Intelligent Assessment of Pavement Condition Indices Using Artificial Neural Networks
Abstract
:1. Introduction
Problem Statement and Objective
2. Data and Methodology
2.1. Pavement Conditions and other Variables
- Direction(DIR): this represents the direction of traffic movement either to or fro for a given lane. The two directions have been numerically represented by +1 (to) and −1 (fro).
- Section Number(SN): This column represents the section number for each lane. SN is more of a location-matching variable.
- International Roughness Index(IRI): IRI is a measure of longitudinal roughness of the road, and an indicator of ride quality, safety, and road user cost. The United State Federal Ministry of Highway and Administration (FHWA) recommends an acceptable range of IRI between 1.5 to 2.76 m/km [52]. Similar range and scaling of IRI is employed by highway agencies in Saudi Arabia [53]. Any road section with IRI below 1.5 m/km can be considered to be in good condition.
- Pavement Rutting(Rut): Pavement rutting is among the major road distresses that easily compromise the road’s functional and structural integrity. It is the permanent depression that manifest longitudinally along vehicle wheel tracks on the road. There are three basic severity levels prescribed by the FHWA, Low (5–12 mm), Medium (12–25 mm) and High (>25 mm) rut distress levels. Anything below 5 mm is considered insignificant [54].
- Crack Index(CI): This represents the magnitude of cracks that manifested on the pavement surface at the time of evaluation. It is the function of the various types of cracks (transverse and longitudinal), and the percentage of area covered by these cracks and their severities.
- Pavement Texture(Tex): is the measure deviation of the road surface from an ideal smooth plane and is accurately measured with laser technology. It affects the tire–pavement interaction such as skid and rolling resistance. Pavement texture influences the amount of noise generated by moving vehicles, as well as driver’s safety and vehicle fuel efficiency.
- Present Serviceability Index(PSI): Is a measure of pavement serviceability rating developed by AASHTO, which was later mathematically correlated to pavement distresses and roughness [55]. The original mathematical model for estimating PSI of flexible pavement is given by (1). PSI value of 5.0 signifies new and perfect pavement. This value declines with age of pavement due to defects and degradation, prompting the need for major maintenance at around PSI values of 3.0–2.0.
- Pavement Condition Rating(PCR): The PCR is an overall pavement condition rating that also depends on other indices such as the roughness condition index (RCI), and Surface Condition Rating (SCR) [54]. Road sections with PCR values below 60 are considered to have failed. According to FHWA methodology, PCR, RCI, and SCR can be estimated from Equations (2)–(5), respectively.
- I.
- Longitude(LON): is the geographical longitude bearing coordinate for that particular road section.
- J.
- Latitude(LAT): is the geographical latitude bearing coordinate for that particular road section.
2.2. Data Analysis and Modeling
2.3. Neural Network (NN) Modeling
Sensitivity Analysis of ANN Models
3. Results and Discussion
3.1. Variables Selection
3.2. Simple Multiple Linear Regression (S-MLR) Models
3.3. ANN Models
Sensitivity Analysis of ANN Modeling Results
3.4. S-MLR, Q-MLR, and ANN PCs Prediction Models
4. Conclusions and Recommendation
- Although MLR models with interactive and higher order terms showed better performance than simple MLR models, MLR cannot be relied upon to adequately predict the PC indices of lanes as a function of adjacent lane PC variables.
- On the other hand, the ANN models showed promising performances that indicates the possibility of evaluating a multi-lane highway PC by single lane inspection. The gap in R2 between ANN and S-MLR models ranges from 34% up to 68%, and from 19% to 36% relative to Q-MLR models.
- Traffic direction parameter, location and lane matching parameters contributed significantly to the performance of the ANN PC prediction models. This indicates the need for including other location dependent variables such as traffic volumes and pavement structural inputs.
- CI showed better predictability, followed by Tex, PSI, IRI, and RUT. The model PCR showed the least model performance. This suggests that other AI techniques other than ANN could be better suited for the lower-performing PCIs.
- Although an appreciable amount of data were utilized in this study, the outcomes of this study may not be valid for roads in other countries or even different cities. In addition, the study tested the models with PC data obtained from one class of road (free way) but from different locations. The results might not be valid for different class of roads.
- More similar studies using different AI techniques are recommended to make this approach common and practical.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
RMSE | |||||||||||
PC | Lane ID | Without DIR | Without SN | Without IRI | Without RUT | Without CI | Without TEXT | Without PSI | Without PCR | Without LAT | Without LON |
IRI | Lane 2 | 0.2487 | 0.2377 | 0.2352 | 0.2336 | 0.2285 | 0.2336 | 0.2328 | 0.2290 | 0.2375 | 0.2325 |
Lane 1 | 0.3100 | 0.2973 | 0.3022 | 0.3030 | 0.2991 | 0.2980 | 0.2971 | 0.2982 | 0.3020 | 0.3021 | |
RUT | Lane 2 | 0.8642 | 0.7807 | 0.7758 | 0.7618 | 0.8030 | 0.8051 | 0.7678 | 0.7757 | 0.7800 | 0.7866 |
Lane 1 | 1.3015 | 1.1574 | 1.1687 | 1.2287 | 1.2345 | 1.2177 | 1.1734 | 1.2503 | 1.2155 | 1.2097 | |
CI | Lane 2 | 1.0021 | 0.8332 | 0.8623 | 0.8509 | 0.9060 | 0.8705 | 0.8458 | 0.8163 | 0.8640 | 0.8613 |
Lane 1 | 1.0744 | 0.9369 | 0.9540 | 0.9545 | 0.9257 | 0.9363 | 0.9029 | 0.9512 | 0.9359 | 0.9024 | |
TEXT | Lane 2 | 0.1108 | 0.1008 | 0.0953 | 0.0953 | 0.0994 | 0.0969 | 0.0982 | 0.0964 | 0.1010 | 0.0944 |
Lane 1 | 0.1007 | 0.0896 | 0.0891 | 0.0895 | 0.0937 | 0.0935 | 0.0883 | 0.0897 | 0.0916 | 0.0899 | |
PSI | Lane 2 | 0.1568 | 0.1522 | 0.1511 | 0.1481 | 0.1547 | 0.1497 | 0.1517 | 0.1511 | 0.1545 | 0.1512 |
Lane 1 | 0.2072 | 0.1823 | 0.1778 | 0.1883 | 0.1800 | 0.1790 | 0.1821 | 0.1785 | 0.1780 | 0.1806 | |
PCR | Lane 2 | 6.7656 | 6.9566 | 6.9350 | 6.9375 | 6.8403 | 6.7263 | 6.6500 | 6.6592 | 7.0250 | 6.7175 |
Lane 1 | 10.2974 | 10.4041 | 9.7632 | 10.4608 | 9.7885 | 9.8416 | 9.8722 | 10.2101 | 9.8633 | 10.1149 | |
R2 | |||||||||||
