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Abstract

:

The traditional manual approach of pavement condition evaluation is being replaced by more sophisticated automated vehicle systems. Although these automated systems have eased and hastened pavement management processes, research is ongoing to further improve their performances. An average state road agency handles thousands of kilometers of the road network, most of which have multiple lanes. Yet, for practical reasons, these automated systems are designed to evaluate road networks one lane at a time. This requires time, energy, and possibly more equipment and manpower. Multiple Linear Regression (MLR) analysis and Artificial Neural Network (ANN) were employed to examine the feasibility of modeling and predicting pavement distresses of multiple lanes as functions of pavement distresses of a single adjacent lane. The successful implementation of this technique has the potential to cut the energy and time requirement at the condition evaluation stage by at least half, for a uniform multi-lane highway. Results showed promising model performances that indicate the possibility of evaluating a multi-lane highway pavement condition (PC) by single lane inspection. Traffic direction parameters, location, and lane matching parameters contributed significantly to the performance of the ANN PC prediction models.
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1. Introduction


Artificial intelligence (AI) is an emerging area of computer science that uses different types of machines and sensors to mimic intelligent human behavior. John McCarthy first introduced AI in 1956 [1]; however, lack of technological innovations by the time limited its applications. In the following decade (between 1960 to 1970) researchers explored AI through artificial neural networks (ANNs) and Knowledge-based systems (KBS) [1]. ANNs are systems of neurons connected in various layers and inspired by the human brain to solve various complex real-life tasks. On the other hand, KBS systems are computers that offer guidance based on pre-established rules based on the information fed to them by humans. Application of the latest Machine Learning (ML) and Deep Learning (DL) based technologies have revolutionized AI. ML and DL have found various applications in diverse fields such as face recognition and tracking [2], visual tracking [3,4], vision and language navigation [5,6,7], and image and video editing [8,9,10]. In recent years, application of such soft computing methodologies has received widespread applications for various civil and transportation engineering-related problems, including road safety [11,12,13,14], mode choice modeling [15], energy demand modeling for electric vehicles [16,17,18], and traffic sign detection and recognition [19,20]. Similarly, applications of these predictive modeling approaches are reshaping the field of pavement evaluation and management.



Quality road networks are key to the safe movement of people, goods, and transfer of services. These are transportation aspects that facilitate the social and economic development of all nations. However, quality roads can only be maintained through an efficient pavement management system. Due to the significance of establishing and maintaining good road network, all responsible governments and road management agencies around the globe continue to invest and adopt modern tools in managing the pavement conditions of their highway networks. Artificial intelligence techniques such as Expert Systems, ANN, Genetic Algorithms, and Hybrid Systems have found a wide range of applications in three key stages of pavement management systems [21,22,23]. These stages include pavement distresses or deterioration diagnosis and modeling [24,25,26,27], identification and selection of maintenance action [28], and systematic prioritization and optimization of pavement maintenance [21,29]. The pavement distress identification and modeling stages formed the basis and building blocks to achieving the second and third most important management stages. The use of conventional regression analysis in modeling Pavement Conditions (PC) as functions of distresses has often resulted in poor and inaccurate relationships [22]. This is due to the random nature of the PC data that contain irregular data points which naïve statistical analysis would regard as outliers. This is evident from a recent study that gives a statistical insight into whether the International Roughness Index (IRI) should be considered as an alternative distress and a ride quality index [30]. Although most of the pavement’s distresses showed a statistically significant relationship with the IRI, only about 30% of the IRI data can be described by the developed models. In another study, IRI was successfully modeled as a function of traffic, time, and pavement structural inputs using higher-order polynomials [31,32]. However, the ANN modeling of the same data showed better performance by far. MLR and Neuro-Fuzzy algorithm were employed in modeling the pavement present serviceability index (PSI) as a function of traffic loading, rutting, and non-destructive deflection testing structural performance parameters [33]. Even though the Neuro-Fuzzy models showed slightly better prediction performance, the MLR models were also able to satisfactorily predict the PSI. However, the findings of an earlier study showed the in adequacy of MLR in modeling the IRI as a function of material and construction variables [25]. Back-propagated NN models were alternatively developed, revealing insightful and accurate relationships. In some cases where both MLR and Artificial Intelligence (AI) models performed satisfactorily, MLR models are preferred due to their simplicity [34]. Cluster-wise MLR models were also successfully employed to capture the heterogeneity in pavement deterioration [35]. In summary, regression analysis is often not adequate for modeling pavement performances, but it can sometimes yield the desired results. This is why several road agencies still use pavement management frameworks that utilize regression-based prediction models [36].



ANN self-organizing maps was earlier successfully used to develop a method for pavement distress grouping that will enable and ease pavement performance modeling [37]. The study illustrates how roughness was dependent on and can be modeled as a function of the grouped variables. However, the observed models’ structures were not tested on numerical data to show their statistical performances. A method for selecting optimal major maintenance action based on ANN accident and sideway force predicting models was proposed [28]. Genetic algorithm (GA) was used to generate and select the optimal type of maintenance from the ANN model outputs. Levenberg–Marquardt algorithm was used to train and test the various two-layer neural networks (NN) without validation. Minimal error, correlation of 0.888, and 0.853 between the target and predicted output for training and testing were observed, respectively. ANN and GA were also employed to develop predictive model for PC Index (PCI) as alternative to the conventional chart-to-chart procedure [24]. The model was based on eight types of field-obtained pavement distresses and their severity levels from more than 12,000 pavement sections. The ANN model was more accurate with less than 1.00 Root Mean Square Error (RMSE), and 0.99 correlation with the target PCI. Hybrid feed-forward NN-GA algorithm was used to develop predictive models for airfield pavement deflection based on non-destructive testing moduli data base [26]. The NN-GA predicted deflections showed a correlation above 0.99 with the measured deflections for both the pavement and sub-grade layers. A two-layer recurrent NN along with decision tree support vector classier was used to model pavement PSI as a function of material and structural properties, traffic and maintenance history, and time [38]. Data pre-processing of IRI into clusters using k-mean and fuzzy c-mean was shown improve ANN model performance significantly [39]. The IRI model was a function of traffic and pavement structural variables.



In recent years, few studies have investigated the applicability of AI-based ML and DL frameworks for pavement condition evaluation and assessment. For example, Majidifard et al. employed a DL Yolo algorithm for automated pavement distress detection using a dataset containing 7237 Google street images [40]. Pavement condition was classified according to nine different distress classes. The authors were able to develop various pavement condition indices using the proposed algorithm, which can minimize human dependence for pavement inspection. Roberts et al. proposed a low-cost DL prediction methodology for pavement health condition monitoring [41]. The methodology was applied to a road network in Sicily, Italy to identify the hotspot locations of different pavement distress types and their severities which are in need of repair and rehabilitation. In another study, the researchers proposed an efficient pavement damage prediction model based on a thermal–RGB fusion [42]. The model achieved a fused image detection accuracy of 98%. Marcelino et al. utilized the International Roughness Index (IRI) for developing a Random Forest (RF)-based pavement performance prediction model in Pavement Management System (PMS) [43]. In addition to IRI data, other input data for the model were traffic, structural, and climate data. Sensitivity analysis showed that proposed RF model results were sensitive to previous IRI values. In their study, Inkoom et al. presented the application of ANNs and recursive partitioning frameworks for predicting the cracking rate in pavements [44]. Explanatory variables such as the roadway functional class, average daily traffic (considering truck factor), pavement condition time series data, and asphalt thickness were used for the model formulation. The recursive partitioning technique yielded promising results in terms of predictive accuracies 90.89–0.91), high ROC for the selected decision tree (DT) models, and efficient cost complexity. A recent study by Sholevar et al. a detailed literature review of various state-of-the-art ML techniques for pavement condition evaluation [45]. The review also highlighted the current challenges and prospects for future research in the domain of AI and ML for pavement distress identification and gradation of corresponding severities.



Based on the above literature review, although preferred due to their simplicity, the conventional modeling techniques such as regression analysis do not usually offer reliable prediction model for PC. In addition, these previous studies were mainly predicting individual PC such as IRI, PSI, and rutting, as function of material and traffic variables. In this study, ten PCI were considered for inter-lane PC prediction for efficient pavement management.



Problem Statement and Objective


More sophisticated automated vehicle systems are replacing the traditional manual approach of pavement condition evaluation. This was possible through continuous research on the application of AI techniques for pavement evaluation [45,46,47]. Such kind of smart pavement evaluation systems incorporate image processing and sensors [48,49,50,51], and many now exist commercially or as prototypes. Although these automated systems have eased and hastened pavement management processes, several pieces of research are ongoing to further improve their performances. An average state road agency handles thousands of kilometers of the road network, most of which have multiple lanes. Yet for practical reasons, these automated systems are designed to evaluate road networks one lane at a time. This means for a six-lane divided highway, the pavement inspection vehicle has to travel six times the distance of that road to fully cover the pavement sections. Time, energy, and data storages are costly, hence the question of whether this lane-by-lane practice will be sustained for long arise. These automated pavement distress evaluation technologies are also not cheap. The question of whether this practice can be avoided by eliminating the need for full road coverage is evaluated in this study. Pavements are designed to last up to 20 years and even longer in some cases. If PC predictive models for adjacent lanes can be developed from single lanes for individual roads within such design lives of that road network, the task and efficiency of PC monitoring, evaluation, and maintenance could be further simplified and improved, respectively. Fundamental mathematical model for this problem does not exist, and based on the existing literature, no empirical mathematical model was previously reported or adopted to address this problem.



The objective of this study is to employ MLR analysis and ANN modeling to examine the feasibility of modeling and predicting the pavement distresses of multiple lanes as function of pavement distress of a single adjacent lane. The inter-lane PC indices modeling can also go a long way in facilitating more accurate forecasting models for estimating the future consequences of pavement maintenance actions.





2. Data and Methodology


Road condition indices of a two-way six-lane flexible highway were employed for this study. The pavement condition (PC) data were obtained from the Transport Ministry of Saudi Arabia. The data were captured by a state-of-the-art automated pavement evaluation vehicle (ARRB). The automated pavement evaluation system output includes six different PC indices for a given pavement section. Each lane in this study consists of 568 data sets of the various PC indices from road sections of highway 40. Highway 40 is one of the most important roads connecting the major cities of Saudi Arabia and the Gulf Countries. The road was uniformly divided into 1 km sections, and each section consists of 6 lanes (in both directions), as shown in Figure 1.



