.J.; Awada, T.; Soylu, M.E.; et al. Energy and water balance response of a vegetated wetland to herbicide treatment of invasive Phragmites australis. J. Hydrol. 2016, 539, 290–303. [Google Scholar] [CrossRef]
- Lefkowitz, J.P.; Rouff, A.A.; Elzinga, E.J. Influence of pH on the Reductive Transformation of Birnessite by Aqueous Mn(II). Environ. Sci. Technol. 2013, 47, 10364–10371. [Google Scholar] [CrossRef] [PubMed]
- Al-Sodany, Y.; El-Sheikh, M.A.; Baraka, D.M.; Shaltout, K.H. Elements accumulation and nutritive value of Phragmites Australis (Cav.) Trin. ex Steudel in Lake Burullus: A Ramsar site Egypt. Catrina 2012, 8, 51–63. [Google Scholar] [CrossRef]
- Idupulapati, N.B. A Theoretical Study of Methanol Oxidation Mechanism by Methanol Dehydrogenase Enzymes for Fuel Cell Applications. Ph.D. Thesis, Louisiana Tech University United States, Ruston, LA, USA, 2009. [Google Scholar]
- Mândrescu, N.; Radulian, M. Seismic microzoning of Bucharest (Romania): A critical review. In Vrancea Earthquakes: Tectonics, Hazard and Risk Mitigation: Contributions from the First International Workshop on Vrancea Earthquakes; Wenzel, F., Novak, O., Lungu, D., Eds.; Springer Science Business Media, BV: Dordrecht, The Netherlands, 1999. [Google Scholar]
- Bala, A.; Hannich, D.; Ritter, J.R.R.; Ciugudean-Toma, V. Geological and geophysical model of the quaternary layers based on in situ measurements in Bucharest, Romania. Rom. Rep. Phys. 2011, 63, 250–274. [Google Scholar]
- Serpescu, I.; Radu, E.; Gogu, C.R.; Boukhemacha, M.A.; Gaitanaru, D.; Bica, I. 3D geological model of Bucharest city Quaternary deposits. In Proceedings of the 13th SGEM GeoConference on Science and Technology in Geology, Exploration and Mining, Albena, Bulgaria, 16–22 June 2013; Volume 2, pp. 1–8. [Google Scholar]
- Maguí, E.; Hidalgo, M.; Queralt, I. XRF spectrometry for trace element analysis of vegetation samples. Spectrosc. Eur. 2007, 19, 13–17. [Google Scholar]
- Mondal, M.N.; Horikawa, K.; Seki, O.; Nejigaki, K.; Minami, H.; Murayama, M.; Okazaki, Y. Investigation of adequate calibration methods for X-ray fluorescence core scanning element count data: A case study of a marine sediment piston core from the Gulf of Alaska. J. Marine Sci. Eng. 2021, 9, 540. [Google Scholar] [CrossRef]
- Maria, G.; Banciu, C.; Vladimirescu, M.; Paica, I.; Manole, A. Structural modifications in black pine needles as potential biomarkers of environmental pollution. Carpathian J. Earth Environ. Sci. 2022, 17, 111–118. [Google Scholar] [CrossRef]
- Williamson, D.F. The Box Plot: A Simple Visual Method to Interpret Data. Ann. Intern. Med. 1989, 110, 916. [Google Scholar] [CrossRef]
- Tahmasebi, P.; Hezarkhani, A.; Mortazavi, M. Application of discriminant analysis for alteration separation; sungun copper deposit, East Azerbaijan, Iran. Australian. J. Basic Appl. Sci. 2010, 6, 564–576. [Google Scholar]
- Sasirekha, K.; Baby, P. Agglomerative Hierarchical Clustering Algorithm—A Review. Int. J. Sci. Res. Publ. 2013, 3, 1–3. [Google Scholar]
- XLSTAT Pro, Data Analysis and Statistical Solutions for Microsoft Excel; Addinsoft: Paris, France, 2013.
