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Abstract: Working condition diagnosis is an important means of evaluating the operating state of
rod pumping systems. As the data source of working condition diagnosis, the quality of indicator
diagrams will have a significant impact on the diagnosis results. In the actual oil field production
process, the number of samples between indicator types is usually unbalanced, so it is an important
means to improve the diagnostic accuracy by using data augmentation methods. However, traditional
data augmentation methods require manual design, and the experimental results are not satisfactory.
We propose an automatic data augmentation method based on teacher knowledge for working
condition diagnosis of rod pumping systems. This method adopts an adversarial strategy for
data augmentation and optimization and uses the teacher model as prior knowledge to generate
information-rich transformation images for the model, thereby improving the generalization of
the working condition diagnosis model. Specifically, our method makes the augmented images
adversarial to the target model and recognizable to the teacher model. Compared with traditional
methods, this method can automatically select the correct data enhancement method according to
different indicator diagram sample sets to solve the corresponding problems. Our method has an
accuracy of more than 98% in the diagnosis of actual oil field operating conditions. The experiment
showed that the accuracy of this method was more than 5% higher than that of the traditional data
augmentation methods in the task of condition diagnosis, which shows that this method has research
and development value.

Keywords: automatic data augmentation; rod pumping systems; teacher knowledge; working
condition diagnosis

1. Introduction

Data augmentation is mainly used to prevent overfitting when the dataset is small.
When training a machine learning model, all you really have to do is tune the parameters
so that it maps the inputs (such as images) to outputs (such as labels). Our optimization
goal is to pursue the sweet spot where the model loss is low, which happens when the
parameters are tuned in the right way [1]. Obviously, if there are many parameters, the
model needs to be given a sufficient proportion of samples. At present, the main types
of indicator diagrams are divided into the following six types: (1) The influence of gas
and liquid inability to fill on the indicator diagram; (2) The influence of leakage on the
indicator diagram includes leakage in the discharge part and leakage in the suction part;
(3) The plunger is stuck; (4) The indicator diagram with a blowout well; (5) The sucker rod
breaks off; and (6) Other situations including oil well waxing and sand production. For
the working condition diagnosis of the rod pumping system, multi-category faults mean
multi-classification tasks, which require a large number of indicator diagrams to support.
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However, the number of failures of pumping units in the actual oil field is relatively small,
resulting in an obvious shortage of samples of failure types, and the model classification
effect is not good [2].

In order to prevent the problem of model overfitting, data augmentation technology
came into being. Traditional data augmentation methods are designed and implemented
manually such as random rotation, random cropping, horizontal and vertical flipping,
color dithering, Gaussian noise, etc. [3]. Different data augmentation methods are suitable
for different datasets, but the traditional methods of manual design do not take this
problem into account, making the augmentation effect of the model unstable. This paper
aimed to automatically find an efficient data augmentation strategy for indicator diagram
datasets. Therefore, we propose a data augmentation optimization method based on teacher
knowledge, which can automatically find a data enhancement method suitable for the task
of the diagnosis of the working condition. Through teacher knowledge, the target model
can acquire the prior and hyperparameter settings, and the enhanced images will not lose
their inherent information, thereby improving the expressiveness and generalization of
the model itself. In addition, this paper produced an indicator diagram sample dataset
according to the “cifar10” dataset format [4], and used a data-augmented neural network
to narrow the search space to ensure convergence.

Aiming at the problem of the insufficient number of indicator diagram samples and
an imbalance between classes, common solutions can be divided into two categories:
increasing the number of samples and selecting new methods. In terms of new methods,
emerging machine learning methods provide novel models for working condition diagnosis.
Zhang and Gao [5] adopted the transfer subspace method in transfer learning and used the
transformation matrix to realize the transformation of dynamometer knowledge among
multiple oil wells. Zhou et al. [6] proposed a Kalman filter radial basis function method
based on the adaptive noise factor for the working condition diagnosis of rod pump systems.
The model used the UKF algorithm to optimize the parameters of neural network weights,
center, and width. Cheng, Yu, Zeng, Osipov, Li, and Vyatkin [2] obtained the features
of the indicator map through the extraction extractor of AlexNet, and used SVM for the
classification of working conditions. Zhang et al. [7] proposed the use of the meta-transfer
learning method to solve the problem of the diagnosis of small sample conditions, and
achieve the efficient classification of indicator diagrams through knowledge transfer and
hyperparameter optimization.