The various lanes were abbreviated as follows: Lane 3 (L3), Lane 2 (L2), and Lane 1 (L1). A screen shot of a preprocessed typical lane data sheet is shown in Figure 2. Different direction for a given lane was signified by +1 and −1; hence each lane data sheet contains PC data for both directions (back and forth).



2.1. Pavement Conditions and other Variables


This subheading gives a brief description of the abbreviated variables and PCs shown in the data sheet in Figure 2.



	
Direction(DIR): this represents the direction of traffic movement either to or fro for a given lane. The two directions have been numerically represented by +1 (to) and −1 (fro).



	
Section Number(SN): This column represents the section number for each lane. SN is more of a location-matching variable.



	
International Roughness Index(IRI): IRI is a measure of longitudinal roughness of the road, and an indicator of ride quality, safety, and road user cost. The United State Federal Ministry of Highway and Administration (FHWA) recommends an acceptable range of IRI between 1.5 to 2.76 m/km [52]. Similar range and scaling of IRI is employed by highway agencies in Saudi Arabia [53]. Any road section with IRI below 1.5 m/km can be considered to be in good condition.



	
Pavement Rutting(Rut): Pavement rutting is among the major road distresses that easily compromise the road’s functional and structural integrity. It is the permanent depression that manifest longitudinally along vehicle wheel tracks on the road. There are three basic severity levels prescribed by the FHWA, Low (5–12 mm), Medium (12–25 mm) and High (>25 mm) rut distress levels. Anything below 5 mm is considered insignificant [54].



	
Crack Index(CI): This represents the magnitude of cracks that manifested on the pavement surface at the time of evaluation. It is the function of the various types of cracks (transverse and longitudinal), and the percentage of area covered by these cracks and their severities.



	
Pavement Texture(Tex): is the measure deviation of the road surface from an ideal smooth plane and is accurately measured with laser technology. It affects the tire–pavement interaction such as skid and rolling resistance. Pavement texture influences the amount of noise generated by moving vehicles, as well as driver’s safety and vehicle fuel efficiency.



	
Present Serviceability Index(PSI): Is a measure of pavement serviceability rating developed by AASHTO, which was later mathematically correlated to pavement distresses and roughness [55]. The original mathematical model for estimating PSI of flexible pavement is given by (1). PSI value of 5.0 signifies new and perfect pavement. This value declines with age of pavement due to defects and degradation, prompting the need for major maintenance at around PSI values of 3.0–2.0.


  P S I = 5.03 − 1.91   log   10    (  1 +   S V  ¯   )  − 1.38 ∗     R u t  ¯   2  − 0.01    (  C + P  )     



(1)




where     S V  ¯    is the slope variance and a function IRI (in/mile),     R u t  ¯    is the average rut depth, and    (  C + P  )    is the sum of total cracked and patched area in   f  t 2  / 1000 f  t 2    of the pavement.



	
Pavement Condition Rating(PCR): The PCR is an overall pavement condition rating that also depends on other indices such as the roughness condition index (RCI), and Surface Condition Rating (SCR) [54]. Road sections with PCR values below 60 are considered to have failed. According to FHWA methodology, PCR, RCI, and SCR can be estimated from Equations (2)–(5), respectively.


  P C R = 0.6 ∗ S C R + 0.4 ∗ R C I  



(2)






  R C I = 32  [  5  (    2.718282    (  − 0.0041   I R I  ¯   )     )   ]   



(3)






  S C R = 100 −  [   (  100 − 10 ∗ C I  )  +  (  100 − R u  t  i n d e x    )   ]   



(4)






  R u  t  i n d e x   = 100 − 40  [    % R u  t  l o w     160   +   % R u  t  m e d i u m     80   +   % R u  t  h i g h     40    ]   



(5)










The values   % R u  t  l o w   , % R u  t  m e d i u m   ,   and   % R u  t  h i g h     reported the percentage of the 20 measurements within that severity.



	I.

	
Longitude(LON): is the geographical longitude bearing coordinate for that particular road section.




	J.

	
Latitude(LAT): is the geographical latitude bearing coordinate for that particular road section.








2.2. Data Analysis and Modeling


Basic statistics of the various road indices were estimated and compared lane-wise. Correlation of these road indices between lanes was also estimated in terms of Pearson correlation. Lane 3 was considered the most damaged and critical lane due to its usual extreme PC (see Table 1). Thus, it was selected as a predicting lane because the lane with the worst PC will always be a priority for accurate PC measurement, and timely maintenance. Since L3 indices are the selected predicting variables of other lanes indices, the correlations between the various road condition indices of L3 were also estimated and analyzed. Welch 2 sample t-test was utilized at a 5% significance level to evaluate whether the PC of adjacent lanes differs significantly or otherwise. Unlike classical t-test, the Welch t-test is insensitive to unequal variance for all sample sizes [56]. The null hypothesis   (  H o  )   assumes the PCs of two adjacent lanes are the same, while the alternative hypothesis   (  H a  )   assumes the PCs of two adjacent lanes are significantly different. Stepwise MLR (MLR) was then used to develop predictive models of L2 and L1 road condition indices in terms of L3 indices. Stepwise MLR systematically adds or removes a variable to the predicting model based on whether it improves or lessen the model performance. MiniTab16TM standard stepwise regression module was employed to generate simple MLR model of all L2 and L1 indices. A value of 0.15 α-to-enter and α-to-remove was used. Due to unsatisfactory model performance, MATLAB stepwiselm stepwise regression function was also used to establish quadratic models with interactive terms of L2 and L1 indices. Starting from a constant model, stepwiselm uses forward and backward stepwise regression to determine a final model. At each step, the function searches for a term to add to or remove from the model based on the selection criteria. Finally, ANN models were trained and developed using MATLAB application. The partitioning for training/testing of 70/30 of data set was utilized.




2.3. Neural Network (NN) Modeling


A two-layer (excluding the input) feed forward NN was coded in MATLABTM (R2017a). Although ANN models are categorized as black boxes due to low interpretability of model structure, they yield astounding prediction performance compared to conventional modeling techniques [57,58]. The architecture of the NN utilized in this study is presented in Figure 3. All ten indices of L3 were considered as input to predict PC index of L2 or L1. Sensitivity analysis was later conducted to assess which of the variables played more significant role in the model performance. Attempt was made to create NN models with two out puts (L2 and L1 indices), but the resulting models’ accuracies were comparably lower than those of single out put models. S represents the number of neurons in layer 1, and varies for the various predicted indices. The weight and bias matrices are denoted by W and b, respectively. The transfer function    f 1    is a hyperbolic tangent sigmoid equivalent function given by (5). Each of the variables from the input matrix X, is connected to each neuron through the weight matrix   I W  . In this case,    a 1    is a 10-element column vector formed by “   f 1   ” from the weighted sum of the input variables    x i    and bias    b i    of the neurons’ outputs. The neurons’ outputs serve as inputs to    f 1   , which transforms inputs to fall between the interval of [−1, 1]. The second layer function ‘   f 2   ’ is a linear transfer function that normalizes the outputs from    f 1   , which is then reversed by Equation (6), to be compared to the target output ‘   y  a i    ’. Due to the random nature of the data, Bayesian Regularized (BR) Levenberg–Marquardt optimization was selected as the training algorithm [59,60]. The Bayesian Regularized Neural Networks are difficult to over-train, over-fit, and validation process is unnecessary [61]. The model performance is evaluated in terms of Mean Square Error (MSE) given by Equation (8), and coefficient of correlation (R2) between actual and predicted PC given by Equation (9). However, for easy assessment and evaluation of model accuracy, the Root Mean Square Error (RMSE) of the training and testing outputs was reported. Number of neurons for each model was optimized based on lowest and highest obtainable MSE and R2 values, respectively. Balanced performance output between training and test data set was ensured by randomly reshuffling training/test data sets until approximately equal MSE and R2 are obtained.


   f 1   ( t )  = 2 /  (  1 +  e  − 2 t    )  − 1  



(6)




where  t  is the independent variable and  e  is the natural log base constant (2.718281).


  y  ( r )  =    (   y  m a x   −  y  m i n    )   (  r −  r  m i n    )     (   r  m a x   −  r  m i n    )    +  y  m i n    



(7)




where r is a finite real number ranging between [−1, 1],    y  m a x     and    y  m i n     are the maximum and minimum values of the original target data set, respectively.


  MSE =    (  R M S E  )   2  =     ∑  i   n t       (   y  a i   −  y p   (   u i   )   )   2     n t  −  n p     



(8)






   R 2  = 1 −     ∑  i   n t       (   y  a i   −  y p   (   u i   )   )   2      ∑  i   n t       (   y  a i   −    y a   ¯   )   2     



(9)




where   R M S E  : root mean square error,    y  a i    : actual observed ARAs,    y p   (   u i   )   : modeled or predicted ARAs,    n t   : total number of observed ARA,    n p   : number model parameters,      y a   ¯   : mean of observed ARA (Figure 3).



Sensitivity Analysis of ANN Models


The model performance decomposition method was utilized to evaluate the sensitivity of the ANN models to the PC-predicting variables. The partial contribution of each PC predicting variable to the model performance was obtained by excluding that variable from the final general model [62]. In this study, the partial performance of each variable was estimated by retraining the same model, with same number of neurons, but with the exclusion of that variable. At least three model performance outputs for each variable exclusion were generated by randomly reshuffling the training, and test partition 3 times. Average values of RMSE and the R2 resulting from both training and testing were reported as the final results. Percent decrease or increase in RMSE and R2 with respect to the original   RMSE   and    R 2    were estimated according to Equations (10) and (11), respectively.


  %   Δ R M S  E n m  =   R M S  E n m  − R M S  E o m    R M S  E o m     



(10)






  %   Δ   R 2  n l  =     R 2  n m  −   R 2  o m      R 2  o m     



(11)




  n = 1 ,   2 ,   … 10  ;   m = 1 ,   2 ,   … 12  .



  %   Δ R M S  E n m    Represents the percent change in RMSE after exclusion of    n  t h     predicting variable from    m  t h     ANN PC model.   R M S  E n m    Denotes the final average RMSE after exclusion of    n  t h     predicting variable from    m  t h     ANN PC model.   R M S  E o m    Represents the original RMSE of the    m  t h     ANN PC model including all 10 predicting variables. The terms in Equation (11) hold similar meaning as in Equation (10), but with    R 2    as a replacement of   RMSE  .