- Botnariuc, N.; Vădineanu, A. Ecology; Didactic and Pedagogic Publishing House: Bucureşti, Romania, 1982. (In Romanian) [Google Scholar]
- Onete, M.; Pop, O.G.; Gruia, R. Plants as indicators of environmental conditions of urban spaces from central parks of Bucharest. EEMJ 2010, 9, 1637–1645. [Google Scholar] [CrossRef]
- Bismuth. Available online: https://www.lenntech.com/periodic/elements/bi.htm#ixzz7gGGmN2xK (accessed on 15 November 2022).
- Hafnium. Available online: https://www.lenntech.com/periodic/elements/hf.htm#ixzz7gGJpd5Rm (accessed on 15 November 2022).
- Lemus, R.; Venezia, C.F. An update to the toxicological profile for water-soluble and sparingly soluble tungsten substances. Crit. Rev. Toxicol. 2015, 45, 388–411. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosário, F.; Costa, C.; Lopes, C.B.; Estrada, A.C.; Tavares, D.S.; Pereira, E.; Teixeira, J.P.; Reis, A.T. In Vitro Hepatotoxic and Neurotoxic Effects of Titanium and Cerium Dioxide Nanoparticles, Arsenic and Mercury Co-Exposure. Int. J. Mol. Sci. 2022, 23, 2737. [Google Scholar] [CrossRef] [PubMed]
- Tourinho, P.S.; van Gestel, C.A.M.; Lofts, S.; Svendsen, C.; Soares, A.M.; Loureiro, S. Metal-based nanoparticles in soil: Fate, behavior, and effects on soil invertebrates. Environ. Toxicol. Chem. 2021, 31, 1679–1692. [Google Scholar] [CrossRef] [PubMed]
- Storm, P. Vanadium-sources, applications and markets. Miner. Energy 1994, 10, 2–15. [Google Scholar] [CrossRef]
- Teng, Y.; Ni, S.; Zhang, C.; Wang, J.; Lin, X.; Huang, Y. Environmental geochemistry and ecological risk of vanadium pollution in Panzhihua mining and smelting area, Sichuan, China. Chin. J. Geochem. 2006, 25, 379–385. [Google Scholar] [CrossRef]
- National Center for Biotechnology Information. PubChem Compound Summary for CID 73963, Cerium Dioxide; National Center for Biotechnology Information: Bethesda, MD, USA, 2021. [Google Scholar]
- Favot, M.; Massarutto, A. Rare-earth elements in the circular economy: The case of yttrium. J. Environ. Manag. 2019, 240, 504–510. [Google Scholar] [CrossRef] [PubMed]
- Rim, K.T.; Koo, K.H.; Park, J.S. Toxicological evaluations of rare earth and their health impacts to workers: A literature review. Saf. Health Work. 2013, 4, 12–26. [Google Scholar] [CrossRef] [Green Version]
- Henríquez-Hernández, L.A.; Boada, L.D.; Carranza, C.; Pérez-Arellano, J.L.; González-Antuña, A.; Camacho, M.; Almeida-González, M.; Zumbado, M.; Luzardo, O.P. Blood levels of toxic metals and rare earth elements commonly found in e-waste may exert subtle effects on hemoglobin concentration in sub-Saharan immigrants. Environ. Int. 2017, 109, 20–28. [Google Scholar] [CrossRef]
- Brioschi, M.L.; Okimoto, M.L.; Vargas, J.V. The utilization of infrared imaging for occupational disease study in industrial work. Work 2012, 41, 503–509. [Google Scholar] [CrossRef] [Green Version]
- Ojovan, B.; Catana, R.; Neagu, S.; Cojoc, R.; Lucaci, A.I.; Marutescu, L.; Florescu, L.; Ruginescu, R.; Enache, M.; Moldoveanu, M. Metabolic Potential of Some Functional Groups of Bacteria in Aquatic Urban Systems. Fermentation 2021, 7, 242. [Google Scholar] [CrossRef]