A novel approach to continuously learn the data augmentation strategies from data
is AutoAugment (automatic augmentation) [8]. It initially uses reinforcement learning
to select sequences of operations and their application probabilities and magnitudes.
Studies [9,10] have shown that automatic augmentation can significantly reduce the search
cost, but parameter optimization is more complicated. For working condition diagnosis,
in order to alleviate the problem of parameter adjustment, we propose an online data
augmentation optimization method using teacher knowledge. AutoAugment searches for
the best enhancement strategy directly on the dataset of interest. This method is also based
on an adversarial data augmentation strategy, but it searches for augmentation within the
range where the teacher model can recognize transformed images.

The contributions of this paper are summarized as follows. We propose an automatic
data augmentation method based on teacher knowledge to solve the problem of insufficient
samples for the working condition diagnosis of rod pumping systems. With the teacher
model, the transformed images can avoid losing their inherent meaning and also make
the adversarial enhancement more informative without the need to manually adjust the
parameters. In this paper, a standard indicator diagrams dataset was constructed according
to the “cifar10” dataset format for the application of the working condition diagnosis model.
This dataset construction method can be used for actual oil field database management to
provide support for subsequent analysis and processing. A neural network was proposed
for the data augmentation of indicator diagrams, which can perform gradient descent to
update parameters and simplify the design of the search space.



Sustainability 2023, 15, 568 3 of 17

The rest of this paper is structured as follows. In Section 2, the related algorithms
for automatic data augmentation and teacher knowledge are introduced to facilitate the
understanding of the entire algorithm model. In Section 3, a teacher-knowledge-based
automatic data augmentation model for operating condition diagnosis is proposed, and
the parameters and structural details are introduced. Section 4 applies this method to the
experiment of the actual indicator diagrams dataset, and explains the experimental design,
experimental results, and comparative experimental analysis. In Section 5, the advantages
and disadvantages of this method and future prospects are discussed. Section 6 presents
our conclusions.

2. Materials and Methods

There are many algorithms related to data augmentation. Some of these machine
learning methods use traditional data augmentation, which is continuously improved as
the technology develops. Obviously, data augmentation techniques play an important
role in the training process of deep vision models. Sato et al. [11] discussed the problem
of optimal decision rules for a classifier of a data augmentation method. They employed
elastic deformation methods across scales, locations, and orientations on the MNIST dataset.
Zagoruyko and Komodakis [12] used an augmentation method of the horizontal flipping of
images and random cropping for classification and detection models. The previous method
increased the data while keeping the data distributed in the training set, but the opposite
operation could also effectively increase the generalization. Some methods improve vali-
dation accuracy and model robustness by randomly erasing or adding noise. Mixup is a
particularly effective augmentation method for the imagenet dataset, where the network
model is trained on images and their corresponding labels [13]. Cropping centered on the
object in the image is usually used for object detection tasks. In addition to implementing
single operations for data augmentation, researchers have also explored the optimal strate-
gies for combining multiple operations. Devries and Taylor [14] took a domain-agnostic
approach to dataset augmentation with the main insight that the transformation was not
performed in the input space, but in the learned feature space. Tran et al. [15] provided a
new Bayesian formulation for data augmentation, where new annotated training points
were treated as missing variables and generated according to the distribution learned from
the training set. Ratner et al. [16] proposed a method to learn a generative sequence model
on a user-specified transformation function by using a generative adversarial approach for
selecting the optimal sequence for data augmentation operations. The analysis results of
various methods are shown in Table 1.

Table 1. Comparison between the traditional data augmentation methods and our method.

Author Method Type Parameters Loss Accuracy

Method proposed in this study Automatic enhancement Large Low High
Sato et al. [11] Optimal decision rules Medium Medium Medium

Zagoruyko and Komodakis [12] Horizontal flipping Small High Low
Zhang et al. [13] Mixup Small High Low

Devries and Taylor [14] Domain-agnostic approach Medium Medium Medium
Tran et al. [15] Bayesian formulation Small High Low

Ratner et al. [16] Adversarial approach Large Low High

In order to facilitate the understanding of automatic data augmentation technology
and teacher knowledge, the relevant algorithms are explained from three aspects, which
can also deepen the mastery of the combination of working condition diagnosis and
data augmentation.

