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Abstract: Rhamnolipids (RLs) are one of the most promising eco-friendly green alternatives to com-
mercially viable fossil fuel-based surfactants. However, the current bioprocess practices cannot meet
the required affordability, quantity, and biocompatibility within an industrially relevant framework.
To circumvent these issues, our study aims to develop a sustainable biorefinery approach using
post-consumption food waste as a second-generation feedstock. In-depth substrate screening re-
vealed that food waste hydrolysate (FWH) was rich in readily assimilable carbohydrates, volatile
fatty acids, and amino acids. The fermentative valorization of FWH as a sole carbon and energy
source with Burkholderis thailandensis E264 in a bioreactor showed active RLs biosynthesis of up to
0.6–0.8 g/L (34–40 mg/g FWH) in a short duration (72 h). In terms of the kinetic parameters, the
FWH-RLs outperformed other supplemented pure/waste streams. Interestingly, the recovered RLs
had a long chain length, with Rha-Rha-C12-C14 being the predominant isoform and exhibiting a
strong emulsification ability (E24, 54.6%). To the best of our knowledge, this study is the first to
prove bioreactor-level RLs production and their abundance in food waste. Moreover, the feasibility
of this developed process could propel next-generation biosurfactants, lower waste burdens, and
increase the industrial applicability of RLs, thereby significantly contributing to the development of a
circular bioeconomy.

Keywords: substrate screening; Burkholderia thailandensis; second-generation feedstock; bioreactor;
di-rhamnolipids; emulsification

1. Introduction

Biosurfactants are a class of surface-active agents often viewed as an alternative to
synthetic petrochemistry-based surfactants. Synthetic surfactants are highly damaging
to the environment. Therefore, it has become crucial to have sustainable products on the
market [1], biosurfactants being one of them. The global biosurfactant market is predicted
to reach USD 1.9 billion with a CARG of ~11.2% by the end of 2027 [2]. Due to this huge
expected demand, researchers are focusing on various aspects of microbial surfactant
synthesis and optimization.

Biosurfactants such as glycolipids are given particular attention as they possess an
excellent ecological framework, the lowest biotoxicity, structural diversity, and resistance
to high temperature, pH, and salinity [3]. Due to their biochemical nature and structural
diversity, rhamnolipids (RLs) are one of the most studied representatives of glycolipid
biosurfactants. They comprise a hydrophilic rhamnose sugar moiety attached to one or
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two hydrophobic acyl-hydroxy fatty acid chains [1,3]. The chemical synthesis of these RLs
biomolecules has been reported using environmentally friendly materials. Nevertheless,
the cost of chemical production is relatively higher than biosynthetic routes [4]. The
scalability of this chemical synthesis is another key aspect that needs to be considered for
any technology derived from a chemical or biological process. While chemical methods are
touted as “green”, the scalability potential needs to be established and/or demonstrated.
In this aspect, bioprocessing has demonstrated scalability and has already been adopted
on an industrial scale. One such example is Evonik, which recently constructed a new
commercial-scale plant for bio-based rhamnolipids [5].

In recent times, the main biological producer species for RLs has been Pseudomonas aerug-
inosa. However, their potential to secrete toxins and their opportunistic pathogenicity in
humans hinder their use for large-scale industrial purposes [6,7]. An alternate to this is a
newly identified and environmentally safe species of bacteria, i.e., Burkholderia thailanden-
sis [8,9]. The present work focuses on this recently identified non-pathogenic strain for RLs
catalysis with product titers different from conventional Pseudomonas species. Generally,
RLs can be produced from a variety of hydrophilic (glucose, glycerol) [8] and hydrophobic
substrates such as fatty acids (heptadecanoic acid, oleic acid) [10] and oils (canola oil) [8].
Residual substrates like waste cooking oil (WCO) and agricultural residues have also been
proposed as alternatives for RLs biosynthesis [11–13].