3. Results and Discussion


3.1. Variables Selection


The basic statistics of the PC indices for the various lanes is summarized in Table 1. It can be seen that lane 3 (L3) is having the worst PCs and thus the critical lane. This is obviously due to traffic characteristics that are common on L3. In Saudi Arabia and several other countries around the world, L3 (outer lane) is prescribed for heavy trucks. In addition, most slow-moving vehicles are recommended, and they choose to travel on L3. The combination of heavy load and slow traffic is more detrimental to flexible pavement, than high speed and numerous low-load traffic. These are some of the reasons why the pavement of lane 3 showed higher average rutting, roughness, and texture, in addition to lower PSI and PCR. Sample plots showing the variation of IRI and PSI along the road length for L3 against lane 2 and lane 1 are shown in Figure 4. It can be observed that L3 showed higher IRI and lower PSI in most part of the road compared to the other lanes. Considering that poorer PC is a priority for maintenance intervention, and might require better and more accurate PC evaluation, the PC indices of L3 are selected as the predictors of Lane 2 (L2) and Lane 1 (L1) PC indices. It is also worth noting that although the PC plots vs. the road length appeared to be highly nonlinear, the road length is not the predicting variable, the PC indices of the adjacent lane are (PCs of L3). These PC indices also vary non-linear along the road length and in a similar pattern as the target PCs (for L1 and L2). These facts make the problem relatively less nonlinear, and give the MLR a chance.



The correlations of L3 PC indices with L2 and L1 indices are also presented in Table 1. Parameter of the correlation analysis includes Pearson correlation coefficient (R2), Degree of Freedom (DF), and p-value. Almost all of the PCs of L2 and L1 (with the exception of Texture for L2) showed statistically significant but weak correlations with the PCs of L3. Some of the PCs showed higher correlations with L3 PCs than others. The existence of these correlations can be anticipated for several reasons. These reasons include materials, construction, and sub-grade variables which are most likely common to adjacent lane of a given road section. Traffic volume and distribution between lanes are usually not the same but are consistent with time. However, the surprisingly low correlations between the lanes’ PC indices indicate the absence of a simple explicit mathematical relationship between them. Hence in which case the use of non-conventional AI modeling techniques such as ANN might be necessary. Two-sample t-test results of comparison between similar PCs of the various lanes is also shown in the last columns of Table 1. It can be seen that all similar PCs of the various lanes are significantly different from each other (p-value < 0.05). This implies that the observed differences in mean values and margins between individual PCs for different lanes in Table 1 and Figure 4, respectively, are statistically significant.



The correlation between the predicting variables (L3 PC indices) was estimated and presented in Table 2. One out of highly correlated variables can be adopted instead of them all in a regular regression analysis. However, stepwise regression employed in this study automatically takes care of this issue by only adding variables that improve the model’s performance. The indices showing statistically significant and meaningful correlations are highlighted in red font. The IRI, Rut, CI, and Texture are fundamental PCs obtained directly from the pavement. Any correlation observed between these PCs and with other variables such as ‘Dir’ is not mathematically explicit. Other PC indices such as PSI, and PCR are secondary variables that are indirectly related to some of the primary PCs as discussed in Section 2.1. Correlations such as that between PSI and other fundamental PCs were only later established empirically. However, PSI was earlier a direct outcome of ride experience evaluation from panel of observers, and was originally a direct measurement of ride quality. Other than these, the remaining variables such as the matching parameters did not show a significant relationship with one another. Overall, the main goal is to assess the potential and extent of these variables contribution in achieving the objective of this study.




3.2. Simple Multiple Linear Regression (S-MLR) Models


Simple MRL models of L2 and L1 PC indices in terms of those of L3 were first developed and assessed. These models are linear combinations of L3 indices and can be generally written as an Equation (12). The coefficients and corresponding p-values are summarized in Table 3. It can be observed that not a single model contains all the available variables. Some were better off with only 4 of the 10 initial variables. The most frequently appeared variables on the various models are IRI, PSI, Texture, and Direction. The second most relevant predicting variables are CI and location matching parameters (SN and LON). Rut and PCR played overall little role in supporting the various PC indices predictive models. Almost all of the included independent variables tend to be significantly relevant to the predicting model performance (at 5% significant level). The lack of significance of some the predicting PC variables is not unrelated with the inability of MLR to adequately capture the nonlinear trend of the various conditions observed earlier (as seen Figure 4). This is because overall, the performances of the various models can be rated as poor in terms of R2 values. However, the Root Mean Square Errors (RMSE) for some of the models appeared to be within reasonable ranges. The results of IRI and PSI models showed relatively the high and low R2 values for lane 1 and lane 2, respectively. For this reason, the plots of predicted IRI and PSI of L1 and L2 models against their actual values are selected for visual examination.


   Y L m  =  I L m  +   ∑   n = 1  N   C n m   X n m   



(12)




where    Y L m    is lane L pavement index m, L = 2 or 1, and m = 1, 2 … 6 for the different distress or index types.    I L m   : intercept for lane L and PC index m.    C n m    and    X n m    are the coefficients and predicting variables, respectively.  n  is an integer number of the independent variables from L3 and varies from 1 to 10.



The predicted vs. actual plots showing margin of error for IRI and PSI of L1 and L2 are shown in Figure 5a,b, respectively. The RMSE of the IRI-L1, IRI-L2, PSI-L1, and PSI-L2 plots are 0.380 m/km, 0.312 m/km, 0.253, and 0.205, respectively. These values are not too high if the intervals of the IRI or PSI needed to classify a pavement section as acceptable or otherwise are considered. However, these level or errors cannot be accepted practically because they are associated to high uncertainties. This can be observed from the various margin of error between true and predicted IRI/PSI in the plots. Although most of the predicted values showed reasonably low deviations from the true values, a significant amount of the pavement sections that have an unacceptable level of IRI or PSI were predicted to be in good condition. The correlation coefficients of the various plots for IRI-L1, IRI-L2, PSI-L1, and PSI-L2 are 0.551, 0.266, 0.537, and 0.287, respectively. The R2 values give insight into the generality of the prediction models. The more R2 is closer to unity the more general the model. For example, the RMSE observed might have downplayed the deficiencies of the various models, but the true and predicted correlation coefficients showed how these models become more inaccurate at extreme ends of the ranges of the utilized data. This was why the models could not capture the IRI and PSI at the extreme peaks and troughs of the plots. Significant difference in error margin could not be visually observed between plot in Figure 5a,b for L2 and L1, respectively. This because although IRI and PSI models of L2 showed lower R2 than those of L1, the models of L2 possessed lower RMSE than those of L1. Similar plots of CI vs. Texture and Rut vs. PCR for L1 and L2 are presented in the Appendix A as Figure A2 and Figure A3, respectively, for further information.



The Q-MLR model were obtained using a different stepwise regression function in MATLAB (stepwiselm) which allows for automatic inclusion of interactive and higher order terms. The resulting Q-MLR models for L2 and L1 indices as a function of L3 PC indices are presented in Table 4 and Table 5, respectively. The inclusion of interactive and higher order terms in to the MLR models certainly improved both the RMSE and R2 significantly. However, the numerous interactive and squared terms have also made the regression equations lengthy and more complex. Unlike in the case of the S-MRL, all of the predicting variables played a significant role in the model, either alone or by interacting with other variables. This confirms the previous hypothesis that the linear nature of the S-MLR models was partly responsible for the previous insignificant roles of some of the PC predicting variables. Figure 6 shows the various percent improvements in RMSE and R2 values of Q-MLR models relative to S-MLR models. Although such relative improvement was observed, the various Q-MLR PC indices models are far from adequately accurate for practical PCs predictions. This is because none of the Q-MLR models could explain up to 70% of the observed PC data (R2 < 0.7). This is despite the fact that 100% of the PC data were utilized for the regression analysis and model evaluation. It can thus be safe to say that these types of MLR regression models cannot adequately be relied upon to predict the PC indices of lanes as a function of adjacent lane PC variables. The ANN models were developed and analyzed in the next sub-heading.




3.3. ANN Models


A summary of the ANN models’ performances for the L2 and L1 PC indices is presented in Table 6. The number of neurons in the hidden layer is continuously adjusted until a reasonable balance between training and testing performance is achieved. Almost each PC index requires a different optimum number of neurons for a given lane. RMSE and correlation between the predicted and target PC for the training, testing, and combined (All) are listed. The corresponding training epochs at which these results were obtained were also presented. All PC model performance vs. epochs plots for training and test are shown in Figure A1, in Appendix A. The ANN models showed promising performances that indicates the possibility of evaluating a multi-lane highway PC by single lane inspection. All but the PCR model showed reasonable RMSE values, that are capable of explaining at least 80% of their various PC data (R2 ≥ 0.8), and some up to 90%. Poor performance of the PCR model is not unrelated to the semi-discrete nature of the PCR data which exhibited several wide flat peaks (see Figure A5 in Appendix A). Although PCR is and should be inherently continuous, it appears to rate several sections that are not significantly different as equals. This creates the numerous flat continuous peaks that ended up confusing the ANN algorithm. Unlike PCR, most other indices were able to account for the slightest variations between different road sections. The PCR prediction might yield better model performance if treated as a classification problem.



ANN PC models similar to those visually analyzed previously (IRI and PSI models) from previous S-MLR models were also plotted for similar analysis. The lane 1 and lane 2 IRI and PSI ANN model plot for predicted vs. actual showing yellow error margin are presented in Figure 7a,b, respectively. The improvement in R2 values of the ANN models can be seen to be reflected in the lower level of deviation (yellow gap) of the predicted from the actual PSI and IRI values. This deviation was significantly higher in the S-MLR models (see Figure 5 for comparison). This is because, unlike the low R2 values of the S-MLR model plots (0.551, 0.537, 0.2664, and 0.2872), the ANN models showed higher R2 (0.855, 0.874, 0.802, and 0.805), for the Lane 1 IRI, Lane 1 PSI, Lane 2 IRI and PSI, respectively. The RMSE values for the IRI and PSI models have decreased from 0.380, 0.253, 0.312, and 0.205, to 0.281, 0.167, 0.216, and 0.143, respectively. The improvement in RMSE can be clearly observed as those seen for the R2, and their impact on margin of error is also visually significant. This is because, unlike in the case of S-MLR models, the number of excessively over and under predicted PC have decreased drastically, as can be observed from the predicted vs. actual plots in Figure 7. Similar plots of actual vs. predicted for CI with Texture, and Rut with PCR for L2 and L1 are presented in Figure A4 and Figure A5, respectively, as further information in Appendix A.