2.1. Automatic Data Augmentation

Data augmentation [17–19] is an effective technique to improve the accuracy of modern
image classifiers. Previous data augmentation methods corresponding to each dataset were
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manually designed, but there have been few studies on which data augmentation strategies
should be used for each dataset. Automatic data augmentation technology is an automatic
search and improved data augmentation strategy, which uses reinforcement learning to find
the corresponding strategy for each dataset. This paper introduced an automatic method to
find data augmentation policies from data. Our approach was inspired by the latest progress
in architecture search, where reinforcement learning and evolutionary algorithms have
been used to discover model architectures from data. Here, the enhancement strategy refers
to multiple sub-strategies to form a complete strategy. The sub-policy consists of several
augmentation operations, where each operation consists of two parameters: probability
and magnitude, which are the probability of using the operation and the magnitude of the
operation, respectively.

This method consists of two parts: the search algorithm and the search space. The
policy in the search space consists of many sub-policies, one of which is randomly selected
for each image in each batch. The sub-policy consists of two operations, each of which is an
image processing function such as translation, rotation, or shearing, and the probability
and magnitude at which these operations are taken. We used a search algorithm to find the
best strategy so that the neural network produced the highest validation accuracy on the
target dataset. Search space details: In the search space, a policy consists of five sub-policies,
each consisting of two image operations to be applied in sequence. Additionally, each
operation is also associated with two hyperparameters: (1) The probability of applying
the operation; (2) the magnitude of the operation. The main body of the search algorithm
is reinforcement learning, which consists of two parts: the controller and the training
algorithm. The controller is played by an RNN (recurrent neural network). Next, the
generated augmentation policy is applied to the training of the sub-model. After the
submodel is trained, it is evaluated on the validation set, and the accuracy of the submodel
is fed back to the RNN controller as a “reward signal”. Finally, the controller passes this
signal and is updated under the optimization algorithm. The flow chart of the optimization
strategy for data augmentation is shown in Figure 1 [8].
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Unlike traditional data augmentation methods, automatic data augmentation finds
multiple augmentation strategies through algorithms for a single dataset, and then ran-
domly selects a single image from this series of sub-strategies for a single image in the
mini-batch during the process of using the dataset to train the network, then extracting
a sub-policy to act on the image. That is, not only may the data fed into the network go
through a different augmentation operation for each epoch, but even within the same epoch,
different images in the same mini-batch may undergo different augmentation operations.
However, because of the existence of probability, even if the same sub-strategy is used to
enhance the results, the results will be different. In this paper, we focused on methods
that update policies in an online manner for two reasons: (1) They can directly search the
target network for data augmentation policies using all training data, and (2) They unify
the search and training processes, which simplifies the framework.

2.2. Teacher Knowledge

Teacher knowledge belongs to the field of knowledge distillation [20]. The purpose of
knowledge distillation is to extract knowledge from the larger teacher model and transfer
it to the lightweight student model. Its effectiveness is usually attributed to the unique
information about the similarity between categories provided by the teacher model. In
this sense, only a strong teacher model can be deployed to enhance the weaker student
model. Teacher knowledge is more prevalent in the semi-supervised learning field. Teacher
knowledge literally refers to teachers guiding students to learn “knowledge” from data.
Typically, teacher knowledge involves teacher models and student models [21]. In super-
vised learning, we have a large amount of labeled data, and the model learns under the
supervision of labels. In semi-supervised learning, we have a small amount of label data
and a large amount of unlabeled data. How to learn from a large amount of unlabeled
data becomes the key to the problem. One approach is the pseudo label. First, the label
data are used to train a model, then the model is used to predict the pseudo label of the
unlabeled data, and then the pseudo label is used to further train the model. This process
can be iterated repeatedly until convergence. The key to this approach is that we believe in
the model’s prediction of unlabeled data, but when there is very little label data, the model
is easy to overfit, so the model’s prediction is not reliable, which is a bit contradictory.

For overfitting problems, unlabeled data can be used to regularize the model to make
the model more robust. In this regard, our predecessors have conducted a lot of work
such as data augmentation, dropout, shake-shake regularization, and so on [22]. Data
augmentation processes data, while dropout and shake-shake process models, but cannot
solve the problem of unlabeled data. Therefore, consistency regularization came into being.
For classification problems (semantic segmentation problems are not discussed for the time
being), consistency regularization is as follows: for the same input under different data
augmentation and dropout conditions, the output of the model (soft-label after softmax
processing) is consistent [23]. This requires two or more input evaluations. The teacher
models and student models are one way of implementation because the teacher requires
the output of the student to be consistent with it.