- Kunikowska, J.; Pawlak, D.; Bąk, M.I.; Kos-Kudła, B.; Mikołajczak, R.; Królicki, L. Long-term results and tolerability of tandem peptide receptor radionuclide therapy with 90Y/177Lu-DOTATATE in neuroendocrine tumors with respect to the primary location: A 10-year study. Ann. Nucl. Med. 2017, 31, 347–356. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, L.; Ge, L.; Yang, Y.; Li, M.; Jia, Y.; Yao, X.; Zhu, Z. Ultrathin Iron-Cobalt Oxide Nanosheets with Abundant Oxygen Vacancies for the Oxygen Evolution Reaction. Adv. Mat. 2017, 29, 1606793. [Google Scholar] [CrossRef] [PubMed]
- Rokade, A.; Patil, M.P.; Yoo, S.I.; Lee, W.K.; Park, S.S. Pure green chemical approach for synthesis of Ag2O nanoparticles. Green Chem. Lett. Rev. 2016, 9, 216–222. [Google Scholar] [CrossRef] [Green Version]
- Bonanno, G.; Pavone, P. Leaves of Phragmites australis as potential atmospheric biomonitors of Platinum Group Elements. Ecotoxicol. Environ. Saf. 2015, 114, 31–37. [Google Scholar] [CrossRef] [PubMed]
- Zimmermann, S.; Wolff, C.; Sures, B. Toxicity of platinum, palladium and rhodium to Daphnia magna in single and binary metal exposure experiments. Environ. Pollut. 2017, 224, 368–376. [Google Scholar] [CrossRef]
- Fortin, C.; Wang, F.; Pitre, D. Critical Review of Platinum Group Elements (Pd, Pt, Rh) in Aquatic Ecosystem; INRS, Centre Eau, Terre et Environnement: Québec, Canada, 2011. [Google Scholar]
- Dinh, T.; Dobo, Z.; Kovacs, H. Phytomining of noble metals—A review. Chemosphere 2022, 286, 131805. [Google Scholar] [CrossRef] [PubMed]
- McGillicuddy, E.; Murray, I.; Kavanagh, S.; Morrison, L.; Fogarty, A.; Cormican, M.; Dockery, P.; Prendergast, M.; Rowan, N.; Morris, D. Silver nanoparticles in the environment: Sources, detection, and ecotoxicology. Sci. Total Environ. 2017, 575, 231–246. [Google Scholar] [CrossRef] [PubMed]
- Müller, A.; Österlund, H.; Marsalek, J.; Viklander, M. The pollution conveyed by urban runoff: A review of sources. Sci. Total Environ. 2020, 709, 136125. [Google Scholar] [CrossRef]
- Wang, H.; Jia, Y. Bioaccumulation of heavy metals by Phragmites australis cultivated in synthesized substrates. J. Environ. Sci. 2009, 21, 1409–1414. [Google Scholar] [CrossRef]
- Byeon, E.; Kang, H.M.; Yoon, C.; Lee, J.S. Toxicity mechanisms of arsenic compounds in aquatic organisms. Aquat. Toxicol. 2021, 237, 105901. [Google Scholar] [CrossRef]
- Bissen, M.; Frimmel, F.H. Arsenic—A review. Part I: Occurrence, toxicity, speciation, mobility. Acta Hydrochim. Hydrobiol. 2003, 31, 9–18. [Google Scholar] [CrossRef]
- Schrittwieser, S.; Reichinger, D.; Schotter, J. Applications, surface modification and functionalization of nickel nanorods. Materials 2018, 11, 45. [Google Scholar] [CrossRef] [Green Version]
- Meyer, J.S.; Lyons-Darden, T.; Garman, E.R.; Middleton, E.T.; Schlekat, C.E. Toxicity of Nanoparticulate Nickel to Aquatic Organisms: Review and Recommendations for Improvement of Toxicity Tests. Environ. Toxicol. Chem. 2020, 39, 1861–1883. [Google Scholar] [CrossRef]
- EPA. 1998. Available online: https://www.elaw.org/content/us-epa-1998-principles-environmental-impact-assessment-review-appendix-environmental-impact (accessed on 15 November 2022).