Sensitivity Analysis of ANN Modeling Results


Percent change in RMSE and R2 values of the IRI ANN models due to exclusion of individual predicting variables from the models are shown in Figure 8. This represents the relative influence of the variables with respect to the accuracy of the ANN model. A variable that results in a higher drop in the accuracy of the model is considered a crucial and influential factor in the model. It can be observed that exclusion of any of the predicting variable from the models of both L2 and L1 resulted in increase in RMSE and a decrease in R2 value. However, the resulting change in RMSE was higher than that of R2 value. The magnitude of the observed change in RMSE and R2 for the different variables are also not the same for the different lanes. Increase in RMSE and decrease in R2 is a clear indication of decrease in overall model performance. This implies that all the included predicting variables, i.e., the PC of L3, contributed positively in the IRI model performances of both L2 and L1. The traffic travel direction parameter ‘Dir’ contributed the most to the RMSE and the R2 of the IRI ANN model. The traffic direction parameter ‘Dir’, the adjacent lane sections matching number (SN), and location parameter played a vital role, without which the data will be less meaningful to the ANN algorithm. This is because the PC variation between adjacent lanes, along the length of the road, and for different direction is not uniform (see Figure 4). Similar results of change in RMSE and R2 value of other PC models for L2 and L1 are summarized and presented in Table 7. The average corresponding RMSE and R2 values are presented in Appendix A in Table A1. Most of the observations made in the case of the IRI models are common to other PCs models, except PCR. Exclusion of a variable should either cause a decrease or an increase in the PCR model performance. The change in RMSE in the PCR models is also relatively low as compared to other PC models. This difference can be associated with the inability of the PCR model to perform as compared to the other PC indices. Excluding any predicting variable from the other PC models affects the model performance negatively. The negative effect of predicting variable exclusion can either be significant or less. The predicting variables were ranked according to their relative influence on the model performance, and the results is summarized in Table 8. The rank #1 represents the most influential, while rank #10 signifies least influential. The ranking was made on the absolute sum of change in RMSE and R2 due to the exclusion of the variables. It can be observed that the traffic direction parameter consistently remained the most influential predictor for the PCs of both L2 and L1, with only the exception of PCR. Average or overall rankings for the different lanes PC models were obtained from the total absolute sum of changes in RMSE and R2 due to variable exclusion. Due to inconsistent outcomes of PCR results as previously observed, results of PCR model were not included in the overall average ranking.





3.4. S-MLR, Q-MLR, and ANN PCs Prediction Models


This section compiles the various model performance results for general comparison. The performance results for combined training and testing (All) for ANN models were selected to be paired with MLR models. Table 9 shows the summary of the RMSE values for all the PC indices prediction models. The trend is clear and consistent. ANN models showed lower RMSE than all the MLR models. Q-MLR models showed lower RMSE compared to the S-MLR model. The level of relative improvement in performance of the ANN model can only be fully understood by observing both the RMSE and the R2. Figure 9 shows the R2 plot of the various PC indices prediction models. The ANN models showed better R2 and are more general than all the MLR models. The gap in R2 between ANN and S-MLR models range from 34% up to 68%, and from 19% to 36% relative to Q-MLR models.





4. Conclusions and Recommendation


The feasibility of evaluating the pavement condition indices of a multi-lane highway by single lane inspection was examined. MLR and ANN were employed to model and predict the pavement distresses of multiple lanes as functions of pavement distresses of a single adjacent lane. Simple sensitivity analysis was conducted to assess the level of influence of the predicting PC variables on the ANN PC models. Below is the summary of key findings from this study:




	
Although MLR models with interactive and higher order terms showed better performance than simple MLR models, MLR cannot be relied upon to adequately predict the PC indices of lanes as a function of adjacent lane PC variables.



	
On the other hand, the ANN models showed promising performances that indicates the possibility of evaluating a multi-lane highway PC by single lane inspection. The gap in R2 between ANN and S-MLR models ranges from 34% up to 68%, and from 19% to 36% relative to Q-MLR models.



	
Traffic direction parameter, location and lane matching parameters contributed significantly to the performance of the ANN PC prediction models. This indicates the need for including other location dependent variables such as traffic volumes and pavement structural inputs.



	
CI showed better predictability, followed by Tex, PSI, IRI, and RUT. The model PCR showed the least model performance. This suggests that other AI techniques other than ANN could be better suited for the lower-performing PCIs.



	
Although an appreciable amount of data were utilized in this study, the outcomes of this study may not be valid for roads in other countries or even different cities. In addition, the study tested the models with PC data obtained from one class of road (free way) but from different locations. The results might not be valid for different class of roads.



	
More similar studies using different AI techniques are recommended to make this approach common and practical.
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Figure A1. MSE vs Epochs for (a) IRI-L2, (b) IRI-L1, (c) RUT-L2, (d) RUT-L1, (e) CI-L2, (f) CI-L1, (g) Texture-L2, (h) Texture-L1, (i) PSI-L2, (j) PSI-L1, (k) PCR-L2, and (l) PCR-L1 ANN models. 






Figure A1. MSE vs Epochs for (a) IRI-L2, (b) IRI-L1, (c) RUT-L2, (d) RUT-L1, (e) CI-L2, (f) CI-L1, (g) Texture-L2, (h) Texture-L1, (i) PSI-L2, (j) PSI-L1, (k) PCR-L2, and (l) PCR-L1 ANN models.
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Figure A2. MLR Model, Predicted vs. Actual with Margin of Error for (a) Lane-2 CI and Texture, and (b) Lane-1 CI and Texture. 






Figure A2. MLR Model, Predicted vs. Actual with Margin of Error for (a) Lane-2 CI and Texture, and (b) Lane-1 CI and Texture.



[image: Sustainability 15 00561 g0a2]







[image: Sustainability 15 00561 g0a3 550] 





Figure A3. MLR Model, Predicted vs. Actual with Margin of Error for (a) Lane-2 RUT and PCR, and (b) Lane-1 RUT and PCR. 
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Figure A4. ANN Model, Predicted vs. Actual with Margin of Error for (a) Lane-2 CI and Texture, and (b) Lane-1 CI and Texture. 
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Figure A5. ANN Model, Predicted vs. Actual with Margin of Error for (a) Lane-2 RUT and PCR, and (b) Lane-1 RUT and PCR. 
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Table A1. Summary of Average RMSE and R2 for the ANN PC Models after Variables Exclusion.






Table A1. Summary of Average RMSE and R2 for the ANN PC Models after Variables Exclusion.