PC | Lane ID | Without DIR | Without SN | Without IRI | Without RUT | Without CI | Without TEXT | Without PSI | Without PCR | Without LAT | Without LON |
IRI | Lane 2 | 73.38% | 75.99% | 76.53% | 76.85% | 78.07% | 76.91% | 77.05% | 77.95% | 75.94% | 77.23% |
Lane 1 | 82.32% | 83.93% | 83.27% | 83.17% | 83.77% | 83.79% | 83.91% | 83.79% | 83.32% | 83.30% | |
RUT | Lane 2 | 68.62% | 75.55% | 75.94% | 76.86% | 73.91% | 73.74% | 76.50% | 75.91% | 75.68% | 75.16% |
Lane 1 | 70.20% | 76.21% | 76.10% | 73.17% | 74.82% | 73.85% | 76.00% | 74.41% | 74.81% | 75.87% | |
CI | Lane 2 | 85.25% | 90.06% | 89.35% | 89.61% | 88.16% | 89.10% | 89.74% | 90.48% | 89.29% | 89.32% |
Lane 1 | 83.38% | 87.61% | 87.13% | 87.15% | 87.97% | 87.66% | 88.57% | 87.19% | 87.68% | 88.62% | |
TEXT | Lane 2 | 83.46% | 86.53% | 88.11% | 88.12% | 86.94% | 87.70% | 87.23% | 87.77% | 86.61% | 88.32% |
Lane 1 | 71.67% | 78.45% | 78.72% | 78.48% | 76.11% | 76.20% | 79.09% | 78.34% | 77.30% | 78.23% | |
PSI | Lane 2 | 76.42% | 77.98% | 78.33% | 79.30% | 77.14% | 78.90% | 78.14% | 78.41% | 77.24% | 78.29% |
Lane 1 | 80.20% | 85.03% | 85.84% | 83.94% | 85.44% | 85.62% | 85.08% | 85.75% | 85.80% | 85.31% | |
PCR | Lane 2 | 77.42% | 75.95% | 76.09% | 76.26% | 76.87% | 77.68% | 78.37% | 78.30% | 75.63% | 77.94% |
Lane 1 | 71.63% | 70.88% | 74.97% | 70.42% | 74.80% | 74.57% | 74.32% | 72.18% | 74.45% | 72.83% |
References
- Sadek, A.W. Artificial Intelligence Applications in Transportation. In Transportation Research Circular; Transportation Research Board, Artifical Intelligence and Advanced Computing Applications Committee: Washington, DC, USA, 2007; pp. 1–7. [Google Scholar]
- Qi, Y.; Zhang, S.; Jiang, F.; Zhou, H.; Tao, D.; Li, X. Siamese Local and Global Networks for Robust Face Tracking. IEEE Trans. Image Process. 2020, 29, 9152–9164. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Li, G.; Qi, Y.; Huang, Q. Release the Power of Online-Training for Robust Visual Tracking. Proc. AAAI Conf. Artif. Intell. 2020, 34, 12645–12652. [Google Scholar] [CrossRef]
- Qi, Y.; Qin, L.; Zhang, S.; Huang, Q.; Yao, H. Robust Visual Tracking via Scale-and-State-Awareness. Neurocomputing 2019, 329, 75–85. [Google Scholar] [CrossRef]
- An, D.; Qi, Y.; Huang, Y.; Wu, Q.; Wang, L.; Tan, T. Neighbor-View Enhanced Model for Vision and Language Navigation. In Proceedings of the 29th ACM International Conference on Multimedia, Virtual, 20–24 October 2021; pp. 5101–5109. [Google Scholar]
- Zhu, W.; Qi, Y.; Narayana, P.; Sone, K.; Basu, S.; Wang, X.E.; Wu, Q.; Eckstein, M.; Wang, W.Y. Diagnosing Vision-and-Language Navigation: What Really Matters. arXiv 2021, arXiv:2103.16561. [Google Scholar]
- Qi, Y.; Pan, Z.; Hong, Y.; Yang, M.-H.; van den Hengel, A.; Wu, Q. The Road to Know-Where: An Object-and-Room Informed Sequential Bert for Indoor Vision-Language Navigation. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Virtual, 11–17 October 2021; pp. 1655–1664. [Google Scholar]
- Wang, Y.; Qi, Y.; Yao, H.; Gong, D.; Wu, Q. Image Editing with Varying Intensities of Processing. Comput. Vis. Image Underst. 2021, 211, 103260. [Google Scholar] [CrossRef]
- Ye, H.; Li, G.; Qi, Y.; Wang, S.; Huang, Q.; Yang, M.-H. Hierarchical Modular Network for Video Captioning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 19–24 June 2022; pp. 17939–17948. [Google Scholar]
- Chen, W.; Hong, D.; Qi, Y.; Han, Z.; Wang, S.; Qing, L.; Huang, Q.; Li, G. Multi-Attention Network for Compressed Video Referring Object Segmentation. In Proceedings of the 30th ACM International Conference on Multimedia, Lisbon, Portugal, 10–14 October 2022; pp. 4416–4425. [Google Scholar]
- Sattar, K.; Chikh Oughali, F.; Assi, K.; Ratrout, N.; Jamal, A.; Masiur Rahman, S. Transparent Deep Machine Learning Framework for Predicting Traffic Crash Severity. Neural Comput. Appl. 2022, 1–13. [Google Scholar] [CrossRef]
- Moslem, S.; Farooq, D.; Jamal, A.; Almarhabi, Y.; Almoshaogeh, M.; Butt, F.M.; Tufail, R.F. An Integrated Fuzzy Analytic Hierarchy Process (AHP) Model for Studying Significant Factors Associated with Frequent Lane Changing. Entropy 2022, 24, 367. [Google Scholar] [CrossRef]
- Jamal, A.; Zahid, M.; Tauhidur Rahman, M.; Al-Ahmadi, H.M.; Almoshaogeh, M.; Farooq, D.; Ahmad, M. Injury Severity Prediction of Traffic Crashes with Ensemble Machine Learning Techniques: A Comparative Study. Int. J. Inj. Control. Saf. Promot. 2021, 28, 408–427. [Google Scholar] [CrossRef]
- Ijaz, M.; Lan, L.; Zahid, M.; Jamal, A. A Comparative Study of Machine Learning Classifiers for Injury Severity Prediction of Crashes Involving Three-Wheeled Motorized Rickshaw. Accid. Anal. Prev. 2021, 154, 106094. [Google Scholar] [CrossRef]
- Tamim Kashifi, M.; Jamal, A.; Samim Kashefi, M.; Almoshaogeh, M.; Masiur Rahman, S. Predicting the Travel Mode Choice with Interpretable Machine Learning Techniques: A Comparative Study. Travel Behav. Soc. 2022, 29, 279–296. [Google Scholar] [CrossRef]
- Ullah, I.; Liu, K.; Yamamoto, T.; Shafiullah, M.; Jamal, A. Grey Wolf Optimizer-Based Machine Learning Algorithm to Predict Electric Vehicle Charging Duration Time. Transp. Lett. 2022, 1–18. [Google Scholar] [CrossRef]
- Ullah, I.; Liu, K.; Yamamoto, T.; Al Mamlook, R.E.; Jamal, A. A Comparative Performance of Machine Learning Algorithm to Predict Electric Vehicles Energy Consumption: A Path towards Sustainability. Energy Environ. 2021, 33, 1583–1612. [Google Scholar] [CrossRef]
- Ullah, I.; Liu, K.; Yamamoto, T.; Zahid, M.; Jamal, A. Prediction of Electric Vehicle Charging Duration Time Using Ensemble Machine Learning Algorithm and Shapley Additive Explanations. Int. J. Energy Res. 2022, 46, 15211–15230. [Google Scholar] [CrossRef]
- Alkhulaifi, A.; Jamal, A.; Ahmad, I. Predicting Traffic Sign Retro-Reflectivity Degradation Using Deep Neural Networks. Appl. Sci. 2021, 11, 11595. [Google Scholar] [CrossRef]
- Jamal, A.; Reza, I.; Shafiullah, M. Modeling Retroreflectivity Degradation of Traffic Signs Using Artificial Neural Networks. IATSS Res. 2022, 46. [Google Scholar] [CrossRef]
- Sundin, S.; Braban-Ledoux, C. Artificial Intelligence–Based Decision Support Technologies in Pavement Management. Comput.-Aided Civ. Infrastruct. Eng. 2001, 16, 143–157. [Google Scholar] [CrossRef]
- Ceylan, H.; Bayrak, M.B.; Gopalakrishnan, K. Neural Networks Applications in Pavement Engineering: A Recent Survey. Int. J. Pavement Res. Technol. 2014, 7, 434–444. [Google Scholar]
- Flintsch, G.W.; Chen, C. Soft Computing Applications in Infrastructure Management. J. Infrastruct. Syst. 2004, 10, 157–166. [Google Scholar] [CrossRef]