The main idea of consistency regularization is as follows: for the input, even with
slight disturbances, its predictions should be consistent [24]. In addition to the idea of
consistency, there is also the motivation of “the key to the success of the model is the quality
of the target”. The idea is to construct a better teacher model than the student model from
the current model (student model), and then use the teacher model’s predictions to train
the student model. The workflow of teacher knowledge is shown in Figure 2.
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Figure 2. Schematic diagram of the interaction between the student model and the teacher model at
time t.

2.3. Color Regularization

In practice, color augmentation models are mostly set outside the color distribution
of the training set of samples when transforming pixel colors. Therefore, the resulting
enhanced images are data from an unexpected distribution, which may reduce the iden-
tification accuracy of the test set samples within the distribution. To correct the color
distribution before and after image augmentation, we chose to regularize the color aug-
mentation model by introducing the sliced Wasserstein distance (SWD) [25] to process the
pixel color. The Wasserstein distance is generally used to measure the distance between
the probability distributions, and the idea of SWD is to first obtain a one-dimensional
representation of a high-dimensional probability distribution through linear mapping,
and then calculate the Wasserstein distance of the one-dimensional representation of two
probability distributions. The formula for defining the color regularization term here [9] is
as follows:

Lcolor({xb}B
b , {x̃b}B

b ) = ∑
i

SWD({xb
i }B

b , {x̃b
i }B

b ) (1)

where {xb
i }B

b represents the ith pixel of the images in the batch size B; {x̃b
i }B

b represents the
color-enhanced image, which is defined in Equation (4); in terms of the computational cost,
the cost of calculating the SWD per pixel location depends on the image resolution and is
linearly related. Then, during stochastic gradient descent, the gradient of φ at each iteration
is expressed as:

∂

∂φ

1
B

B

∑
b

[
L
(

fθ

(
aφ(xb)

))
− L

(
fθ

(
aφ(xb)

))]
− λLcolor({xb}B
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where λ represents the hyperparameter that controls the regularization effect, and was set
to 10 in this model. This model adopts unsaturated loss. Here, the formula of loss L is:

L
(

fθ

(
aφ(x)

))
= ∑K

k=1 yk log
(

1− fθ

(
aφ(x)

)
k

)
(3)

3. Proposed Method

The automatic data augmentation technology based on teacher knowledge is a new
direction to study the problem of working condition diagnosis, which involves parameter
optimization and image processing methods. There are many problems in condition di-
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agnosis such as insufficient liquid supply or gas influence. The parameter optimization
involved here includes the optimization of network weights and offsets as well as the
learning rate. Image processing methods involve convolutional neural networks, mainly in-
cluding up sampling and down sampling. The parameters are set in advance here. Suppose
x represents an image sampled from dataset X, and aφ represents an augmentation function
with parameter φ. aφ is a conversion parameter in data augmentation, fθ

(
i.e. fθ

(
aφ(x)

))
is the objective function. The search loss is ExL

(
fθ

(
aφ(x)

))
. The objective function of the

teacher model is f
θ̂
. The color magnification model parameter is cφc , while the geometric

magnification model parameter is gφg . The following will be divided into several aspects
to explain.

3.1. Preprocessing

In traditional data augmentation methods, φ represents the magnitude of data aug-
mentation. Assume that x is a sample taken from the image dataset such as the image of
the gas impact type. aφ represents an enhancement function such as a random flip function.
φ represents the inversion rate, which can be 90 degrees or 180 degrees. In this paper, φ
corresponds to the parameters of the neural network. Usually in the training process using
data augmentation, the samples of each minibatch are transformed by aφ and then fed
into the target network fθ

(
i.e. fθ

(
aφ(x)

))
. Afterward, the parameters of the target network

are updated to minimize the task loss L. Additionally, the adversarial data augments the
search parameter φ to maximize the loss. The goal is defined as maxφminθExL

(
fθ

(
aφ(x)

))
.

This objective is solved by alternately updating φ and θ. However, adversarial data aug-
mentation methods cannot improve model generalization well without regularization or
restrictions on the size of the search space. Because maximizing φ tends to ignore the
intrinsic information of the image x, therefore, instead of regularization based on prior
knowledge, we used the teacher model.