	
RMSE




	
PC

	
Lane ID

	
Without DIR

	
Without SN

	
Without IRI

	
Without RUT

	
Without CI

	
Without TEXT

	
Without PSI

	
Without PCR

	
Without LAT

	
Without LON




	
IRI

	
Lane 2

	
0.2487

	
0.2377

	
0.2352

	
0.2336

	
0.2285

	
0.2336

	
0.2328

	
0.2290

	
0.2375

	
0.2325




	
Lane 1

	
0.3100

	
0.2973

	
0.3022

	
0.3030

	
0.2991

	
0.2980

	
0.2971

	
0.2982

	
0.3020

	
0.3021




	
RUT

	
Lane 2

	
0.8642

	
0.7807

	
0.7758

	
0.7618

	
0.8030

	
0.8051

	
0.7678

	
0.7757

	
0.7800

	
0.7866




	
Lane 1

	
1.3015

	
1.1574

	
1.1687

	
1.2287

	
1.2345

	
1.2177

	
1.1734

	
1.2503

	
1.2155

	
1.2097




	
CI

	
Lane 2

	
1.0021

	
0.8332

	
0.8623

	
0.8509

	
0.9060

	
0.8705

	
0.8458

	
0.8163

	
0.8640

	
0.8613




	
Lane 1

	
1.0744

	
0.9369

	
0.9540

	
0.9545

	
0.9257

	
0.9363

	
0.9029

	
0.9512

	
0.9359

	
0.9024




	
TEXT

	
Lane 2

	
0.1108

	
0.1008

	
0.0953

	
0.0953

	
0.0994

	
0.0969

	
0.0982

	
0.0964

	
0.1010

	
0.0944




	
Lane 1

	
0.1007

	
0.0896

	
0.0891

	
0.0895

	
0.0937

	
0.0935

	
0.0883

	
0.0897

	
0.0916

	
0.0899




	
PSI

	
Lane 2

	
0.1568

	
0.1522

	
0.1511

	
0.1481

	
0.1547

	
0.1497

	
0.1517

	
0.1511

	
0.1545

	
0.1512




	
Lane 1

	
0.2072

	
0.1823

	
0.1778

	
0.1883

	
0.1800

	
0.1790

	
0.1821

	
0.1785

	
0.1780

	
0.1806




	
PCR

	
Lane 2

	
6.7656

	
6.9566

	
6.9350

	
6.9375

	
6.8403

	
6.7263

	
6.6500

	
6.6592

	
7.0250

	
6.7175




	
Lane 1

	
10.2974

	
10.4041

	
9.7632

	
10.4608

	
9.7885

	
9.8416

	
9.8722

	
10.2101

	
9.8633

	
10.1149




	
R2




	
PC

	
Lane ID

	
Without DIR

	
Without SN

	
Without IRI

	
Without RUT

	
Without CI

	
Without TEXT

	
Without PSI

	
Without PCR

	
Without LAT

	
Without LON




	
IRI

	
Lane 2

	
73.38%

	
75.99%

	
76.53%

	
76.85%

	
78.07%

	
76.91%

	
77.05%

	
77.95%

	
75.94%

	
77.23%




	
Lane 1

	
82.32%

	
83.93%

	
83.27%

	
83.17%

	
83.77%

	
83.79%

	
83.91%

	
83.79%

	
83.32%

	
83.30%




	
RUT

	
Lane 2

	
68.62%

	
75.55%

	
75.94%

	
76.86%

	
73.91%

	
73.74%

	
76.50%

	
75.91%

	
75.68%

	
75.16%




	
Lane 1

	
70.20%

	
76.21%

	
76.10%

	
73.17%

	
74.82%

	
73.85%

	
76.00%

	
74.41%

	
74.81%

	
75.87%




	
CI

	
Lane 2

	
85.25%

	
90.06%

	
89.35%

	
89.61%

	
88.16%

	
89.10%

	
89.74%

	
90.48%

	
89.29%

	
89.32%




	
Lane 1

	
83.38%

	
87.61%

	
87.13%

	
87.15%

	
87.97%

	
87.66%

	
88.57%

	
87.19%

	
87.68%

	
88.62%




	
TEXT

	
Lane 2

	
83.46%

	
86.53%

	
88.11%

	
88.12%

	
86.94%

	
87.70%

	
87.23%

	
87.77%

	
86.61%

	
88.32%




	
Lane 1

	
71.67%

	
78.45%

	
78.72%

	
78.48%

	
76.11%

	
76.20%

	
79.09%

	
78.34%

	
77.30%

	
78.23%




	
PSI

	
Lane 2

	
76.42%

	
77.98%

	
78.33%

	
79.30%

	
77.14%

	
78.90%

	
78.14%

	
78.41%

	
77.24%

	
78.29%




	
Lane 1

	
80.20%

	
85.03%

	
85.84%

	
83.94%

	
85.44%

	
85.62%

	
85.08%

	
85.75%

	
85.80%

	
85.31%




	
PCR

	
Lane 2

	
77.42%

	
75.95%

	
76.09%

	
76.26%

	
76.87%

	
77.68%

	
78.37%

	
78.30%

	
75.63%

	
77.94%




	
Lane 1

	
71.63%

	
70.88%

	
74.97%

	
70.42%

	
74.80%

	
74.57%

	
74.32%

	
72.18%

	
74.45%

	
72.83%
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Figure 1. Sketch and Lane Numbering of 6-Lane Freeway. 
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Figure 2. Typical Preprocessed Lane Pavement Condition Data Sheet. 
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Figure 3. ANN Models Architecture. 
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Figure 4. IRI and PSI Plots of (a) Lane-2 vs. Lane-3, and (b) Lane-1 vs. Lane-3. 
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Figure 5. MLR Models Plots, Predicted vs. Actual with Margin of Error (Yellow) for (a) Lane-1 IRI and PSI, and (b) Lane-2 IRI and PSI. 
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Figure 6. Percent Improvement in RMSE and R-sq from S-MLR to Q-MLR. 
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Figure 7. ANN Model Plots, Predicted vs. Actual with Margin of Error (Yellow) for (a) Lane-1 IRI and PSI, and (b) Lane-2 IRI and PSI. 
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Figure 8. Percent Change in RMSE and R2 after Variable Exclusion for IRI ANN Models. 
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Figure 9. Comparison of MLR and ANN PC Predictive Model Performances In Terms of R2. 
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Table 1. Road Condition Indices Statistics, correlations between Indices of other Lanes and Lane 3, and t-test of adjacent lanes PCs.
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Statistics of Various Lanes Conditions Indices

	
Correlation with Lane 3 Conditions Indices

	
Two Samples t-Test between PCs of Adjacent Lanes




	
PC

	
Para-Meter

	
Lane 3

	
Lane 2

	
Lane 1

	
Terms

	
L2

	
L1

	
Terms

	
L1/L2

	
L1/L3

	
L2/L3






	
IRI (m/km)

	
Mean

	
2.05

	
1.36

	
1.56

	
  R  

	
0.253

	
0.324

	
t-value

	
7.370

	
−12.55

	
−19.79




	
St. Dev.

	
0.74

	
0.36

	
0.54

	
DF

	
566

	
566

	
DF

	
989

	
1038

	
823




	
Min.

	
0.91

	
0.65

	
0.72

	
p-value

	
0.000

	
0.000

	
p-value

	
0.000

	
0.000

	
0.000




	
Max.

	
7.44

	
3.05

	
3.39

	

	

	

	

	

	

	




	
Rut (mm)

	
Mean

	
5.48

	
4.15

	
4.33

	
  R  

	
0.299

	
0.196

	
t-value

	
2.040

	
−8.780

	
−46.47




	
St. Dev.

	
2.55

	
1.18

	
1.81

	
DF

	
566

	
566

	
DF

	
975

	
1024

	
573




	
Min.

	
1.75

	
1.76

	
1.35

	
p-value

	
0.000

	
0.000

	
p-value

	
0.042

	
0.000

	
0.000




	
Max.

	
20.73

	
8.86

	
15.04

	

	

	

	

	

	

	




	
CI

	
Mean

	
7.04

	
8.08

	
7.67

	
  R  

	
0.406

	
0.382

	
t-value

	
−3.600

	
4.620

	
7.660




	
St. Dev.

	
2.63

	
1.90

	
1.93

	
DF

	
566

	
566

	
DF

	
1133

	
1041

	
1033




	
Min.

	
0.08

	
1.15

	
1.18

	
p-value

	
0.000

	
0.000

	
p-value

	
0.000

	
0.000

	
0.000




	
Max.

	
10.00

	
10.00

	
10.00

	

	

	

	

	

	

	




	
Texture (mm)

	
Mean

	
0.71

	
0.51

	
0.58

	
  R  

	
−0.029

	
0.191

	
t-value

	
7.660

	
−12.660

	
−17.71




	
St. Dev.

	
0.20

	
0.20

	
0.14

	
DF

	
566

	
566

	
DF

	
1028

	
1038

	
1133




	
Min.

	
0.36

	
0.26

	
0.27

	
p-value

	
0.484

	
0.000

	
p-value

	
0.000

	
0.000

	
0.000




	
Max.

	
1.73

	
1.4

	
1.16

	

	

	

	

	

	

	




	
PSI

	
Mean

	
3.53

	
3.93

	
3.81

	
  R  

	
0.281

	
0.357

	
t-value

	
−7.170

	
12.830

	
21.170




	
St. Dev.

	
0.39

	
0.24

	
0.34

	
DF

	
566

	
566

	
DF

	
1016

	
1118

	
949




	
Min.

	
1.42

	
2.99

	
2.78

	
p-value

	
0.000

	
0.000

	
p-value

	
0.000

	
0.000

	
0.000




	
Max.

	
4.24

	
4.45

	
4.4

	

	

	

	

	

	

	




	
PCR

	
Mean

	
78.43

	
93.79

	
88.81

	
  R  

	
0.221

	
0.304

	
t-value

	
−6.570

	
9.470

	
15.200




	
St. Dev.

	
21.64

	
10.60

	
14.64

	
DF

	
566

	
566

	
DF

	
1033

	
996

	
824




	
Min.

	
12.50

	
45.00

	
32.50

	
p-value

	
0.000

	
0.000

	
p-value

	
0.000

	
0.000

	
0.000




	
Max.

	
100.00

	
100.00

	
100.00
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Table 2. Correlations between Condition Indices of Lanes 3.
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	Dir.
	SN
	IRI
	Rut
	CI
	Tex
	PSI
	PCR
	LON.





	SN
	0.000
	
	
	
	
	
	
	
	



	
	1.000
	
	
	
	
	
	
	
	



	 
	
	
	
	
	
	
	
	
	



	IRI
	0.034
	−0.082
	
	
	
	
	
	
	



	
	0.425
	0.051
	
	
	
	
	
	
	



	 
	
	
	
	
	
	
	
	
	



	Rut
	0.005
	0.205
	0.528
	
	
	
	
	
	



	
	0.912
	0.000
	0.000
	
	
	
	
	
	



	 
	
	
	
	
	
	
	
	
	



	CI
	−0.177
	0.394
	−0.619
	−0.191
	
	
	
	
	



	
	0.000
	0.000
	0.000
	0.000
	
	
	
	
	



	 
	
	
	
	
	
	
	
	
	



	Tex
	0.457
	−0.074
	0.459
	0.136
	−0.633
	
	
	
	



	
	0.000
	0.078
	0.000
	0.001
	0.000
	
	
	
	



	 
	
	
	
	
	
	
	
	
	



	PSI
	−0.036
	0.129
	−0.986
	−0.555
	0.646
	−0.450
	
	
	



	
	0.389
	0.002
	0.000
	0.000
	0.000
	0.000
	
	
	



	 
	
	
	
	
	
	
	
	
	



	PCR
	−0.076
	0.079
	−0.869
	−0.605
	0.727
	−0.522
	0.884
	
	



	
	0.070
	0.061
	0.000
	0.000
	0.000
	0.000
	0.000
	
	



	 
	
	
	
	
	
	
	
	
	



	LON.
	0.000
	0.998
	−0.075
	0.214
	0.392
	−0.070
	0.122
	0.073
	



	
	1.000
	0.000
	0.074
	0.000
	0.000
	0.096
	0.004
	0.081
	



	 
	
	
	
	
	
	
	
	
	



	LAT.
	0.000
	1.000
	−0.083
	0.202
	0.395
	−0.076
	0.131
	0.080
	0.997



	
	1.000
	0.000
	0.047
	0.000
	0.000
	0.072
	0.002
	0.057
	0.000







Cell Contents: Pearson correlation (R); p-Value.













[image: Table] 





Table 3. Simple MLR Models for Lane 2 and Lane 1 Distresses and PCIs in terms of Lane 3 Distresses and PCIs.
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IRI

	
Rut

	
CI

	
Texture

	
PSI

	
PCR




	
Variables

	
Lane 2

	
Lane 1

	
Lane 2

	
Lane 1

	
Lane 2

	
Lane 1

	
Lane 2

	
Lane 1

	
Lane 2

	
Lane 1

	
Lane 2

	
Lane 1






	
INTERCEPT

	
9.616

	
160.640

	
−454.000

	
1439.030

	
7.389

	
7.389

	
−39.18

	
−0.483

	
−1.908

	
−541.390

	
3197.500

	
−7102.730




	
DIR

	
−0.101

	
−0.225

	
0.138

	

	
0.385

	
0.385

	

	

	
0.069

	
0.144

	
1.050

	
4.970




	

	
0.000

	
0.000

	
0.006

	

	
0.000

	
0.000

	

	

	
0.000

	
0.000

	
0.011

	
0.000




	
SN

	

	
0.025

	
−0.079

	
0.256

	

	

	
−0.007

	

	

	
−0.095

	
−124.200

	
−1.240




	

	

	
0.031

	
0.000

	
0.000

	

	

	
0.000

	

	

	
0.049

	
0.000

	
0.001




	
IRI

	
−0.27

	
−0.250

	
−0.799

	
0.260

	
−0.820

	
−0.820

	
−0.109

	

	
0.178

	
0.180

	

	




	

	
0.018

	
0.063

	
0.036

	
0.066

	
0.000

	
0.000

	
0.103

	

	
0.016

	
0.031

	

	




	
RUT

	

	

	
0.114

	
0.062

	

	

	
−0.023

	

	

	

	

	




	

	

	

	
0.000

	
0.066

	

	

	
0.000

	

	

	

	

	




	
CI

	
0.0282

	

	
0.060

	
−0.240

	
0.352

	
0.352

	
0.033

	
0.022

	
−0.020

	

	

	




	

	
0.001

	

	
0.035

	
0.000

	
0.000

	
0.000

	
0.000

	
0.000

	
0.001

	