Potential valorization of waste streams using B. thailandensis as cell factories can
prove to be highly beneficial. The biggest challenge for making use of such valuable
commodities is the requirement of expensive nutrient supplementation and the absence of
definitive process development [14]. In addition, the separation of the abovementioned
hydrophobic waste substrates from the produced RLs is relatively expensive and demands
additional downstream processing [15]. To circumvent this, we hereby develop the use
of post-consumption food waste hydrolysate (FWH) for RL production. According to
estimates, 1.3 billion tons of food are wasted annually, accounting for 8–10% of greenhouse
gas emissions that contribute to global emissions [16]. Thereby, the valorization of food
waste into value-added products as RLs not only reduces the cost of fermentation but also
provides an effective means of dealing with the burgeoning waste load.

In contrast to other waste streams, food waste as a feedstock releases trapped water-
soluble and highly rich nutrients, which increases their bioavailability and bioconversion to
RLs. No additional supplements are required during the fermentation process, and overall
batch fermentation time is significantly lowered. The results of the research prove that
the macronutrient heterogeneity in FWH acts to delimit the synthesis of newer congener
profiles in B. thailandensis E264 with enhanced applicability.

2. Materials and Methods
2.1. Microorganisms and Culture Conditions

The Burkholderia thailandensis E264 was obtained from the American Type Culture
Collection (ATCC 700388TM) and cryopreserved at −80 ◦C by supplementing with 25%
v/v glycerol (master stocks). For inoculum preparation, loopful bacteria were streaked
onto solid nutrient agar plates with a composition of peptone (5 g/L), beef extract (3 g/L),
sodium chloride (8 g/L), and agar (12 g/L).

2.2. Processing of Food Waste Hydrolysate

The food waste was collected from the Harmony cafeteria of Hong Kong Baptist
University, Hong Kong, and mainly consisted of boiled rice, vegetables, meat, noodles, and
eggshells. The unwanted materials, such as bones, chopsticks, plastic, and tissue papers
were, manually removed. Following proper mixing, a fixed amount of samples were loaded
into pre-weighed crucibles and dried overnight in a 105 ◦C oven before being transferred
to a muffle furnace and heated to 550 ◦C. The residues were weighed again after each
step and used for total solids (TS) and volatile solids (VS) estimation, respectively [17].
Following this, food waste was hydrolyzed in a leach bed reactor (LBR) as per the detailed
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protocol provided elsewhere [18]. In brief, a two-phase anaerobic digestion system was
established by operating LBR as acidogenic reactors under mesophilic conditions. The
LBR was loaded with food waste as substrate, which had a TS and VS/TS of 28.26% and
98.87%, respectively. The anaerobically digested sludge (ADS) collected from the Yuen
Long sewage treatment plant in Hong Kong was used as inoculum with a TS of 1.66%
and VS/TS of 99.23%. The working volume of the LBR was 2 L, loaded with 2 kg (w/w)
food waste, 400 gm inoculum (20%) and 200 gm glass cubes as bulking agent. Following
completion, the hydrolyzed leachate was adjusted to 6.8 pH and autoclaved at 121 ◦C for
20 min before use in fermentation.

2.3. Screening of Substrates for Rhamnolipid Production

To carry out the batch fermentation screening with pure substrates, small-scale studies
at the shake flask level were performed. The seed culture was prepared by transferring a
single isolated colony of B. thailandensis E264 in nutrient broth and grown for 24 h at 30 ◦C
and 200 rpm. Further re-inoculation was conducted with a transfer of 10% seed culture
in an Erlenmeyer flask containing nutrient broth (gelatin peptone 5 g/L and beef extract
3 g/L) supplemented with 4% (w/v) of pure substrate (glycerol, glucose, fructose, sucrose,
oleic acid, canola oil) or low-cost WCO and maintained for 72 h. The experiments were
carried out in triplicate at 30 ◦C with an initial pH 6.8 and 200 rpm.

During the utilization of FWH, the bacterial cells were acclimatized through an ad-
ditional re-inoculation with 10% seed culture in an Erlenmeyer flask containing FWH for
24 h at 30 ◦C and 200 rpm. This acclimatized culture was then used for the production of
RLs by inoculating Erlenmeyer flasks containing FWH and growing it for 72 h at 30 ◦C and
200 rpm.