- Demirezen, D.; Aksoy, A. Accumulation of heavy metals in Typha angustifolia L. and Potamogeton pectinatus L. living in Sultan Marsh (Kayseri, Turkey). Chemosphere 2004, 56, 685–696. [Google Scholar] [CrossRef]
- Ullrich, S.M.; Tanton, T.W.; Abdrashitova, S.A. Mercury in the aquatic environment: A review of factors affecting methylation. Crit. Rev. Environ. Sci. Technol. 2001, 31, 241–293. [Google Scholar] [CrossRef]
- Sawidist, T.; Chettri, M.K.; Papaioannou, A.; Zachariadis, G.; Stratis, J. A Study of Metal Distribution from Lignite Fuels Using Trees as Biological Monitors. Ecotoxicol. Environ. Saf. 2001, 48, 27–35. [Google Scholar] [CrossRef]
- Mengel, K.; Kirkby, E. Principles of Plant Nutrition, 5th ed.; Kluwer Academic Publishers: Amsterdam, The Netherlands, 2001; 849p. [Google Scholar]
- Nagajyoti, P.C.; Lee, K.D.; Sreekanth, T.V.M. Heavy metals, occurrence and toxicity for plants: A review. Environ. Chem. Lett. 2010, 8, 199–216. [Google Scholar] [CrossRef]
- Srivastava, J.; Swinder Kalra, S.J.S.; Narayan, R. Environmental perspectives of Phragmites australis (Cav.) Trin. Ex. Steudel. Appl. Water Sci. 2014, 4, 193–202. [Google Scholar] [CrossRef] [Green Version]
- Gautam, S.; Yadav, A.; Tsai, C.J.; Kumar, P. A review on recent progress in observations, sources, classification and regulations of PM2.5 in Asian environments. Environ. Sci. Pollut. Res. Int. 2016, 23, 21165–21175. [Google Scholar] [CrossRef]
- Gaur, A.; Adholeya, A. Prospects of arbuscular mycorrhizal fungi in phytoremediation of heavy metal contaminated soils. Curr. Sci. 2004, 86, 528–534. [Google Scholar]
- Barium Oxide. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Barium-oxide#section=GHS-Classification (accessed on 23 October 2022).
- Malinowska, E.; Novak, J. Barium, Lithium and Titanium Content in Herbs of Mid-Field Wet Depressions in East-Central Poland. Diversity 2022, 14, 189. [Google Scholar] [CrossRef]
- Kumar, S.; Kumar, S.; Mohapatra, T. Interaction Between Macro- and Micro-Nutrients in Plants. Front. Plant Sci. 2021, 12, 665583. [Google Scholar] [CrossRef] [PubMed]
- Ioja, I.C.; Onose, D.; Cucu, A.; Ghervase, L. Changes in water quality in the lakes along Colentina River under the influence of the residential areas in Bucharest. Sel. Top. Energy Environ. Sustain. Dev. Landscaping 2010, 164–169. Available online: https://d1wqtxts1xzle7.cloudfront.net/42931672/Changes_in_water_quality_in_the_lakes_al20160222-4894-1w2c0l3-libre.pdf?1456144853=&response-content-disposition=inline%3B+filename%3DChanges_in_water_quality_in_the_lakes_al.pdf&Expires=1672169415&Signature=UcvZLE9wPTwyzRhO1KEo6zUyPh~t2Z4H4q6gP6rm8ZiBkAMD0n9p4WSnLtKHwSP9h7S98n1PpfLMMltm4idhVy6rTg0Y1tSEDC818v~vy-5A~P6lm2aZzd90Ba4AYc~0UbKMqbiz6GSdZSD73bK3M5NYMc19iGkbIInRk4~aQY2-n8OylWA6BZj29kL-6tSfBd968ozZpG7LUv-F6DQ0iS0i5YgA8vRK0nNtqvJhwCAB0V-YmokM0xOdRKxIM2ujfNsNL0EPMpCF~NRhAuWpFpTvfueEVHeDgoj4sV804A0Ox3cgBupPFQmyyQOfmqW3PzZasJrzfBrUKW6F2RmR0A__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA (accessed on 23 October 2022).