	

	




	
TEX

	
0.29

	

	
0.800

	
−1.680

	
1.630

	
1.630

	
0.198

	
0.333

	
−0.214

	

	

	
−7.900




	

	
0.005

	

	
0.018

	
0.000

	
0.002

	
0.002

	
0.000

	
0.000

	
0.002

	

	

	
0.020




	
PSI

	
−0.430

	
−0.906

	
−1.350

	

	

	

	
−0.320

	

	
0.520

	
0.616

	
6.600

	
10.300




	

	
0.000

	
0.001

	
0.079

	

	

	

	
0.018

	

	
0.000

	
0.000

	
0.000

	
0.000




	
PCR

	

	

	

	

	
−0.016

	
−0.016

	

	

	

	

	

	




	

	

	

	

	

	
0.026

	
0.026

	

	

	

	

	

	




	
LAT

	
−1.51

	
−3.259

	

	
−30.120

	

	

	

	

	
1.060

	
9.397

	

	
150.450




	

	
0.000

	
0.016

	

	
0.000

	

	

	

	

	
0.000

	
0.033

	

	
0.001




	
LON

	
2.65

	

	
18.400

	

	

	

	
1.620

	
0.026

	
−1.850

	
3.800

	
−124.200

	




	

	
0.000

	

	
0.000

	

	

	

	
0.000

	
0.127

	
0.000

	
0.124

	
0.000

	




	
RMSE

	
0.312

	
0.380

	
1.020

	
1.620

	
1.620

	
1.620

	
0.179

	
0.132

	
0.205

	
0.253

	
9.840

	
12.200




	
R2 (%)

	
26.640

	
51.320

	
26.240

	
20.970

	
27.660

	
27.660

	
20.250

	
16.110

	
28.720

	
53.770

	
14.470

	
31.060








Note: 1st Cell Content is a Coefficient, while the 2nd Cell Content is its Corresponding p-value.
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Table 4. Quadratic MLR Models for Lane 2 Distresses and PCIs in terms of Lane 3 Distresses and PCIs.
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IRI

	
RUT

	
CI

	
TEX

	
PSI

	
PCR






	
Intercept

	
−4,987,300

	
Intercept

	
142,670

	
Intercept

	
20,176,000

	
Intercept

	
−45376

	
Intercept

	
3,015,000

	
Intercept

	
82,971,000




	
DIR

	
−125.16

	
DIR

	
−3150.7

	
DIR

	
−8080

	
DIR

	
−0.41049

	
DIR

	
0.16871

	
DIR

	
−1787




	
SN

	
−1796.1

	
SN

	
−63.071

	
SN

	
7242.1

	
SN

	
−8.1093

	
SN

	
1088

	
SN

	
29745




	
IRI

	
−1495.4

	
IRI

	
−34.402

	
IRI

	
5248.8

	
IRI

	
205.56

	
IRI

	
753.53

	
IRI

	
−244.21




	
RUT

	
−167.96

	
RUT

	
−1839.2

	
RUT

	
−2466.2

	
RUT

	
10.78

	
RUT

	
101.67

	
RUT

	
4578.8




	
CI

	
126.08

	
CI

	
2307.9

	
CI

	
−2940.3

	
CI

	
−1.9882

	
CI

	
−75.117

	
CI

	
−9831.8




	
TEXT

	
−2.6151

	
TEXT

	
−7.1267

	
TEXT

	
−1557.5

	
TEXT

	
−559.03

	
TEXT

	
3577.6

	
TEXT

	
−8637.9




	
PSI

	
−4097.8

	
PSI

	
−23034

	
PSI

	
13531

	
PSI

	
4639.9

	
PSI

	
2285.7

	
PSI

	
−788.45




	
PCR

	
0.013807

	
PCR

	
−1.1581

	
PCR

	
0.075239

	
PCR

	
−64.256

	
PCR

	
21.961

	
PCR

	
−0.28437




	
LAT †

	
−321.9

	
LAT

	
−5651.5

	
LAT †

	
2072.8

	
LAT

	
431.17

	
LAT

	
295.17

	
LAT †

	
6178.2




	
LON

	
210,270

	
LON

	
−1316.2

	
LON

	
−849920

	
LON

	
1392

	
LON

	
−127230

	
LON

	
−3.49E+6




	
DIR*SN

	
−0.02308

	
DIR*SN

	
−0.56565

	
DIR*SN

	
−1.4426

	
DIR*RUT

	
0.019799

	
DIR*SN

	
0.000421

	
DIR*SN

	
−0.32239




	
DIR*RUT

	
0.019773

	
DIR*IRI

	
−2.1524

	
DIR*CI

	
−0.1663

	
DIR*CI

	
0.014733

	
DIR*RUT

	
−0.01099

	
DIR*IRI

	
4.0006




	
DIR*CI

	
0.025276

	
DIR*CI

	
0.069223

	
DIR*TEXT

	
−1.4869

	
DIR*PSI

	
0.087773

	
DIR*CI

	
−0.01658

	
DIR*RUT

	
−0.72962




	
DIR*LON

	
2.6264

	
DIR*TEXT

	
1.0866

	
DIR*PSI

	
−0.73049

	
DIR*PCR

	
−0.00138

	
SN*IRI

	
0.13636

	
DIR*TEXT

	
−14.854




	
SN*IRI

	
−0.2717

	
DIR*PSI

	
−4.0427

	
DIR*PCR

	
0.020947

	
SN*IRI

	
0.03371

	
SN*RUT

	
0.018482

	
DIR*LAT

	
71.314




	
SN*RUT

	
−0.03028

	
DIR*LAT

	
34.174

	
DIR*LAT

	
88.569

	
SN*RUT

	
0.001762

	
SN*CI

	
−0.01353

	
SN*RUT

	
0.835




	
SN*CI

	
0.0228

	
DIR*LON

	
48.545

	
DIR*LON

	
123.12

	
SN*TEXT

	
−0.09894

	
SN*TEXT

	
0.63976

	
SN*CI

	
−1.7583




	
SN*PSI

	
−0.74352

	
SN*RUT

	
−0.32934

	
SN*IRI

	
0.95671

	
SN*PSI

	
0.82372

	
SN*PSI

	
0.41393

	
SN*TEXT

	
−1.4972




	
SN*LON

	
37.831

	
SN*CI

	
0.41268

	
SN*RUT

	
−0.43826

	
SN*PCR

	
−0.01153

	
SN*PCR

	
0.003931

	
SN*LON

	
−625.11




	
IRI*RUT

	
0.21897

	
SN*PSI

	
−4.1138

	
SN*CI

	
−0.52656

	
SN*LON

	
0.11956

	
SN*LON

	
−22.928

	
IRI*RUT

	
−9.5157




	
IRI*LON

	
31.431

	
SN*LON

	
1.6284

	
SN*TEXT

	
−0.28749

	
IRI*TEXT

	
−0.13412

	
IRI*PSI

	
−0.53833

	
IRI*TEXT

	
−70.028




	
RUT*PSI

	
0.40288

	
IRI*RUT

	
0.81057

	
SN*PSI

	
2.461

	
IRI*PCR

	
−0.00996

	
IRI*PCR

	
0.005349

	
IRI*PSI

	
−33.276




	
RUT*LON

	
3.4929

	
IRI*PSI

	
3.5644

	
SN*LON

	
−152.35

	
IRI*LAT

	
−8.1298

	
IRI*LON

	
−15.797

	
IRI*LAT

	
537.96




	
CI*TEXT

	
−0.18545

	
IRI*PCR

	
0.12325

	
IRI*RUT

	
−0.72298

	
RUT*LAT

	
−0.42999

	
RUT*PCR

	
0.000694

	
IRI*LON

	
−275.04




	
CI*LON

	
−2.6487

	
RUT*PSI

	
1.6857

	
IRI*LON

	
−110.34

	
CI*LAT

	
0.075479

	
RUT*LON

	
−2.1397

	
RUT*TEXT

	
−4.9425




	
TEXT*PSI

	
1.1011

	
RUT*LAT

	
15.962

	
RUT*TEXT

	
−0.50002

	
TEXT*LON

	
11.761

	
CI*TEXT

	
0.17722

	
RUT*PSI

	
−19.734




	
PSI*LON

	
86.12

	
RUT*LON

	
30.078

	
RUT*PSI

	
−1.287

	
PSI*PCR

	
−0.01954

	
CI*LON

	
1.577

	
RUT*LON

	
−94.358




	
LAT*LON

	
−422.22

	
CI*PCR

	
−0.00463

	
RUT*LAT

	
27.692

	
PSI*LAT

	
−60.652

	
TEXT*PSI

	
−1.1476

	
CI*PCR †

	
0.025864




	
SN^2

	
−0.16168

	
CI*LAT

	
−18.937

	
RUT*LON

	
37.342

	
PSI*LON

	
−65.448

	
TEXT*LAT

	
−27.244

	
CI*LAT

	
95.212




	
RUT^2

	
0.004667

	
CI*LON

	
−38.505

	
CI*TEXT

	
1.7894

	
PCR*LAT

	
0.64777

	
TEXT*LON

	
−60.759

	
CI*LON

	
156.46




	
PCR^2

	
−7E−05

	
TEXT*PSI

	
3.2312

	
CI*LAT

	
28.755

	
PCR*LON

	
1.0105

	
PSI*LON

	
−48.023

	
TEXT*PSI

	
−159.3




	
LAT^2

	
405.89

	
TEXT*PCR

	
−0.04669

	
CI*LON

	
46.586

	
LAT*LON

	
−48.206

	
PCR*LAT †

	
−0.2003

	
TEXT*LAT

	
371.74




	
LON^2

	
−2102.8

	
PSI*PCR

	
0.27703

	
TEXT*PCR

	
−0.12599

	
RUT^2

	
0.003019

	
PCR*LON †

	
−0.35671

	
PSI*LAT

	
1255.1




	

	

	
PSI*LAT

	
200.85

	
TEXT*LAT

	
61.823

	
CI^2

	
0.005189

	
LAT*LON

	
254.55

	
PSI*LON

	
−632.04




	

	

	
PSI*LON

	
377.26

	
PSI*LON

	
−284.48

	
LAT^2

	
41.075

	
SN^2

	
0.098126

	
LAT*LON

	
8997.2




	

	

	
SN^2

	
−0.01585

	
LAT*LON

	
2196.8

	

	

	
IRI^2

	
−0.21842

	
SN^2

	
2.6657




	

	

	
IRI^2

	
1.7593

	
SN^2

	
0.64983

	

	