2.4. Batch Rhamnolipid Fermentation

The controlled fermentation was carried out with B. thailandensis E264 in a 1 L fer-
menter with a working volume of 0.6 L. Growth and biosynthesis were carried out using a
dissolved oxygen (DO2) level of 20% with 0.5 L/min airflow and cascade stirring control
between 50–550 rpm. The temperature was maintained at 30 ◦C and the pH was main-
tained at 6.8 via the addition of 2N NaOH/HCl throughout the fermentation process. The
bioreactor fermentation was performed for FWH and glycerol supplemented medium. The
experiments were performed in duplicate, and the average mean values with standard
deviation are reported.

2.5. Sampling and Analysis

The samples were collected every 3 h, and cell growth was quantified by measuring
optical density (OD) at 600 nm with a microplate reader (Synergy HTX multi-mode reader).
This was used to determine cell dry weight (CDW) through a previously established linear
correlation of CDW = 0.3082(OD) with R2 = 0.9864.

2.6. Rhamnolipid Quantification and Characterization
2.6.1. Extraction and Quantification of Rhamnolipids

For the separation of RLs, the solvent extraction method was used as previously
described with slight modifications [7]. In addition, the culture broth was centrifuged
(10,000 rpm, 15 min) to obtain a cell-free suspension. This cell-free suspension was then
filtered through a filter paper (Advantec Grade No. 5C Ashless). The filtered supernatant
was mixed with an equal volume of n-hexane and subjected to extraction twice. The
emulsion layer was collected, and the residual solvent was evaporated under a constant
stream of nitrogen. The crude RLs were then freeze-dried and determined gravimetrically.

2.6.2. Structural Characterization of Produced Rhamnolipids by FTIR

The Fourier transform infrared (FT-IR) was employed for the determination of func-
tional and chemical bonds using an FT-IR spectrometer (Perkin Elmer FT-IR Spectrum 2).
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The isolated RL sample (0.5–0.8 mg) was directly loaded onto the diamond high-refractive-
index prism for attenuated total reflectance within a spectral range of 4000–400 cm−1 [19].

2.6.3. Chemical Characterization of Rhamnolipids by LC-MS-MS

The RL extracts were dissolved in an appropriate volume of a 3:1 v/v acetonitrile-water
solution. Mass spectra (MS) were measured for RLs identification with an API 4000 QTRAP
Triple Quadrapole mass spectrometer (AB Sciex Foster City, CA, USA). Briefly 10 µL
samples directly infused in negative electron ionization mode [7]. Furthermore, a complete
isomer profiling was carried out using a liquid chromatography system equipped with a
C18 reversed-phase LC Column (Luna® 3 µm C18(2) 100 Å, LC Column 100 × 4.6 mm). A
gradient of 45% mobile phase A (5 mmol/L ammonium acetate) and 55% mobile phase B
(acetonitrile) was set from 0 to 2 min and increased to 90% mobile phase B. The flow rate
was maintained at 0.3 mL/min with 10 µL sample injection volume. The MS conditions
were programmed at −3.5 KV ion spray voltage, 80–95 V declustering potential, and
22–26 V collision energy at a temperature of 100 ◦C.

2.6.4. Measurement of Surface Tension of Produced Rhamnolipids

The surface tension measurement was performed by the BZY-B (BZY102) Automatic
Surface Tensiometer using the du Noüy ring method. Subsequently, the different con-
centrations (0–1000 mg/L) of RLs dissolved in water were subjected to surface tension
measurements for the estimation of the critical micelle concentration (CMC).

2.6.5. Emulsifying Capacity of Produced Rhamnolipids

The emulsifying activity (E24) was calculated over 24 h by calculating the height of the
emulsion layer as a percentage of the total height of the liquid. A solution of 1 mL RLs with
desired concentrations (0–1000 mg/L) in 0.1 M Tris-HCl pH 8.0 was mixed with 1 mL of
n-hexadecane through vigorous vortexing for 2 min to obtain maximum emulsification [20].

2.7. Nutrient Assessment
2.7.1. Total Carbohydrate

The assessment of total carbohydrate was performed using the phenol-sulphuric acid
method. Briefly, 1 mL of an appropriately diluted sample was mixed with an equal volume
of 5% phenol solution. This was followed by the addition of 5 mL of a 96% sulfuric acid
solution. The samples were incubated at 55 ◦C for 10 min. The absorbance was measured
at 490 nm, and the concentration was calculated against a standard calibration plot [21].