3.2. Automatic Augmentation Method Based on Teacher Knowledge

Let f
θ̂

be the teacher model, which can take any model as the teacher model, as
long as it is different from the target model fθ . The student model is the model that
traditional machine methods focus on (i.e., the target model). The teacher model is a
separate agent responsible for providing appropriate inputs to the target model to guide
its training process. The input of the target model here mainly includes: (1) Training
dataset: training set from all datasets; (2) Loss function: Loss function from all possible
loss functions; (3) Hypothesis space: Hypothesis space from all possible hypothesis spaces
(e.g., linear/polynomial function class/NN structure/hyperparameter). The evaluation
criteria for suitable input is to enable the student model to achieve better performance or
higher efficiency on the entire task. We used two teacher models, a pre-trained teacher and
an EMA teacher (whose weights were updated by exponentially weighting the weights of
the target model) [26]. The function objective [26] is set as follows:

maxφminθEx

[
L
(

fθ

(
aφ(x)

))
− L

(
f
θ̂

(
aφ(x)

))]
(4)

The function of our method has the same part as that of the adversarial data augmen-
tation method. However, the goal of this enhancement function is not only to maximize
the loss of the objective function, but also to minimize the loss of the teacher model. Using
this method can effectively avoid the disappearance of the inherent meaning of the image
because when the image becomes unrecognizable, the teacher model will experience a
gradient explosion. This shows that the introduced teacher model loss requires an augmen-
tation function to transform the image, so that the augmentation result is adversarial to the
target model, but discriminable to the teacher model.

The explanation of our method is shown in Figure 3 [10]. Adversarial data augmenta-
tion methods increase the loss value of the target model fθ by transforming the data. Such
augmented image data are often difficult to generate value (e.g., the black and noisy parts
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in Figure 3). Augmented images are difficult to recognize without any constraints. For the
problem of working condition diagnosis, it is helpful to provide directional guidance for
the model convergence speed of indicator diagram classification. Our proposed method
transforms the data so that it is adversarial to the target model but recognizable to the
teacher model f

θ̂
. Therefore, the augmented images will be more informative than normal

adversarial data augmentation.
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The traditional countermeasure strategy maximizes the loss of the objective function
without considering the image connotation information, so the generated image lacks a lot
of semantic information. Our method will automatically limit the search space due to the
guidance of the teacher model to obtain better images.

The automatic augmentation method based on the teacher knowledge alternately
updates the parameters of the target model fθ and the enhancement model aφ. The training
process of this method is shown in Figure 4 [27].
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As shown in Figure 4, this method solves the problem by alternately updating the
augmentation function and the target model through stochastic gradient descent [28]. The
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model first updates the target network for several steps, and then updates the parameters
of the augmentation function. The reason why the augmentation function can be updated
by the gradient method is that the parameters of our proposed neural network are differen-
tiable with respect to the parameter φ during iteration. This method neither regularizes
the augmentation function based on domain knowledge nor restricts the difficulty of trans-
forming the images to ensure that the transformed images are recognizable. In this method,
to prevent exploding gradients, we employed label smoothing techniques. The formula is
ŷk = (1− ε)yk +

ε
K , where ε ∈ [0, 1), which is used to replace normal labels. In particular,

this tends to happen with simple tasks or strong objective models.

3.3. Data Augmentation with Neural Networks

Aiming at the problem of the fault diagnosis of rod pumping systems, we proposed
a data augmentation method using a neural network with the parameter φ. The method
mainly includes two models: the color amplification model cφc and the geometric ampli-
fication model gφg . The model can update the parameters through the gradient method,
using two functions to update the structure of the search space. The method of image
augmentation is shown in Figure 5.
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This data augmentation includes color augmentation cφc and geometric augmentation
gφg . Both augmentations are applied to the input image x with probabilities pc and pg.
Given an image x ∈ RM×3, M is the number of pixels and the number 3 is the three RGB
color channels. The probability of action of color augmentation is pc ∈ (0, 1), while the
probability of geometric enhancement is pg ∈ (0, 1).

Here, the given color augmentation definition formula is as follows:

x̃i = t(αi
⊙

xi + βi), (αi, βi) = cφc(xi, z, c) (5)

Among them, αi, βi represent the scale and shift parameters; � represents the element-
wise multiplication between two vectors; t(.) represents the trigonometric function, which
ensures that x̃i ∈ [0, 1]; z ∈ N(0, IN), where N(0, IN) represents an N-dimensional unit
Gaussian distribution; and c is an optional context vector.
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The geometric augmentation definition formula [27] is as follows:

x̂ = Affine(x̃, A + I), A = gφg(z, c) (6)

where Affine(x̃, A + I) represents the affine transformation of x̃ with parameters (A + I);
I ∈ R2×3 represents the matrix. If ∀i, then Iii = 1, otherwise Iii = 0. This makes the
affine transformation a unit map Affine(x, I) = x. A represents the residual parameter,
while c and z are the same as before. Geometrically augmented models can indeed be
defined by transformations other than affine transformations [29]. However, we chose this
transformation in this work, considering that the affine transformation can represent all
linear transformations and their complex forms in the auto-augmentation search space.