- Shahnazari, H.; Tutunchian, M.A.; Mashayekhi, M.; Amini, A.A. Application of Soft Computing for Prediction of Pavement Condition Index. J. Transp. Eng. 2012, 138, 1495–1506. [Google Scholar] [CrossRef]
- Umer, A.; Hewage, K.; Haider, H.; Sadiq, R. Sustainability Evaluation Framework for Pavement Technologies: An Integrated Life Cycle Economic and Environmental Trade-off Analysis. Transp. Res. Part D Transp. Environ. 2017, 53, 88–101. [Google Scholar] [CrossRef]
- Gopalakrishnan, K. Instantaneous Pavement Condition Evaluation Using Non-Destructive Neuro-Evolutionary Approach. Struct. Infrastruct. Eng. 2012, 8, 857–872. [Google Scholar] [CrossRef]
- Koduru, H.K.; Xiao, F.; Amirkhanian, S.N.; Juang, C.H. Using Fuzzy Logic and Expert System Approaches in Evaluating Flexible Pavement Distress: Case Study. J. Transp. Eng. 2010, 136, 149–157. [Google Scholar] [CrossRef]
- Bosurgi, G.; Trifirò, F. A Model Based on Artificial Neural Networks and Genetic Algorithms for Pavement Maintenance Management. Int. J. Pavement Eng. 2005, 6, 201–209. [Google Scholar] [CrossRef]
- Zhou, G.; Wang, L.; Wang, D.; Reichle, S. Integration of GIS and Data Mining Technology to Enhance the Pavement Management Decision Making. J. Transp. Eng. 2010, 136, 332–341. [Google Scholar] [CrossRef]
- Mubaraki, M. Highway Subsurface Assessment Using Pavement Surface Distress and Roughness Data. Int. J. Pavement Res. Technol. 2016, 9, 393–402. [Google Scholar] [CrossRef] [Green Version]
- Ziari, H.; Sobhani, J.; Ayoubinejad, J.; Hartmann, T. Prediction of IRI in Short and Long Terms for Flexible Pavements: ANN and GMDH Methods. Int. J. Pavement Eng. 2016, 17, 776–788. [Google Scholar] [CrossRef]
- Elhadidy, A.A.; El-Badawy, S.M.; Elbeltagi, E.E. A Simplified Pavement Condition Index Regression Model for Pavement Evaluation. Int. J. Pavement Eng. 2021, 22, 643–652. [Google Scholar] [CrossRef]
- Bianchini, A.; Bandini, P. Prediction of Pavement Performance through Neuro-Fuzzy Reasoning. Comput.-Aided Civ. Infrastruct. Eng. 2010, 25, 39–54. [Google Scholar] [CrossRef]
- Luo, C. Pavement Deterioration Modeling and Design of a Composite Pavement Distress Index for Kentucky Interstate Highways and Parkways. Master’s Thesis, University of Louisville, Louisville, KY, USA, 2014. [Google Scholar]
- Zhang, W.; Durango-Cohen, P.L. Explaining Heterogeneity in Pavement Deterioration: Clusterwise Linear Regression Model. J. Infrastruct. Syst. 2014, 20, 04014005. [Google Scholar] [CrossRef]
- Swei, O.; Gregory, J.; Kirchain, R. Does Pavement Degradation Follow a Random Walk with Drift? Evidence from Variance Ratio Tests for Pavement Roughness. J. Infrastruct. Syst. 2018, 24, 04018027. [Google Scholar] [CrossRef]
- Attoh-Okine, N.O. Grouping Pavement Condition Variables for Performance Modeling Using Self-Organizing Maps. Comput.-Aided Civ. Infrastruct. Eng. 2001, 16, 112–125. [Google Scholar] [CrossRef]
- Tabatabaee, N.; Ziyadi, M.; Shafahi, Y. Two-Stage Support Vector Classifier and Recurrent Neural Network Predictor for Pavement Performance Modeling. J. Infrastruct. Syst. 2013, 19, 266–274. [Google Scholar] [CrossRef]
- Barzegaran, J.; Shahni Dezfoulian, R.; Fakhri, M. Estimation of IRI from PASER Using ANN Based on K-Means and Fuzzy c-Means Clustering Techniques: A Case Study. Int. J. Pavement Eng. 2021, 1–15. [Google Scholar] [CrossRef]
- Majidifard, H.; Adu-Gyamfi, Y.; Buttlar, W.G. Deep Machine Learning Approach to Develop a New Asphalt Pavement Condition Index. Constr. Build. Mater. 2020, 247, 118513. [Google Scholar] [CrossRef]
- Roberts, R.; Giancontieri, G.; Inzerillo, L.; Di Mino, G. Towards Low-Cost Pavement Condition Health Monitoring and Analysis Using Deep Learning. Appl. Sci. 2020, 10, 319. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Chandra, S.; Han, Y.; Seo, H. Deep Learning-Based Thermal Image Analysis for Pavement Defect Detection and Classification Considering Complex Pavement Conditions. Remote Sens. 2021, 14, 106. [Google Scholar] [CrossRef]
- Marcelino, P.; de Lurdes Antunes, M.; Fortunato, E.; Gomes, M.C. Machine Learning Approach for Pavement Performance Prediction. Int. J. Pavement Eng. 2021, 22, 341–354. [Google Scholar] [CrossRef]
- Inkoom, S.; Sobanjo, J.; Barbu, A.; Niu, X. Prediction of the Crack Condition of Highway Pavements Using Machine Learning Models. Struct. Infrastruct. Eng. 2019, 15, 940–953. [Google Scholar] [CrossRef]
- Sholevar, N.; Golroo, A.; Esfahani, S.R. Machine Learning Techniques for Pavement Condition Evaluation. Autom. Constr. 2022, 136, 104190. [Google Scholar] [CrossRef]
- Wang, K.C. Designs and Implementations of Automated Systems for Pavement Surface Distress Survey. J. Infrastruct. Syst. 2000, 6, 24–32. [Google Scholar] [CrossRef]
- Özdemir, O.B.; Soydan, H.; Yardımcı Çetin, Y.; Düzgün, H.Ş. Neural Network Based Pavement Condition Assessment with Hyperspectral Images. Remote Sens. 2020, 12, 3931. [Google Scholar] [CrossRef]
- Chambon, S.; Moliard, J.-M. Automatic Road Pavement Assessment with Image Processing: Review and Comparison. Int. J. Geophys. 2011, 2011, 1–20. [Google Scholar] [CrossRef]
- Ritchie, S.G.; Kaseko, M.; Bavarian, B. Development of an Intelligent System for Automated Pavement Evaluation; Transportation Research Board: Washington, DC, USA, 1991. [Google Scholar]
- Wang, K.C.; Li, Q.J.; Yang, G.; Zhan, Y.; Qiu, Y. Network Level Pavement Evaluation with 1 Mm 3D Survey System. J. Traffic Transp. Eng. Engl. Ed. 2015, 2, 391–398. [Google Scholar] [CrossRef] [Green Version]
- Coenen, T.B.; Golroo, A. A Review on Automated Pavement Distress Detection Methods. Cogent Eng. 2017, 4, 1374822. [Google Scholar] [CrossRef]
- Arhin, S.A.; Noel, E.C.; Ribbiso, A. Acceptable International Roughness Index Thresholds Based on Present Serviceability Rating. J. Civ. Eng. Res. 2015, 5, 90–96. [Google Scholar]
- Bardeesi, M.W.; Attallah, Y. Evaluation of Pavement Conditions and Maintenance Works for Road Network in Saudi Arabia. Eur. Sci. J. 2015, 11, 261–278. [Google Scholar]
- Miller, J.S.; Bellinger, W.Y. Distress Identification Manual for the Long-Term Pavement Performance Program; United States Federal Highway Administration, Office of Infrastructure: Washington, DC, USA, 2003. [Google Scholar]
- Cary, W.N. The Pavement Serviceability-Performance Concept. Highway Research Board Bulletin. 1960, p. 250. Available online: https://onlinepubs.trb.org/Onlinepubs/hrbbulletin/250/250-003.pdf (accessed on 28 November 2022).