	
PCR^2

	
0.00016

	
RUT^2

	
−0.33006




	

	

	
RUT^2

	
0.010569

	
RUT^2

	
−0.02978

	

	

	
LAT^2

	
−246.04

	
CI^2

	
−0.42372




	

	

	
LAT^2

	
98.395

	
CI^2

	
0.050773

	

	

	
LON^2

	
1273.2

	
PSI^2

	
−65.576




	

	

	

	

	
TEXT^2

	
3.9505

	

	

	

	

	
LAT^2

	
−8763.1




	

	

	

	

	
LAT^2

	
−2127.3

	

	

	

	

	
LON^2

	
34335




	

	

	

	

	
LON^2

	
8361

	

	

	

	

	

	




	
 

	

	

	

	

	

	

	

	

	

	

	




	
RMSE

	
0.251

	
RMSE

	
0.883

	
RMSE

	
1.18

	
RMSE

	
0.136

	
RMSE

	
0.163

	
RMSE

	
7.88




	
R2

	
0.550

	
R2

	
0.481

	
R2

	
0.641

	
R2

	
0.565

	
R2

	
0.574

	
R2

	
0.488








† Terms with p-values greater than 5%.
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Table 5. Quadratic MLR Models for Lane 1 Distresses and PCIs in terms of Lane 3 Distresses and PCIs.
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IRI

	
RUT

	
CI

	
TEX

	
PSI

	
PCR






	
Intercept

	
−8.46E+5

	
Intercept

	
1.17E+06

	
Intercept

	
1.91E+07

	
Intercept

	
25485

	
Intercept

	
4.78E+5

	
Intercept

	
−8.17E+6




	
DIR

	
2351.9

	
DIR

	
12,584

	
DIR

	
−13,291

	
DIR

	
−36.78

	
DIR

	
−1546.8

	
DIR

	
−97,228




	
SN

	
−336.13

	
SN

	
209.75

	
SN

	
6734.2

	
SN

	
4.5142

	
SN

	
192.47

	
SN

	
−1459.8




	
IRI

	
−14152

	
IRI

	
−63747

	
IRI †

	
210.33

	
IRI

	
−1800.4

	
IRI

	
9275.1

	
IRI

	
5.16E+05




	
RUT †

	
0.028914

	
RUT

	
16.415

	
RUT

	
−131.95

	
RUT

	
−11.221

	
RUT

	
0.032893

	
RUT

	
−3.1127




	
CI

	
514.44

	
CI

	
5580.5

	
CI

	
−2332.4

	
CI †

	
−0.04181

	
CI

	
−322.88

	
CI

	
−30498




	
TEXT

	
34.105

	
TEXT

	
30,318

	
TEXT

	
−68.948

	
TEXT

	
0.20717

	
TEXT

	
−23.186

	
TEXT †

	
−9.0446




	
PSI

	
−30340

	
PSI

	
−1.29E+5

	
PSI

	
−70.68

	
PSI

	
−844.75

	
PSI

	
19,617

	
PSI

	
1.07E+06




	
PCR

	
0.05492

	
PCR

	
19.125

	
PCR †

	
0.051287

	
PCR

	
−46.454

	
PCR

	
−0.01366

	
PCR

	
0.34824




	
LAT

	
−1071

	
LAT

	
−30,601

	
LAT

	
−4482.7

	
LAT

	
−91.746

	
LAT

	
706.77

	
LAT

	
61,579




	
LON

	
38,885

	
LON

	
−22,145

	
LON

	
−8.00E+5

	
LON

	
−815.51

	
LON

	
−22,256

	
LON

	
2.15E+05




	
DIR*SN

	
0.42155

	
DIR*SN

	
2.2528

	
DIR*SN

	
−2.3769

	
DIR*SN

	
−0.00615

	
DIR*SN

	
−0.2772

	
DIR*SN

	
−17.417




	
DIR*PSI

	
0.20165

	
DIR*RUT

	
−0.06095

	
DIR*IRI

	
−2.1331

	
DIR*CI

	
0.009409

	
DIR*PSI

	
−0.10405

	
DIR*CI †

	
0.66789




	
DIR*LAT

	
−19.882

	
DIR*CI

	
−0.24414

	
DIR*TEXT

	
1.0249

	
DIR*TEXT

	
−0.09728

	
DIR*LAT

	
13.199

	
DIR*TEXT

	
15.479




	
DIR*LON

	
−38.961

	
DIR*TEXT

	
−1.3265

	
DIR*PSI

	
−4.1952

	
DIR*PSI

	
−0.04283

	
DIR*LON

	
25.557

	
DIR*LAT

	
863.97




	
SN*IRI

	
−2.5289

	
DIR*LAT

	
−112.04

	
DIR*LAT

	
122.24

	
DIR*LAT

	
1.4664

	
SN*IRI

	
1.6597

	
DIR*LON

	
1587.3




	
SN*RUT †

	
0.000218

	
DIR*LON

	
−205.3

	
DIR*LON

	
215.23

	
SN*IRI

	
−0.32222

	
SN*CI

	
−0.05776

	
SN*IRI

	
92.302




	
SN*CI

	
0.091863

	
SN*IRI

	
−11.396

	
SN*IRI †

	
0.042249

	
SN*RUT

	
−0.00181

	
SN*PSI

	
3.5099

	
SN*CI

	
−5.4612




	
SN*PSI

	
−5.4216

	
SN*CI

	
0.99706

	
SN*RUT

	
−0.02263

	
SN*CI

	
0.000164

	
SN*PCR

	
2.76E−05

	
SN*PSI

	
190.69




	
SN*LON

	
7.557

	
SN*TEXT

	
5.4247

	
SN*CI

	
−0.41771

	
SN*PSI

	
−0.15159

	
SN*LON

	
−4.3654

	
SN*LON

	
13.525




	
IRI*CI

	
0.043251

	
SN*PSI

	
−23.027

	
SN*TEXT

	
0.013858

	
SN*PCR

	
−0.00831

	
IRI*PSI

	
5.4178

	
IRI*PSI

	
185.71




	
IRI*TEXT

	
0.35699

	
SN*PCR

	
0.00337

	
SN*LON

	
−141.5

	
SN*LON

	
−0.05782

	
IRI*LAT

	
−78.607

	
IRI*LAT

	
−4117.7




	
IRI*PSI

	
−5.5782

	
SN*LAT

	
−3.8043

	
IRI*TEXT

	
8.1014

	
IRI*LAT

	
13.616

	
IRI*LON

	
−153.96

	
IRI*LON

	
−8691.9




	
IRI*PCR

	
−0.01062

	
SN*LON

	
−0.4314

	
IRI*PSI

	
3.5725

	
IRI*LON

	
30.656

	
RUT*TEXT

	
−0.06261

	
RUT*CI

	
0.31907




	
IRI*LAT

	
117.87

	
IRI*PSI

	
0.90405

	
IRI*LAT

	
−9.1198

	
RUT*LAT

	
0.44495

	
CI*LAT

	
2.586

	
CI*TEXT

	
7.5985




	
IRI*LON

	
235.76

	
IRI*PCR

	
−0.02732

	
RUT*LAT

	
5.2375

	
CI*PSI

	
0.020294

	
CI*LON

	
5.4216

	
CI*LAT

	
270.76




	
CI*LAT

	
−4.3628

	
IRI*LAT

	
576.37

	
CI*PCR

	
0.010846

	
PSI*LON

	
17.759

	
TEXT*LON

	
0.48347

	
CI*LON

	
497.84




	
CI*LON

	
−8.5112

	
IRI*LON

	
1035.6

	
CI*LAT

	
21.132

	
PCR*LAT

	
0.488

	
PSI*LAT

	
−166.16

	
TEXT*PCR

	
−0.65014




	
TEXT*LON

	
−0.71461

	
RUT*LON

	
−0.33256

	
CI*LON

	
37.856

	
PCR*LON

	
0.71871

	
PSI*LON

	
−325.72

	
PSI*LAT

	
−8548.4




	
PSI*LAT

	
254.15

	
CI*PCR

	
−0.00563

	
TEXT*PSI

	
15.214

	
LAT*LON

	
25.428

	
SN^2

	
0.019123

	
PSI*LON

	
−17,937




	
PSI*LON

	
504.69

	
CI*LAT

	
−50.147

	
LAT*LON

	
1833.4

	
CI^2

	
−0.00306

	
IRI^2

	
1.2164

	
LAT*LON

	
−536.53




	
SN^2

	
−0.03303

	
CI*LON

	
−90.813

	
SN^2

	
0.59347

	
LAT^2

	
−23.408

	
PSI^2

	
6.0535

	
IRI^2

	
42.418




	
IRI^2

	
−1.3801

	
TEXT*LAT

	
−282.47

	
TEXT^2

	
−2.8445

	

	

	
PCR^2†

	
5.14E−05

	
CI^2

	
0.46754




	
RUT^2

	
−0.00381

	
TEXT*LON †

	
−488.12

	
PSI^2

	
7.3199

	

	

	
LON^2

	
248.82

	
PSI^2

	
199.94




	
PSI^2

	
−6.2659

	
PSI*LAT

	
1199.2

	
PCR^2

	
−0.00083

	

	

	

	

	
LON^2

	
−1305.4




	
PCR^2

	
−0.00019

	
PSI*LON

	
2073.6

	
LAT^2

	
−1649.7

	

	

	

	

	

	




	
LON^2

	
−431.7

	
PCR*LAT †

	
−0.75592

	
LON^2

	
7925.4

	

	

	

	

	

	




	

	

	
LAT*LON

	
543.29

	

	

	

	

	

	

	

	




	
 

	

	

	

	

	

	

	

	

	

	

	




	
RMSE

	
0.323

	
RMSE

	
1.430

	
RMSE

	
1.190

	
RMSE

	
0.104

	
RMSE

	
0.200

	
RMSE

	
11.000




	
R2

	
0.668

	
R2

	
0.422

	
R2

	
0.642

	
R2

	
0.505

	
R2

	
0.680

	
R2

	
0.467








† Denotes Terms with p-values greater than 5%.
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Table 6. Neural Network Models Performance Summary.






Table 6. Neural Network Models Performance Summary.