3.4. The Entire Model

We chose wide residual networks (WRN) [12] as the base model for the dynamometer
classification task. WRN is a wider ResNet. As a variant of ResNet, it has great improve-
ments in speed and performance. The main parameters of WRN are: the width coefficient
K, the number of convolutional layers L contained in a block, the total number of con-
volutional layers N, and the structure M of the block. The naming method adopted by
WRN is WRN-N-K-M. Here, the model of the WRN-28-10-M (3, 3) structure was used for
the experiments.

In terms of model details, for geometric augmentation, a three-layer perceptron was
chosen here. The dimension of the noise vector was 128, and the number of units in the
hidden layer was 512. We used the leaky ReLU [30] function in a nonlinear activation
function with a slope of 0.2 for activation. The output Aunnorm is normalized by a sigmoid
function [10] with the following formula:

A = λgscale(sigmoid(Aunnorm)− 0.5) (7)

Among them, λgscale represents the relevant parameters of the search range of A. Here,
it was set to 0.5 (i.e., A ∈ (−0.25, 0.25)2×3).

For color augmentation, two three-layer perceptrons were chosen here, receiving two
variables, RGB vector and noise vector, as the input and summing their outputs. The
number of units in the hidden layer was 128 and 512, respectively. The nonlinear activation
function also used leaky ReLU. Here, the model outputs the three-dimensional scale and
shift parameters as follows:

(αRGB
i , βRGB

i ) ∈ R3×2 (8)

The output scalar scaling and shifting parameters are expressed as follows:

(αNoise
i , βNoise

i ) ∈ R1×2 (9)

The scaling and shifting parameters from the noise vector can control the global
brightness of the image. These scaling and shifting parameters are then added together
as follows:

(aunnorm
i )j = (aRGB

i )j + αNoise
i (10)

(βunnorm
i )j = (βRGB

i )j + βNoise
i (11)

where (ai)j denotes the j-th element of ai ∈ R3. This experiment adopted AdamW [31] as
the optimizer of the automatic data augmentation model. The learning rate and weight
decay were set to 1 × 10−3 and 1 × 10−2, respectively, which are the default parameters.
We chose to apply the dropout to the model after the linear layer [32], except for the output
layer, which had a pressure drop ratio of 0.8.



Sustainability 2023, 15, 568 11 of 17

4. Experiments
4.1. Dataset

We collected the indicator diagram data points from the actual pumping units in
an oil field and plotted them as indicator diagrams. The data were preprocessed here.
Considering the different numerical ranges of working condition parameters between the
different pumping units, in order to ensure that this does not interfere with the identification
of working conditions, we adopted the min–max standardization method, and the formula
is as follows:

X∗ =
X−Min

Max−Min
(12)

Among them, X represents the sample data points of the indicator diagrams; Max
represents the maximum value of the sample data; Min represents the minimum value
of the sample data. The drawing flowchart from data points to the indicator diagram is
shown in Figure 6.
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In this way, six types of working condition samples can be obtained, namely, normal
operation, gas effect, insufficient liquid supply, leakage of traveling valve, double valve
leakage, and oil well wax deposition. There were a total of 700 samples of each type, and a
total of 4200 indicator diagrams. The data augmentation method was used to uniformly
increase the number of samples to 1000 per class, so that a total of 6000 samples were
obtained. Next, we began to make the indicator diagram dataset. Here, we referred to
the format of the standard dataset “cifar10”, changed the size of the pictures to 32 × 32,
and made a standardized data file. In terms of dataset division, we divided each type of
indicator diagram into the training set and test set according to the ratio of 8:2, that is to
say, the number of samples of each type of training set and testing set was 800 and 200,
respectively. The six types of indicator diagrams are as previously described. Specific data
are shown in Table 2.

Table 2. Actual oil field sample data.