- Welch, B.L. On the Comparison of Several Mean Values: An Alternative Approach. Biometrika 1951, 38, 330–336. [Google Scholar] [CrossRef]
- Abiodun, O.I.; Jantan, A.; Omolara, A.E.; Dada, K.V.; Mohamed, N.A.; Arshad, H. State-of-the-Art in Artificial Neural Network Applications: A Survey. Heliyon 2018, 4, e00938. [Google Scholar] [CrossRef] [Green Version]
- Jamal, A.; Umer, W. Exploring the Injury Severity Risk Factors in Fatal Crashes with Neural Network. Int. J. Environ. Res. Public Health 2020, 17, 7466. [Google Scholar] [CrossRef]
- MacKay, D.J. Bayesian Interpolation. Neural Comput. 1992, 4, 415–447. [Google Scholar] [CrossRef]
- Foresee, F.D.; Hagan, M.T. Gauss-Newton Approximation to Bayesian Learning. In Proceedings of the International Conference on Neural Networks (ICNN’97), Houston, TX, USA, 12 June 1997; IEEE: Piscataway, NJ, USA, 1997; Volume 3, pp. 1930–1935. [Google Scholar]
- Burden, F.; Winkler, D. Bayesian Regularization of Neural Networks. Artif. Neural Netw. 2008, 458, 23–42. [Google Scholar]
- Ruben, G.B.; Zhang, K.; Bao, H.; Ma, X. Application and Sensitivity Analysis of Artificial Neural Network for Prediction of Chemical Oxygen Demand. Water Resour. Manag. 2018, 32, 273–283. [Google Scholar] [CrossRef]
Statistics of Various Lanes Conditions Indices | Correlation with Lane 3 Conditions Indices | Two Samples t-Test between PCs of Adjacent Lanes | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
PC | Para-Meter | Lane 3 | Lane 2 | Lane 1 | Terms | L2 | L1 | Terms | L1/L2 | L1/L3 | L2/L3 |
IRI (m/km) | Mean | 2.05 | 1.36 | 1.56 | 0.253 | 0.324 | t-value | 7.370 | −12.55 | −19.79 | |
St. Dev. | 0.74 | 0.36 | 0.54 | DF | 566 | 566 | DF | 989 | 1038 | 823 | |
Min. | 0.91 | 0.65 | 0.72 | p-value | 0.000 | 0.000 | p-value | 0.000 | 0.000 | 0.000 | |
Max. | 7.44 | 3.05 | 3.39 | ||||||||
Rut (mm) | Mean | 5.48 | 4.15 | 4.33 | 0.299 | 0.196 | t-value | 2.040 | −8.780 | −46.47 | |
St. Dev. | 2.55 | 1.18 | 1.81 | DF | 566 | 566 | DF | 975 | 1024 | 573 | |
Min. | 1.75 | 1.76 | 1.35 | p-value | 0.000 | 0.000 | p-value | 0.042 | 0.000 | 0.000 | |
Max. | 20.73 | 8.86 | 15.04 | ||||||||
CI | Mean | 7.04 | 8.08 | 7.67 | 0.406 | 0.382 | t-value | −3.600 | 4.620 | 7.660 | |
St. Dev. | 2.63 | 1.90 | 1.93 | DF | 566 | 566 | DF | 1133 | 1041 | 1033 | |
Min. | 0.08 | 1.15 | 1.18 | p-value | 0.000 | 0.000 | p-value | 0.000 | 0.000 | 0.000 | |
Max. | 10.00 | 10.00 | 10.00 | ||||||||
Texture (mm) | Mean | 0.71 | 0.51 | 0.58 | −0.029 | 0.191 | t-value | 7.660 | −12.660 | −17.71 | |
St. Dev. | 0.20 | 0.20 | 0.14 | DF | 566 | 566 | DF | 1028 | 1038 | 1133 | |
Min. | 0.36 | 0.26 | 0.27 | p-value | 0.484 | 0.000 | p-value | 0.000 | 0.000 | 0.000 | |
Max. | 1.73 | 1.4 | 1.16 | ||||||||
PSI | Mean | 3.53 | 3.93 | 3.81 | 0.281 | 0.357 | t-value | −7.170 | 12.830 | 21.170 | |
St. Dev. | 0.39 | 0.24 | 0.34 | DF | 566 | 566 | DF | 1016 | 1118 | 949 | |
Min. | 1.42 | 2.99 | 2.78 | p-value | 0.000 | 0.000 | p-value | 0.000 | 0.000 | 0.000 | |
Max. | 4.24 | 4.45 | 4.4 | ||||||||
PCR | Mean | 78.43 | 93.79 | 88.81 | 0.221 | 0.304 | t-value | −6.570 | 9.470 | 15.200 | |
St. Dev. | 21.64 | 10.60 | 14.64 | DF | 566 | 566 | DF | 1033 | 996 | 824 | |
Min. | 12.50 | 45.00 | 32.50 | p-value | 0.000 | 0.000 | p-value | 0.000 | 0.000 | 0.000 | |
Max. | 100.00 | 100.00 | 100.00 |
Dir. | SN | IRI | Rut | CI | Tex | PSI | PCR | LON. | |
---|---|---|---|---|---|---|---|---|---|
SN | 0.000 | ||||||||
1.000 | |||||||||
IRI | 0.034 | −0.082 | |||||||
0.425 | 0.051 | ||||||||
Rut | 0.005 | 0.205 | 0.528 | ||||||
0.912 | 0.000 | 0.000 | |||||||
CI | −0.177 | 0.394 | −0.619 | −0.191 | |||||
0.000 | 0.000 | 0.000 | 0.000 | ||||||
Tex | 0.457 | −0.074 | 0.459 | 0.136 | −0.633 | ||||
0.000 | 0.078 | 0.000 | 0.001 | 0.000 | |||||
PSI | −0.036 | 0.129 | −0.986 | −0.555 | 0.646 | −0.450 | |||
0.389 | 0.002 | 0.000 | 0.000 | 0.000 | 0.000 | ||||
PCR | −0.076 | 0.079 | −0.869 | −0.605 | 0.727 | −0.522 | 0.884 | ||
0.070 | 0.061 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | |||
LON. | 0.000 | 0.998 | −0.075 | 0.214 | 0.392 | −0.070 | 0.122 | 0.073 | |
1.000 | 0.000 | 0.074 | 0.000 | 0.000 | 0.096 | 0.004 | 0.081 | ||
LAT. | 0.000 | 1.000 | −0.083 | 0.202 | 0.395 | −0.076 | 0.131 | 0.080 | 0.997 |
1.000 | 0.000 | 0.047 | 0.000 | 0.000 | 0.072 | 0.002 | 0.057 | 0.000 |