	

	
NN Modeling Results Summary of Lane 2 and Lane 1 Indices from Lane 3 Indices




	

	

	
Lane 2

	
Lane 1




	

	

	
Training

	
Testing

	
All

	
Training

	
Testing

	
All






	
IRI (m/km)

	
R2

	
0.812

	
0.790

	
0.802

	
0.866

	
0.795

	
0.855




	
RMSE

	
0.213

	
0.235

	
0.216

	
0.277

	
0.301

	
0.281




	
Epoch

	
239

	
NA

	
462

	
NA




	
Neurons

	
7

	
8




	
Rut (mm)

	
R2

	
0.818

	
0.782

	
0.800

	
0.782

	
0.780

	
0.781




	
RMSE

	
0.684

	
0.834

	
0.708

	
1.151

	
1.023

	
1.133




	
Epoch

	
237

	
NA

	
187

	
NA




	
Neurons

	
10

	
8




	
CI

	
R2

	
0.908

	
0.911

	
0.908

	
0.891

	
0.893

	
0.892




	
RMSE

	
0.801

	
0.776

	
0.797

	
0.858

	
0.960

	
0.874




	
Epoch

	
133

	
NA

	
94

	
NA




	
Neurons

	
9

	
8




	
Texture (mm)

	
R2

	
0.891

	
0.849

	
0.885

	
0.820

	
0.751

	
0.809




	
RMSE

	
0.092

	
0.099

	
0.093

	
0.084

	
0.086

	
0.084




	
Epoch

	
173

	
NA

	
117

	
NA




	
Neurons

	
8

	
8




	
PSI

	
R2

	
0.807

	
0.791

	
0.805

	
0.879

	
0.850

	
0.874




	
RMSE

	
0.144

	
0.137

	
0.143

	
0.165

	
0.174

	
0.167




	
Epoch

	
356

	
NA

	
404

	
NA




	
Neurons

	
7

	
10




	
PCR

	
R2

	
0.815

	
0.628

	
0.773

	
0.731

	
0.729

	
0.731




	
RMSE

	
6.249

	
8.311

	
6.884

	
9.760

	
11.221

	
9.992




	
Epoch

	
191

	
NA

	
235

	
NA




	
Neurons

	
10

	
8
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Table 7. Summary of % Change in RMSE and R2 after Variable Exclusion for All PC ANN models.
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% Change in RMSE




	
PC

	
Lane ID

	
Without DIR

	
Without SN

	
Without IRI

	
Without RUT

	
Without CI

	
Without TEXT

	
Without PSI

	
Without PCR

	
Without LAT

	
Without LON




	
IRI

	
Lane 2

	
13.96%

	
8.92%

	
7.76%

	
7.02%

	
4.67%

	
7.01%

	
6.65%

	
4.91%

	
8.83%

	
6.53%




	
Lane 1

	
9.41%

	
4.93%

	
6.68%

	
6.96%

	
5.58%

	
5.19%

	
4.87%

	
5.24%

	
6.61%

	
6.64%




	
RUT

	
Lane 2

	
20.93%

	
9.24%

	
8.56%

	
6.60%

	
12.37%

	
12.66%

	
7.44%

	
8.54%

	
9.15%

	
10.07%




	
Lane 1

	
13.90%

	
3.57%

	
3.78%

	
8.99%

	
6.17%

	
7.90%

	
3.95%

	
6.84%

	
6.19%

	
4.22%




	
CI

	
Lane 2

	
24.58%

	
3.58%

	
7.20%

	
5.78%

	
12.64%

	
8.22%

	
5.15%

	
1.48%

	
7.41%

	
7.07%




	
Lane 1

	
21.81%

	
6.22%

	
8.15%

	
8.21%

	
4.95%

	
6.15%

	
2.36%

	
7.84%

	
6.10%

	
2.31%




	
TEXT

	
Lane 2

	
18.26%

	
7.57%

	
1.74%

	
1.74%

	
6.12%

	
3.40%

	
4.83%

	
2.86%

	
7.81%

	
0.75%




	
Lane 1

	
18.49%

	
5.48%

	
4.82%

	
5.37%

	
10.23%

	
10.02%

	
3.92%

	
5.57%

	
7.75%

	
5.74%




	
PSI

	
Lane 2

	
8.59%

	
5.41%

	
4.64%

	
2.54%

	
7.10%

	
3.70%

	
5.04%

	
4.62%

	
6.97%

	
4.72%




	
Lane 1

	
23.12%

	
8.32%

	
5.63%

	
11.90%

	
6.98%

	
6.37%

	
8.23%

	
6.05%

	
5.75%

	
7.35%




	
PCR

	
Lane 2

	
−1.72%

	
1.06%

	
0.74%

	
0.78%

	
−0.63%

	
−2.29%

	
−3.39%

	
−3.26%

	
2.05%

	
−2.41%




	
Lane 1

	
2.15%

	
3.20%

	
−3.15%

	
3.77%

	
−2.90%

	
−2.37%

	
−2.07%

	
1.28%

	
−2.16%

	
0.34%




	
% Change in R2




	
PC

	
Lane ID

	
Without DIR

	
Without SN

	
Without IRI

	
Without RUT

	
Without CI

	
Without TEXT

	
Without PSI

	
Without PCR

	
Without LAT

	
Without LON




	
IRI

	
Lane 2

	
−8.52%

	
−5.26%

	
−4.59%

	
−4.19%

	
−2.67%

	
−4.12%

	
−3.93%

	
−2.82%

	
−5.32%

	
−3.72%




	
Lane 1

	
−3.75%

	
−1.87%

	
−2.65%

	
−2.76%

	
−2.06%

	
−2.04%

	
−1.89%

	
−2.03%

	
−2.59%

	
−2.61%




	
RUT

	
Lane 2

	
−14.26%

	
−5.60%

	
−5.12%

	
−3.97%

	
−7.66%

	
−7.86%

	
−4.42%

	
−5.16%

	
−5.45%

	
−6.09%




	
Lane 1

	
−10.09%

	
−2.38%

	
−2.52%

	
−6.28%

	
−4.17%

	
−5.41%

	
−2.65%

	
−4.70%

	
−4.17%

	
−2.82%




	
CI

	
Lane 2

	
−6.09%

	
−0.80%

	
−1.58%

	
−1.29%

	
−2.89%

	
−1.86%

	
−1.15%

	
−0.34%

	
−1.64%

	
−1.61%




	
Lane 1

	
−6.48%

	
−1.73%

	
−2.27%

	
−2.25%

	
−1.33%

	
−1.68%

	
−0.65%

	
−2.20%

	
−1.65%

	
−0.60%




	
TEXT

	
Lane 2

	
−5.70%

	
−2.24%

	
−0.45%

	
−0.44%

	
−1.77%

	
−0.91%

	
−1.44%

	
−0.83%

	
−2.15%

	
−0.22%




	
Lane 1

	
−11.38%

	
−2.99%

	
−2.66%

	
−2.96%

	
−5.89%

	
−5.78%

	
−2.20%

	
−3.13%

	
−4.42%

	
−3.26%




	
PSI

	
Lane 2

	
−5.04%

	
−3.10%

	
−2.66%

	
−1.47%

	
−4.14%

	
−1.96%

	
−2.91%

	
−2.56%

	
−4.02%

	
−2.72%




	
Lane 1

	
−8.27%

	
−2.74%

	
−1.82%

	
−3.99%

	
−2.28%

	
−2.07%

	
−2.68%

	
−1.92%

	
−1.86%

	
−2.43%




	
PCR

	
Lane 2

	
0.10%

	
−1.80%

	
−1.62%

	
−1.40%

	
−0.61%

	
0.43%

	
1.33%

	
1.24%

	
−2.21%

	
0.77%




	
Lane 1

	
−1.99%

	
−3.02%

	
2.57%

	
−3.64%

	
2.35%

	
2.03%

	
1.69%

	
−1.24%

	
1.87%

	
−0.35%
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Table 8. Relative Influence Ranking of the PCs as Predicting Variable of Adjacent Lanes PCs.
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PC

	
Lane ID

	
DIR

	
SN

	
IRI

	
RUT

	
CI

	
TEXT

	
PSI

	
PCR

	
LAT

	
LON






	
IRI

	
Lane 2

	
1

	
2

	
4

	
5

	
10

	
6

	
7

	
9

	
3

	
8




	
Lane 1

	
1

	
9

	
3

	
2

	
6

	
8

	
10

	
7

	
5

	
4




	
RUT

	
Lane 2

	
1

	
5

	
8

	
10

	
3

	
2

	
9

	
7

	
6

	
4




	
Lane 1

	
1

	
10

	
9

	
2

	
6

	
3

	
8

	
4

	
5

	
7




	
CI

	
Lane 2

	
1

	
9

	
5

	
7

	
2

	
3

	
8

	
10

	
4

	
6




	
Lane 1

	
1

	
5

	
3

	
2

	
8

	
6

	
9

	
4

	
7

	
10




	
TEXT

	
Lane 2

	
1

	
3

	
8

	
9

	
4

	
6

	
5

	
7

	
2

	
10




	
Lane 1

	
1

	
7

	
9

	
8

	
2

	
3

	
10

	
6

	
4

	
5




	
PSI

	
Lane 2

	
1

	
4

	
7

	
10

	
2

	
9

	
5

	
8

	
3

	
6




	
Lane 1

	
1

	
3

	
10

	
2

	
6

	
7

	
4

	
8

	
9

	
5




	
PCR

	
Lane 2

	
9

	
5

	
7

	
8

	
10

	
6

	
1

	
2

	
3

	
4




	
Lane 1

	
6

	
2

	
3

	
1

	
4

	
5

	
8

	
9

	
7

	
10




	
Ave.

	
Lane 2

	
1

	
4

	
6

	
9

	
2

	
5

	
8

	
10

	
3

	
7




	
Lane 1

	
1

	
8

	
7

	
2

	
4

	
3

	
10

	
6

	
5

	
9
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Table 9. RMSE Summary of the Various S-MLR, Q-MLR, and ANN Models.
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IRI

	
RUT

	
CI

	
TEX

	
PSI

	
PCR




	

	
L 2

	
L 1

	
L 2

	
L 1

	
L 2

	
L 1

	
L 2

	
L 1

	
L 2

	
L 1

	
L 2

	
L 1






	
S-MLR

	
0.312

	
0.380

	
1.020

	
1.620

	
1.620

	
1.620

	
0.179

	
0.132

	
0.205

	
0.235

	
9.840

	
12.200




	
Q-MLR

	
0.251

	
0.323

	
0.883

	
1.430

	
1.180

	
1.190

	
0.136

	
0.104

	
0.163

	
0.200

	
7.880

	
11.000




	
ANN

	
0.216

	
0.281

	
0.708

	
1.133

	
0.797

	
0.874

	
0.093

	
0.084

	
0.143

	
0.167

	
9.277

	
9.992
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