Type of Sample Raw Data Enhanced Data

Total number of samples 4200 1800
Number of training sets 3360 1440
Number of testing sets 840 360

In order to reflect the role of data augmentation as much as possible, we enhanced 1200
indicator diagrams based on the original 4800 indicator diagrams. This number was based
on previous scientific research. The enhanced image data obtained here were different
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according to different enhancement methods. These data were used for comparative
analysis in subsequent experiments.

4.2. Process of Experiment

For the problem of working condition diagnosis, the neural network for data augmen-
tation can improve the efficiency of the model, and the modular processing can realize
end-to-end image augmentation learning. The construction of the geometric augmentation
model selects the multi-layer perceptron, and here, two multi-layer perceptrons were used
to construct the color augmentation model. The two multilayer perceptrons can receive
RGB three-dimensional vectors and noise vectors as input, and then add their outputs. The
output of each augmented model was followed by a sigmoid function, and the parameter
range was chosen to be A ∈ (−0.25, 0.25)2×3, α ∈ (0.6, 1.4) and β ∈ (−0.5, 0.5). Here,
the model noise vector was z. The dimension was set to 128. To guarantee randomness,
in addition to the output layer of the network, dropout [32] was also applied after the
linear layer. The weight parameters of the output layer were initialized to zero to make
the enhancement conform to the mapping in the initial state. The AdamW optimizer
was chosen to train our augmented model. Meanwhile, all hyperparameters of AdamW
(e.g., weight decay and learning rate, etc.) were set to the default parameter values [27].

Next, the model flow is described in stages. In the training phase, this model uses
a single GPU to accelerate the training, and the training batch size was set to 128. The
number of training cycles of the network (i.e., epoch) was set to 100. The batches used for
training were input out of order in each loop to improve the generalization ability of the
model. The label smoothing factor was set to 0.2 and randomization was performed using
dropout. For the testing phase, the batch size of this phase was also set to 128, while the
input image size remained unchanged. Since the order of the test set samples does not
affect the prediction performance of this stage, the indicator diagrams samples can be input
in order at this stage.

4.3. Experiment Results and Analysis

The training time of this model was 15 min, which involves two objects, the teacher
model and the student model. Regarding the performance on the test set, the loss of
adversarial training was loss adv = 6.30351; the value of the color regularization term
was color reg = 3.31448; the loss of the model was 0.00038; the accuracy of the model
was 98.72%. Our dataset came from field sampling in oil fields. Due to the influence
of noise and measurement errors, the quality of some of the data was not high, which
makes the validation accuracy of many machine learning models relatively low. Therefore,
the experimental results of our method were quite good. This shows that our algorithm
makes full use of the advantages of automatic search method and selects effective data
augmentation methods to supplement indicator diagram samples.

4.4. Comparative Experiment Analysis

Two comparative experiments were prepared here, namely, the traditional data aug-
mentation method and the original data without data augmentation, and their basic models
are consistent with our method. Next, the details of the comparison methods are described.

For traditional data augmentation methods, a hybrid method was used for the experi-
ments here. At present, there are several common augmentation methods [33]. We chose
three methods: random rotation, random cropping, and horizontal flip, and enhanced
100 images for each type of dynamometer according to the ratio of 1:1:1. This is both
comprehensive in method selection and rational in resource allocation. Unprocessed raw
samples can be used as a baseline method to demonstrate the effect of data augmentation
methods and the superiority of our method. The number of iterations for both methods
was set to epoch = 100, and parameters such as the learning rate were also the same as
before. Here, the error loss map and accuracy change map of the three methods on the test
set are given, and a comparative analysis is made.
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The results of the experiment are shown in Figures 7 and 8.
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First, we conducted a trend analysis. Our approach is similar to traditional data
enhancement methods. It can be seen from the loss curve that the error loss decreased
very quickly at the beginning and slowed down after twenty iteration cycles until it finally
remained stable. The accuracy change curve was also fast at the initial stage, and the
rising speed slowed down after reaching a certain value until it finally reached stability.
The following is a numerical analysis. The final loss of the traditional data augmentation
method on the task of working condition diagnosis was 0.000512, and the accuracy rate
was 93.32%. The raw data had a final loss of 0.00632 on the test set with an accuracy of
89.46%. Obviously, the experimental performance of the automatic data augmentation
method based on teacher knowledge was better than the other two sets of comparative
experiments. Next, we compare and analyze the computational efficiency of the three
methods and provide a comprehensive evaluation. We chose the training time, test time,
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mean squared error, and accuracy to evaluate each method. The specific values are shown
in Table 3.