IRI | Rut | CI | Texture | PSI | PCR | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Variables | Lane 2 | Lane 1 | Lane 2 | Lane 1 | Lane 2 | Lane 1 | Lane 2 | Lane 1 | Lane 2 | Lane 1 | Lane 2 | Lane 1 |
INTERCEPT | 9.616 | 160.640 | −454.000 | 1439.030 | 7.389 | 7.389 | −39.18 | −0.483 | −1.908 | −541.390 | 3197.500 | −7102.730 |
DIR | −0.101 | −0.225 | 0.138 | 0.385 | 0.385 | 0.069 | 0.144 | 1.050 | 4.970 | |||
0.000 | 0.000 | 0.006 | 0.000 | 0.000 | 0.000 | 0.000 | 0.011 | 0.000 | ||||
SN | 0.025 | −0.079 | 0.256 | −0.007 | −0.095 | −124.200 | −1.240 | |||||
0.031 | 0.000 | 0.000 | 0.000 | 0.049 | 0.000 | 0.001 | ||||||
IRI | −0.27 | −0.250 | −0.799 | 0.260 | −0.820 | −0.820 | −0.109 | 0.178 | 0.180 | |||
0.018 | 0.063 | 0.036 | 0.066 | 0.000 | 0.000 | 0.103 | 0.016 | 0.031 | ||||
RUT | 0.114 | 0.062 | −0.023 | |||||||||
0.000 | 0.066 | 0.000 | ||||||||||
CI | 0.0282 | 0.060 | −0.240 | 0.352 | 0.352 | 0.033 | 0.022 | −0.020 | ||||
0.001 | 0.035 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.001 | |||||
TEX | 0.29 | 0.800 | −1.680 | 1.630 | 1.630 | 0.198 | 0.333 | −0.214 | −7.900 | |||
0.005 | 0.018 | 0.000 | 0.002 | 0.002 | 0.000 | 0.000 | 0.002 | 0.020 | ||||
PSI | −0.430 | −0.906 | −1.350 | −0.320 | 0.520 | 0.616 | 6.600 | 10.300 | ||||
0.000 | 0.001 | 0.079 | 0.018 | 0.000 | 0.000 | 0.000 | 0.000 | |||||
PCR | −0.016 | −0.016 | ||||||||||
0.026 | 0.026 | |||||||||||
LAT | −1.51 | −3.259 | −30.120 | 1.060 | 9.397 | 150.450 | ||||||
0.000 | 0.016 | 0.000 | 0.000 | 0.033 | 0.001 | |||||||
LON | 2.65 | 18.400 | 1.620 | 0.026 | −1.850 | 3.800 | −124.200 | |||||
0.000 | 0.000 | 0.000 | 0.127 | 0.000 | 0.124 | 0.000 | ||||||
RMSE | 0.312 | 0.380 | 1.020 | 1.620 | 1.620 | 1.620 | 0.179 | 0.132 | 0.205 | 0.253 | 9.840 | 12.200 |
R2 (%) | 26.640 | 51.320 | 26.240 | 20.970 | 27.660 | 27.660 | 20.250 | 16.110 | 28.720 | 53.770 | 14.470 | 31.060 |
IRI | RUT | CI | TEX | PSI | PCR | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Intercept | −4,987,300 | Intercept | 142,670 | Intercept | 20,176,000 | Intercept | −45376 | Intercept | 3,015,000 | Intercept | 82,971,000 |
DIR | −125.16 | DIR | −3150.7 | DIR | −8080 | DIR | −0.41049 | DIR | 0.16871 | DIR | −1787 |
SN | −1796.1 | SN | −63.071 | SN | 7242.1 | SN | −8.1093 | SN | 1088 | SN | 29745 |
IRI | −1495.4 | IRI | −34.402 | IRI | 5248.8 | IRI | 205.56 | IRI | 753.53 | IRI | −244.21 |
RUT | −167.96 | RUT | −1839.2 | RUT | −2466.2 | RUT | 10.78 | RUT | 101.67 | RUT | 4578.8 |
CI | 126.08 | CI | 2307.9 | CI | −2940.3 | CI | −1.9882 | CI | −75.117 | CI | −9831.8 |
TEXT | −2.6151 | TEXT | −7.1267 | TEXT | −1557.5 | TEXT | −559.03 | TEXT | 3577.6 | TEXT | −8637.9 |
PSI | −4097.8 | PSI | −23034 | PSI | 13531 | PSI | 4639.9 | PSI | 2285.7 | PSI | −788.45 |
PCR | 0.013807 | PCR | −1.1581 | PCR | 0.075239 | PCR | −64.256 | PCR | 21.961 | PCR | −0.28437 |
LAT † | −321.9 | LAT | −5651.5 | LAT † | 2072.8 | LAT | 431.17 | LAT | 295.17 | LAT † | 6178.2 |
LON | 210,270 | LON | −1316.2 | LON | −849920 | LON | 1392 | LON | −127230 | LON | −3.49E+6 |
DIR*SN | −0.02308 | DIR*SN | −0.56565 | DIR*SN | −1.4426 | DIR*RUT | 0.019799 | DIR*SN | 0.000421 | DIR*SN | −0.32239 |
DIR*RUT | 0.019773 | DIR*IRI | −2.1524 | DIR*CI | −0.1663 | DIR*CI | 0.014733 | DIR*RUT | −0.01099 | DIR*IRI | 4.0006 |
DIR*CI | 0.025276 | DIR*CI | 0.069223 | DIR*TEXT | −1.4869 | DIR*PSI | 0.087773 | DIR*CI | −0.01658 | DIR*RUT | −0.72962 |
DIR*LON | 2.6264 | DIR*TEXT | 1.0866 | DIR*PSI | −0.73049 | DIR*PCR | −0.00138 | SN*IRI | 0.13636 | DIR*TEXT | −14.854 |
SN*IRI | −0.2717 | DIR*PSI | −4.0427 | DIR*PCR | 0.020947 | SN*IRI | 0.03371 | SN*RUT | 0.018482 | DIR*LAT | 71.314 |
SN*RUT | −0.03028 | DIR*LAT | 34.174 | DIR*LAT | 88.569 | SN*RUT | 0.001762 | SN*CI | −0.01353 | SN*RUT | 0.835 |
SN*CI | 0.0228 | DIR*LON | 48.545 | DIR*LON | 123.12 | SN*TEXT | −0.09894 | SN*TEXT | 0.63976 | SN*CI | −1.7583 |
SN*PSI | −0.74352 | SN*RUT | −0.32934 | SN*IRI | 0.95671 | SN*PSI | 0.82372 | SN*PSI | 0.41393 | SN*TEXT | −1.4972 |
SN*LON | 37.831 | SN*CI | 0.41268 | SN*RUT | −0.43826 | SN*PCR | −0.01153 | SN*PCR | 0.003931 | SN*LON | −625.11 |
IRI*RUT | 0.21897 | SN*PSI | −4.1138 | SN*CI | −0.52656 | SN*LON | 0.11956 | SN*LON | −22.928 | IRI*RUT | −9.5157 |