- Doulgeridou, A.; Amlund, H.; Sloth, J.J.; Hansen, M. Review of potentially toxic rare earth elements, thallium and tellurium in plant-based foods. EFSA J. 2020, 18, e181101. [Google Scholar] [PubMed]
- González, V.; Vignati, D.A.; Pons, M.N.; Montarges-Pelletier, E.; Bojic, C.; Giamberini, L. Lanthanide ecotoxicity: First attempt to measure environmental risk for aquatic organisms. Environ. Pollut. 2015, 199, 139–147. [Google Scholar] [CrossRef]
Elements | Mean ± SD | Station 0 | Station 1 | Station 2 | Station 3 | Station 4 | Station 5 | Station 6 | ||
---|---|---|---|---|---|---|---|---|---|---|
CRMs | Bismuth | Bi | 0.002 ± 0.005 | + | ||||||
Cerium | Ce | 0.105 ± 0.185 | + | + | ||||||
Cobalt | Co | 0.016 ± 0.023 | + | + | + | |||||
Dysprosium | Dy | 0.011 ± 0.029 | + | |||||||
Erbium | Er | 0.017 ± 0.03 | + | + | ||||||
Gallium | Ga | 0.005 ± 0.006 | + | + | + | + | ||||
Germanium | Ge | 0.011 ± 0.01 | + | + | + | + | + | |||
Hafnium | Hf | 0.023 ± 0.031 | + | + | + | |||||
Holmium | Ho | 0.035 ± 0.062 | + | + | ||||||
Lanthanum | La | 0.12 ± 0.215 | + | + | ||||||
Lutetium | Lu | 0.014 ± 0.018 | + | + | + | |||||
Magnesium | Mg | 0.373 ± 0.235 | + | + | + | + | + | + | + | |
Niobium | Nb | 0.001 ± 0.001 | + | + | ||||||
Neodymium | Nd | 0.042 ± 0.112 | + | |||||||
Phosphorus | P | 2.109 ± 0.401 | + | + | + | + | + | + | + | |
Promethium | Pm | 0.031 ± 0.084 | + | |||||||
Samarium | Sm | 0.024 ± 0.065 | + | |||||||
Strontium | Sr | 0.087 ± 0.033 | + | + | + | + | + | + | + | |
Tantalum | Ta | 0.009 ± 0.016 | + | + | ||||||
Thallium | Tl | 0.008 ± 0.013 | + | + | ||||||
Thulium | Tm | 0.006 ± 0.016 | + | |||||||
Terbium | Tb | 0.029 ± 0.05 | + | + | ||||||
Titanium | Ti | 0.163 ± 0.217 | + | + | + | + | ||||
Tungsten | W | 0.012 ± 0.021 | + | + | ||||||
Vanadium | V | 0.145 ± 0.111 | + | + | + | + | + | + | + | |
Yttrium | Y | 0.005 ± 0.008 | + | + | + | |||||
Ytterbium | Yb | 0.012 ± 0.026 | + | + | ||||||
Platinum Group Metals | Platinum | Pt | 0.003 ± 0.008 | + | ||||||
Iridium | Ir | 0.005 ± 0.009 | + | + | ||||||
Rare metals | Silver | Ag | 0.118 ± 0.033 | + | + | + | + | + | + | + |
Gold | Au | 0.006 ± 0.01 | + | + | ||||||
Heavy metals | Lead | Pb | 0.017 ± 0.022 | + | + | + | ||||
Arsenic | As | 0.022 ± 0.019 | + | + | + | + | + | + | + | |
Nickel | Ni | 0.02 ± 0.015 | + | + | + | + | + | |||
Mercury | Hg | 0.003 ± 0.01 | + | |||||||