Table 3. The comparison of the three methods on the test set.

Type of Method Training Time (s) Testing Time (s) Loss Accuracy

Our method 926 4.66 0.00038 98.72%
Traditional augmentation 963 4.71 0.00051 93.32%

Raw data 475 3.58 0.00063 89.46%

Here, we chose three methods to show the advantages of our method. As the baseline,
the original data were used to illustrate the effectiveness of the data enhancement itself. The
traditional data enhancement method is an old method used in the past to compare with
our new method. The comparison of these three approaches can more comprehensively
express the results.

From the data in Table 3, it can be seen that our method is more time-consuming than
the original data method and less time-consuming than the traditional data augmentation
methods. This is because the traditional data augmentation method is composed of multiple
augmentation algorithms, which cannot form a continuous modular network, and the
original data have not undergone any augmentation operation, which naturally takes the
least amount of time. In terms of the experimental performance comparison, the accuracy
of our method was about 9% higher than that of the original data method, and 5% higher
than that of the traditional augmentation method, which was clearly in the leading position.
Due to the presence of the teacher model, the number of parameters will increase, but
this brings a large increase in model performance, however, this will increase the time
consumption by a part. After the model training was completed, the time required for each
method to be tested was not much different, which is in line with the actual needs of oil
field operations. To sum up, compared with traditional data augmentation methods, our
method has obvious advantages and is suitable for the task of the diagnosis of the working
condition of the rod pumping units.

5. Discussion

The advantage of our method is that the teacher model is introduced into adversarial
data augmentation, making the augmented images more informative without the need for
careful parameter tuning. This paper also proposed an automatic augmentation technique
based on a neural network, which simplified the search space design and used the gradient
method to update the data augmentation to seek the optimal effect.

The disadvantage of this method is that due to the lack of global information in
the input of the network, the proposed color augmentation method cannot represent the
transformation using the global information of the target image. This transformation can
be achieved indirectly using the color histogram as the context vector, but this comes at the
cost of an increased computational cost. Particularly for high-resolution images, because
the higher the resolution, the larger the image, this results in a significant increase in the
amount of data processed. Furthermore, this paper only focused on the two augmentation
types, geometry and color, but many advanced augmentations do not belong to these types
such as random clipping and Mixup [13]. Investigating such augmentation methods will
be our future work.

At present, our method has achieved some results. However, we found that there
are more research directions worth expanding. Although these directions are far from
our current research, they are all part of the same system. According to our method, we
can solve these potential problems step by step. The latest research progress of automatic
data enhancement is regarding augmentation methods and optimization algorithms. More
augmentations are being sought to accommodate different datasets. The continuous im-
provement in the optimization algorithm can speed up the model. This method can also be
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extended to other types of pumping systems in the field of condition diagnosis. We note
that meta learning can be applied to indicator diagram diagnosis [7]. Meta learning is to
solve the problem of condition diagnosis from the perspective of model, and our method
solves the problem from the perspective of samples. Meta learning aims at the problem of a
few shots and is carried out without increasing the amount of data. Generally, the network
structure of meta learning is relatively simple, and the number of categories processed is
small. Our method uses automatic data augmentation to increase the number of samples
for a specific indicator diagrams dataset that can solve complex problems. These two
methods can be used together, and a follow-up study will be conducted. We will continue
to study this in future studies.

6. Conclusions

In this paper, we proposed an automatic data augmentation method based on teacher
knowledge and established a data authentication neural network to solve the problem of
indicator diagram classification. The performance of this method on the task of working
condition diagnosis surpassed the current traditional data augmentation methods. Through
the experiments and analysis, we can draw the following conclusions:

(1) An automatic data augmentation method was proposed, which draws on teacher
knowledge and can be guided to find the optimal augmentation strategies for different
datasets. It can be used to solve the problem of an insufficient number of samples in
the diagnosis of operating conditions.

(2) A neural network was proposed for the data indicator of indicator diagrams, which
can update parameters by gradient descent, and the experimental effect was improved
by more than 5% compared with the comparison methods.

(3) We proposed a standardized data management method according to the “cifar10”
dataset format.

(4) As one of the oil field data expansion and management methods, this method has
research value for the construction of intelligent oil fields.

In the future, we will continue to explore other advanced data-augmented parametric
automated searches and combine multimodal knowledge to conduct real-time monitoring
and the intelligent analysis of rod pumping systems at oil field well sites.
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