IRI*LON | 31.431 | SN*LON | 1.6284 | SN*TEXT | −0.28749 | IRI*TEXT | −0.13412 | IRI*PSI | −0.53833 | IRI*TEXT | −70.028 |
RUT*PSI | 0.40288 | IRI*RUT | 0.81057 | SN*PSI | 2.461 | IRI*PCR | −0.00996 | IRI*PCR | 0.005349 | IRI*PSI | −33.276 |
RUT*LON | 3.4929 | IRI*PSI | 3.5644 | SN*LON | −152.35 | IRI*LAT | −8.1298 | IRI*LON | −15.797 | IRI*LAT | 537.96 |
CI*TEXT | −0.18545 | IRI*PCR | 0.12325 | IRI*RUT | −0.72298 | RUT*LAT | −0.42999 | RUT*PCR | 0.000694 | IRI*LON | −275.04 |
CI*LON | −2.6487 | RUT*PSI | 1.6857 | IRI*LON | −110.34 | CI*LAT | 0.075479 | RUT*LON | −2.1397 | RUT*TEXT | −4.9425 |
TEXT*PSI | 1.1011 | RUT*LAT | 15.962 | RUT*TEXT | −0.50002 | TEXT*LON | 11.761 | CI*TEXT | 0.17722 | RUT*PSI | −19.734 |
PSI*LON | 86.12 | RUT*LON | 30.078 | RUT*PSI | −1.287 | PSI*PCR | −0.01954 | CI*LON | 1.577 | RUT*LON | −94.358 |
LAT*LON | −422.22 | CI*PCR | −0.00463 | RUT*LAT | 27.692 | PSI*LAT | −60.652 | TEXT*PSI | −1.1476 | CI*PCR † | 0.025864 |
SN^2 | −0.16168 | CI*LAT | −18.937 | RUT*LON | 37.342 | PSI*LON | −65.448 | TEXT*LAT | −27.244 | CI*LAT | 95.212 |
RUT^2 | 0.004667 | CI*LON | −38.505 | CI*TEXT | 1.7894 | PCR*LAT | 0.64777 | TEXT*LON | −60.759 | CI*LON | 156.46 |
PCR^2 | −7E−05 | TEXT*PSI | 3.2312 | CI*LAT | 28.755 | PCR*LON | 1.0105 | PSI*LON | −48.023 | TEXT*PSI | −159.3 |
LAT^2 | 405.89 | TEXT*PCR | −0.04669 | CI*LON | 46.586 | LAT*LON | −48.206 | PCR*LAT † | −0.2003 | TEXT*LAT | 371.74 |
LON^2 | −2102.8 | PSI*PCR | 0.27703 | TEXT*PCR | −0.12599 | RUT^2 | 0.003019 | PCR*LON † | −0.35671 | PSI*LAT | 1255.1 |
PSI*LAT | 200.85 | TEXT*LAT | 61.823 | CI^2 | 0.005189 | LAT*LON | 254.55 | PSI*LON | −632.04 | ||
PSI*LON | 377.26 | PSI*LON | −284.48 | LAT^2 | 41.075 | SN^2 | 0.098126 | LAT*LON | 8997.2 | ||
SN^2 | −0.01585 | LAT*LON | 2196.8 | IRI^2 | −0.21842 | SN^2 | 2.6657 | ||||
IRI^2 | 1.7593 | SN^2 | 0.64983 | PCR^2 | 0.00016 | RUT^2 | −0.33006 | ||||
RUT^2 | 0.010569 | RUT^2 | −0.02978 | LAT^2 | −246.04 | CI^2 | −0.42372 | ||||
LAT^2 | 98.395 | CI^2 | 0.050773 | LON^2 | 1273.2 | PSI^2 | −65.576 | ||||
TEXT^2 | 3.9505 | LAT^2 | −8763.1 | ||||||||
LAT^2 | −2127.3 | LON^2 | 34335 | ||||||||
LON^2 | 8361 | ||||||||||
RMSE | 0.251 | RMSE | 0.883 | RMSE | 1.18 | RMSE | 0.136 | RMSE | 0.163 | RMSE | 7.88 |
R2 | 0.550 | R2 | 0.481 | R2 | 0.641 | R2 | 0.565 | R2 | 0.574 | R2 | 0.488 |
IRI | RUT | CI | TEX | PSI | PCR | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Intercept | −8.46E+5 | Intercept | 1.17E+06 | Intercept | 1.91E+07 | Intercept | 25485 | Intercept | 4.78E+5 | Intercept | −8.17E+6 |
DIR | 2351.9 | DIR | 12,584 | DIR | −13,291 | DIR | −36.78 | DIR | −1546.8 | DIR | −97,228 |
SN | −336.13 | SN | 209.75 | SN | 6734.2 | SN | 4.5142 | SN | 192.47 | SN | −1459.8 |
IRI | −14152 | IRI | −63747 | IRI † | 210.33 | IRI | −1800.4 | IRI | 9275.1 | IRI | 5.16E+05 |
RUT † | 0.028914 | RUT | 16.415 | RUT | −131.95 | RUT | −11.221 | RUT | 0.032893 | RUT | −3.1127 |
CI | 514.44 | CI | 5580.5 | CI | −2332.4 | CI † | −0.04181 | CI | −322.88 | CI | −30498 |
TEXT | 34.105 | TEXT | 30,318 | TEXT | −68.948 | TEXT | 0.20717 | TEXT | −23.186 | TEXT † | −9.0446 |
PSI | −30340 | PSI | −1.29E+5 | PSI | −70.68 | PSI | −844.75 | PSI | 19,617 | PSI | 1.07E+06 |
PCR | 0.05492 | PCR | 19.125 | PCR † | 0.051287 | PCR | −46.454 | PCR | −0.01366 | PCR | 0.34824 |
LAT | −1071 | LAT | −30,601 | LAT | −4482.7 | LAT | −91.746 | LAT | 706.77 | LAT | 61,579 |
LON | 38,885 | LON | −22,145 | LON | −8.00E+5 | LON | −815.51 | LON | −22,256 | LON | 2.15E+05 |
DIR*SN | 0.42155 | DIR*SN | 2.2528 | DIR*SN | −2.3769 | DIR*SN | −0.00615 | DIR*SN | −0.2772 | DIR*SN | −17.417 |
DIR*PSI | 0.20165 | DIR*RUT | −0.06095 | DIR*IRI | −2.1331 | DIR*CI | 0.009409 | DIR*PSI | −0.10405 | DIR*CI † | 0.66789 |
DIR*LAT | −19.882 | DIR*CI | −0.24414 | DIR*TEXT | 1.0249 | DIR*TEXT | −0.09728 | DIR*LAT | 13.199 | DIR*TEXT | 15.479 |
DIR*LON | −38.961 | DIR*TEXT | −1.3265 | DIR*PSI | −4.1952 | DIR*PSI | −0.04283 | DIR*LON | 25.557 | DIR*LAT | 863.97 |
SN*IRI | −2.5289 | DIR*LAT | −112.04 | DIR*LAT | 122.24 | DIR*LAT | 1.4664 | SN*IRI | 1.6597 | DIR*LON | 1587.3 |
SN*RUT † | 0.000218 | DIR*LON | −205.3 | DIR*LON | 215.23 | SN*IRI | −0.32222 | SN*CI | −0.05776 | SN*IRI | 92.302 |
SN*CI | 0.091863 | SN*IRI | −11.396 | SN*IRI † | 0.042249 | SN*RUT | −0.00181 | SN*PSI | 3.5099 | SN*CI | −5.4612 |