Other | Calcium | Ca | 13.216 ± 3.098 | + | + | + | + | + | + | + |
Potassium | K | 21.852 ± 3.004 | + | + | + | + | + | + | + | |
Chlorine | Cl | 7.023 ± 2.336 | + | + | + | + | + | + | + | |
Sulfur | S | 2.156 ± 0.918 | + | + | + | + | + | + | + | |
Iron | Fe | 0.258 ± 0.064 | + | + | + | + | + | + | + | |
Mangan | Mn | 0.832 ± 0.517 | + | + | + | + | + | + | + | |
Zinc | Zn | 0.044 ± 0.019 | + | + | + | + | + | + | + | |
Copper | Cu | 0.026 ± 0.014 | + | + | + | + | + | + | ||
Molybdenum | Mo | 0.133 ± 0.164 | + | + | + | + | + | + | ||
Aluminum | Al | 0.092 ± 0.027 | + | + | + | + | + | + | + | |
Barium | Ba | 0.31 ± 0.395 | + | + | + | |||||
Bromine | Br | 0.041 ± 0.022 | + | + | + | + | + | + | + | |
Chromium | Cr | 0.048 ± 0.053 | + | + | + | + | ||||
Polonium | Po | 0.007 ± 0.009 | + | + | + | |||||
Rubidium | Rb | 0.02 ± 0.022 | + | + | + | + | + | |||
Rhenium | Re | 0.069 ± 0.042 | + | + | + | + | + | + | ||
Selenium | Se | 0.003 ± 0.003 | + | + | + | + | ||||
Silicon | Si | 15.565 ± 1.82 | + | + | + | + | + | + | + | |
Thorium | Th | 0.009 ± 0.012 | + | + | + | |||||
Uranium | U | 0.006 ± 0.008 | + | + | + | |||||
Zirconium | Zr | 0.007 ± 0.016 | + | + |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Catana, R.D.; Podosu, A.; Florescu, L.I.; Mihai, R.A.; Enache, M.; Cojoc, R.; Moldoveanu, M. Quantitative Analyses of Chemical Elements in Phragmites australis as Bioindication of Anthropization in Urban Lakes. Sustainability 2023, 15, 553. https://doi.org/10.3390/su15010553
Catana RD, Podosu A, Florescu LI, Mihai RA, Enache M, Cojoc R, Moldoveanu M. Quantitative Analyses of Chemical Elements in Phragmites australis as Bioindication of Anthropization in Urban Lakes. Sustainability. 2023; 15(1):553. https://doi.org/10.3390/su15010553
Chicago/Turabian StyleCatana, Rodica D., Aurelia Podosu, Larisa I. Florescu, Raluca A. Mihai, Mădălin Enache, Roxana Cojoc, and Mirela Moldoveanu. 2023. "Quantitative Analyses of Chemical Elements in Phragmites australis as Bioindication of Anthropization in Urban Lakes" Sustainability 15, no. 1: 553. https://doi.org/10.3390/su15010553
APA StyleCatana, R. D., Podosu, A., Florescu, L. I., Mihai, R. A., Enache, M., Cojoc, R., & Moldoveanu, M. (2023). Quantitative Analyses of Chemical Elements in Phragmites australis as Bioindication of Anthropization in Urban Lakes. Sustainability, 15(1), 553. https://doi.org/10.3390/su15010553