SN*PSI | −5.4216 | SN*CI | 0.99706 | SN*RUT | −0.02263 | SN*CI | 0.000164 | SN*PCR | 2.76E−05 | SN*PSI | 190.69 |
SN*LON | 7.557 | SN*TEXT | 5.4247 | SN*CI | −0.41771 | SN*PSI | −0.15159 | SN*LON | −4.3654 | SN*LON | 13.525 |
IRI*CI | 0.043251 | SN*PSI | −23.027 | SN*TEXT | 0.013858 | SN*PCR | −0.00831 | IRI*PSI | 5.4178 | IRI*PSI | 185.71 |
IRI*TEXT | 0.35699 | SN*PCR | 0.00337 | SN*LON | −141.5 | SN*LON | −0.05782 | IRI*LAT | −78.607 | IRI*LAT | −4117.7 |
IRI*PSI | −5.5782 | SN*LAT | −3.8043 | IRI*TEXT | 8.1014 | IRI*LAT | 13.616 | IRI*LON | −153.96 | IRI*LON | −8691.9 |
IRI*PCR | −0.01062 | SN*LON | −0.4314 | IRI*PSI | 3.5725 | IRI*LON | 30.656 | RUT*TEXT | −0.06261 | RUT*CI | 0.31907 |
IRI*LAT | 117.87 | IRI*PSI | 0.90405 | IRI*LAT | −9.1198 | RUT*LAT | 0.44495 | CI*LAT | 2.586 | CI*TEXT | 7.5985 |
IRI*LON | 235.76 | IRI*PCR | −0.02732 | RUT*LAT | 5.2375 | CI*PSI | 0.020294 | CI*LON | 5.4216 | CI*LAT | 270.76 |
CI*LAT | −4.3628 | IRI*LAT | 576.37 | CI*PCR | 0.010846 | PSI*LON | 17.759 | TEXT*LON | 0.48347 | CI*LON | 497.84 |
CI*LON | −8.5112 | IRI*LON | 1035.6 | CI*LAT | 21.132 | PCR*LAT | 0.488 | PSI*LAT | −166.16 | TEXT*PCR | −0.65014 |
TEXT*LON | −0.71461 | RUT*LON | −0.33256 | CI*LON | 37.856 | PCR*LON | 0.71871 | PSI*LON | −325.72 | PSI*LAT | −8548.4 |
PSI*LAT | 254.15 | CI*PCR | −0.00563 | TEXT*PSI | 15.214 | LAT*LON | 25.428 | SN^2 | 0.019123 | PSI*LON | −17,937 |
PSI*LON | 504.69 | CI*LAT | −50.147 | LAT*LON | 1833.4 | CI^2 | −0.00306 | IRI^2 | 1.2164 | LAT*LON | −536.53 |
SN^2 | −0.03303 | CI*LON | −90.813 | SN^2 | 0.59347 | LAT^2 | −23.408 | PSI^2 | 6.0535 | IRI^2 | 42.418 |
IRI^2 | −1.3801 | TEXT*LAT | −282.47 | TEXT^2 | −2.8445 | PCR^2† | 5.14E−05 | CI^2 | 0.46754 | ||
RUT^2 | −0.00381 | TEXT*LON † | −488.12 | PSI^2 | 7.3199 | LON^2 | 248.82 | PSI^2 | 199.94 | ||
PSI^2 | −6.2659 | PSI*LAT | 1199.2 | PCR^2 | −0.00083 | LON^2 | −1305.4 | ||||
PCR^2 | −0.00019 | PSI*LON | 2073.6 | LAT^2 | −1649.7 | ||||||
LON^2 | −431.7 | PCR*LAT † | −0.75592 | LON^2 | 7925.4 | ||||||
LAT*LON | 543.29 | ||||||||||
RMSE | 0.323 | RMSE | 1.430 | RMSE | 1.190 | RMSE | 0.104 | RMSE | 0.200 | RMSE | 11.000 |
R2 | 0.668 | R2 | 0.422 | R2 | 0.642 | R2 | 0.505 | R2 | 0.680 | R2 | 0.467 |
NN Modeling Results Summary of Lane 2 and Lane 1 Indices from Lane 3 Indices | |||||||
---|---|---|---|---|---|---|---|
Lane 2 | Lane 1 | ||||||
Training | Testing | All | Training | Testing | All | ||
IRI (m/km) | R2 | 0.812 | 0.790 | 0.802 | 0.866 | 0.795 | 0.855 |
RMSE | 0.213 | 0.235 | 0.216 | 0.277 | 0.301 | 0.281 | |
Epoch | 239 | NA | 462 | NA | |||
Neurons | 7 | 8 | |||||
Rut (mm) | R2 | 0.818 | 0.782 | 0.800 | 0.782 | 0.780 | 0.781 |
RMSE | 0.684 | 0.834 | 0.708 | 1.151 | 1.023 | 1.133 | |
Epoch | 237 | NA | 187 | NA | |||
Neurons | 10 | 8 | |||||
CI | R2 | 0.908 | 0.911 | 0.908 | 0.891 | 0.893 | 0.892 |
RMSE | 0.801 | 0.776 | 0.797 | 0.858 | 0.960 | 0.874 | |
Epoch | 133 | NA | 94 | NA | |||
Neurons | 9 | 8 | |||||
Texture (mm) | R2 | 0.891 | 0.849 | 0.885 | 0.820 | 0.751 | 0.809 |
RMSE | 0.092 | 0.099 | 0.093 | 0.084 | 0.086 | 0.084 | |
Epoch | 173 | NA | 117 | NA | |||
Neurons | 8 | 8 | |||||
PSI | R2 | 0.807 | 0.791 | 0.805 | 0.879 | 0.850 | 0.874 |
RMSE | 0.144 | 0.137 | 0.143 | 0.165 | 0.174 | 0.167 | |
Epoch | 356 | NA | 404 | NA | |||
Neurons | 7 | 10 | |||||
PCR | R2 | 0.815 | 0.628 | 0.773 | 0.731 | 0.729 | 0.731 |
RMSE | 6.249 | 8.311 | 6.884 | 9.760 | 11.221 | 9.992 | |
Epoch | 191 | NA | 235 | NA | |||
Neurons | 10 | 8 |
% Change in RMSE | |||||||||||
PC | Lane ID | Without DIR | Without SN | Without IRI | Without RUT | Without CI | Without TEXT | Without PSI | Without PCR | Without LAT | Without LON |
IRI | Lane 2 | 13.96% | 8.92% | 7.76% | 7.02% | 4.67% | 7.01% | 6.65% | 4.91% | 8.83% | 6.53% |
Lane 1 | 9.41% | 4.93% | 6.68% | 6.96% | 5.58% | 5.19% | 4.87% | 5.24% | 6.61% | 6.64% | |
RUT | Lane 2 | 20.93% | 9.24% | 8.56% | 6.60% | 12.37% | 12.66% | 7.44% | 8.54% | 9.15% | 10.07% |
Lane 1 | 13.90% | 3.57% | 3.78% | 8.99% | 6.17% | 7.90% | 3.95% | 6.84% | 6.19% | 4.22% | |
CI | Lane 2 | 24.58% | 3.58% | 7.20% | 5.78% | 12.64% | 8.22% | 5.15% | 1.48% | 7.41% | 7.07% |
Lane 1 | 21.81% | 6.22% | 8.15% | 8.21% | 4.95% | 6.15% | 2.36% | 7.84% | 6.10% | 2.31% | |
TEXT | Lane 2 | 18.26% | 7.57% | 1.74% | 1.74% | 6.12% | 3.40% | 4.83% | 2.86% | 7.81% | 0.75% |
Lane 1 | 18.49% | 5.48% | 4.82% | 5.37% | 10.23% | 10.02% | 3.92% | 5.57% | 7.75% | 5.74% | |
PSI | Lane 2 | 8.59% | 5.41% | 4.64% | 2.54% | 7.10% | 3.70% | 5.04% | 4.62% | 6.97% | 4.72% |
Lane 1 | 23.12% | 8.32% | 5.63% | 11.90% | 6.98% | 6.37% | 8.23% | 6.05% | 5.75% | 7.35% | |
PCR | Lane 2 | −1.72% | 1.06% | 0.74% | 0.78% | −0.63% | −2.29% | −3.39% | −3.26% | 2.05% | −2.41% |
Lane 1 | 2.15% | 3.20% | −3.15% | 3.77% | −2.90% | −2.37% | −2.07% | 1.28% | −2.16% | 0.34% | |
% Change in R2 | |||||||||||
PC | Lane ID | Without DIR | Without SN | Without IRI | Without RUT | Without CI | Without TEXT | Without PSI | Without PCR | Without LAT | Without LON |
IRI | Lane 2 | −8.52% | −5.26% | −4.59% | −4.19% | −2.67% | −4.12% | −3.93% | −2.82% | −5.32% | −3.72% |
Lane 1 | −3.75% | −1.87% | −2.65% | −2.76% | −2.06% | −2.04% | −1.89% | −2.03% | −2.59% | −2.61% | |
RUT | Lane 2 | −14.26% | −5.60% | −5.12% | −3.97% | −7.66% | −7.86% | −4.42% | −5.16% | −5.45% | −6.09% |
Lane 1 | −10.09% | −2.38% | −2.52% | −6.28% | −4.17% | −5.41% | −2.65% | −4.70% | −4.17% | −2.82% | |
CI | Lane 2 | −6.09% | −0.80% | −1.58% | −1.29% | −2.89% | −1.86% | −1.15% | −0.34% | −1.64% | −1.61% |
Lane 1 | −6.48% | −1.73% | −2.27% | −2.25% | −1.33% | −1.68% | −0.65% | −2.20% | −1.65% | −0.60% | |
TEXT | Lane 2 | −5.70% | −2.24% | −0.45% | −0.44% | −1.77% | −0.91% | −1.44% | −0.83% | −2.15% | −0.22% |
Lane 1 | −11.38% | −2.99% | −2.66% | −2.96% | −5.89% | −5.78% | −2.20% | −3.13% | −4.42% | −3.26% | |
PSI | Lane 2 | −5.04% | −3.10% | −2.66% | −1.47% | −4.14% | −1.96% | −2.91% | −2.56% | −4.02% | −2.72% |
Lane 1 | −8.27% | −2.74% | −1.82% | −3.99% | −2.28% | −2.07% | −2.68% | −1.92% | −1.86% | −2.43% | |
PCR | Lane 2 | 0.10% | −1.80% | −1.62% | −1.40% | −0.61% | 0.43% | 1.33% | 1.24% | −2.21% | 0.77% |
Lane 1 | −1.99% | −3.02% | 2.57% | −3.64% | 2.35% | 2.03% | 1.69% | −1.24% | 1.87% | −0.35% |
PC | Lane ID | DIR | SN | IRI | RUT | CI | TEXT | PSI | PCR | LAT | LON |
---|---|---|---|---|---|---|---|---|---|---|---|
IRI | Lane 2 | 1 | 2 | 4 | 5 | 10 | 6 | 7 | 9 | 3 | 8 |
Lane 1 | 1 | 9 | 3 | 2 | 6 | 8 | 10 | 7 | 5 | 4 | |
RUT | Lane 2 | 1 | 5 | 8 | 10 | 3 | 2 | 9 | 7 | 6 | 4 |
Lane 1 | 1 | 10 | 9 | 2 | 6 | 3 | 8 | 4 | 5 | 7 | |
CI | Lane 2 | 1 | 9 | 5 | 7 | 2 | 3 | 8 | 10 | 4 | 6 |
Lane 1 | 1 | 5 | 3 | 2 | 8 | 6 | 9 | 4 | 7 | 10 | |
TEXT | Lane 2 | 1 | 3 | 8 | 9 | 4 | 6 | 5 | 7 | 2 | 10 |
Lane 1 | 1 | 7 | 9 | 8 | 2 | 3 | 10 | 6 | 4 | 5 | |
PSI | Lane 2 | 1 | 4 | 7 | 10 | 2 | 9 | 5 | 8 | 3 | 6 |
Lane 1 | 1 | 3 | 10 | 2 | 6 | 7 | 4 | 8 | 9 | 5 | |
PCR | Lane 2 | 9 | 5 | 7 | 8 | 10 | 6 | 1 | 2 | 3 | 4 |
Lane 1 | 6 | 2 | 3 | 1 | 4 | 5 | 8 | 9 | 7 | 10 | |
Ave. | Lane 2 | 1 | 4 | 6 | 9 | 2 | 5 | 8 | 10 | 3 | 7 |
Lane 1 | 1 | 8 | 7 | 2 | 4 | 3 | 10 | 6 | 5 | 9 |
IRI | RUT | CI | TEX | PSI | PCR | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
L 2 | L 1 | L 2 | L 1 | L 2 | L 1 | L 2 | L 1 | L 2 | L 1 | L 2 | L 1 | |
S-MLR | 0.312 | 0.380 | 1.020 | 1.620 | 1.620 | 1.620 | 0.179 | 0.132 | 0.205 | 0.235 | 9.840 | 12.200 |
Q-MLR | 0.251 | 0.323 | 0.883 | 1.430 | 1.180 | 1.190 | 0.136 | 0.104 | 0.163 | 0.200 | 7.880 | 11.000 |
ANN | 0.216 | 0.281 | 0.708 | 1.133 | 0.797 | 0.874 | 0.093 | 0.084 | 0.143 | 0.167 | 9.277 | 9.992 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Osman, S.A.; Almoshaogeh, M.; Jamal, A.; Alharbi, F.; Al Mojil, A.; Dalhat, M.A. Intelligent Assessment of Pavement Condition Indices Using Artificial Neural Networks. Sustainability 2023, 15, 561. https://doi.org/10.3390/su15010561
Osman SA, Almoshaogeh M, Jamal A, Alharbi F, Al Mojil A, Dalhat MA. Intelligent Assessment of Pavement Condition Indices Using Artificial Neural Networks. Sustainability. 2023; 15(1):561. https://doi.org/10.3390/su15010561
Chicago/Turabian StyleOsman, Sami Abdullah, Meshal Almoshaogeh, Arshad Jamal, Fawaz Alharbi, Abdulhamid Al Mojil, and Muhammad Abubakar Dalhat. 2023. "Intelligent Assessment of Pavement Condition Indices Using Artificial Neural Networks" Sustainability 15, no. 1: 561. https://doi.org/10.3390/su15010561
APA StyleOsman, S. A., Almoshaogeh, M., Jamal, A., Alharbi, F., Al Mojil, A., & Dalhat, M. A. (2023). Intelligent Assessment of Pavement Condition Indices Using Artificial Neural Networks. Sustainability, 15(1), 561. https://doi.org/10.3390/su15010561