2.7.2. Free Alpha Amino Nitrogen

The free alpha-amino nitrogen was measured using the EBC-ninhydrin method. The
samples were diluted and mixed with 1 mL of coloring reagent (Ninhydrin solution
comprising of 10 g Na2HPO4.12H2O, 6 g KH2PO4, 0.5 g ninhydrin, and 0.3 g fructose in
100 mL distilled water having a pH of 6.7). The mixture was kept in boiling water for
16 min followed by cooling in a water bath at 20 ◦C for 20 min. After cooling, 5 mL of
diluting agent (2 g KIO3 in 600 mL distilled water along with 400 mL of 96% ethanol) was
added, and absorbance was measured at 570 nm. The concentration was calculated against
a single time-point standard of glycine [22].

2.7.3. Volatile Fatty Acids

The availability of volatile fatty acids was quantified using gas chromatography with
flame ionization detection (Agilent, Wilmington, DE, USA). A properly diluted sample
was acidified to a final concentration of 10% with formic acid. Following this, samples
were injected into a gas chromatograph fitted with a TraceGOLD TG-WaxMS column
(ThermoFisher Scientific, Carlsbad, CA, USA) at a flame ionization detection temperature
of 250 ◦C. The analysis was programmed as follows: 120 ◦C for 5 min, ramped to 180 ◦C at
a rate of 5 ◦C/min, and maintained at 180 ◦C for 10 min [17].
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2.7.4. Glycerol

The glycerol estimation was obtained using a standard assay performed in a microplate
reader according to a commercial glycerol assay kit (Megazyme International Ireland, Wick-
low, Ireland). The glycerol is phosphorylated in this assay using adenosine-5′-triphosphate
(ATP). The formed adenosine-5′-diphosphate (ADP) is used for the phosphorylation of
d-glucose, which is oxidized with the formation of nicotinamide-adenine dinucleotide
(NADH). The amount of NADH is detected by measuring absorbance at 340 nm [23].

3. Results
3.1. Bioconversion of Different Substrates to Rhamnolipids: Screening Studies

The substrates screened for RLs production ranged from carbohydrates (glucose,
fructose, and sucrose), polyols (glycerol), fatty acids (oleic acid), lipids (canola oil and
WCO), and FWH. B. thailandensis E264 was able to grow on all supplemented carbon
sources; however, the kinetic profiles were significantly different (Table 1). The complex
lipid-based feedstocks induced high biomass formation, which reached 11.44 g/L and
10.68 g/L when grown on WCO and canola oil, respectively, as carbon sources. A similar
trend was reported in another study that valorized used cooking oil (UCO) and generated
a comparable biomass of 12.2 g/L [11]. On the contrary, RLs’ concentration with this
waste substrate (WCO) was relatively lower (0.3 g/L). The simpler free fatty acids (oleic
acid) improved the RLs production to 1.21 g/L, indicating that a fatty acid-rich medium is
more favorable for RLs synthesis. Moreover, water-soluble substrates, i.e., carbohydrates
and polyols, in the present study resulted in significantly higher RLs yields of up to
0.046 g/g with glycerol. The RLs concentration was 1.85 g/L, proving polyols to be
the most suitable in batch shake flasks. Similarly, using pure glycerol as substrate was
preferred by B. thailandensis E264 in previous reports but required the presence of an
expensive nutrient medium, which significantly elevates the cost of production.

Table 1. Comparative screening based on maximum cell dry mass produced (CDMmax), maximum
rhamnolipid produced (RLsmax), biomass generated compared to initial substrate (Yx/s g/g), rham-
nolipid yield related to initial substrate (YRLs/s g/g), product yield related to biomass generated
(YRLs/x g/g) and volumetric productivity (PRLs g/L/hr) for different substrates.

Fermentation Medium Substrate Time (h) Yx/s (g/g) YRLs/s (g/g) YRLs/x (g/g) PRLs (g/L/h)

Batch shake
flask

Nutrient
broth

Glycerol

72

0.12 0.046 0.370 0.026
Sucrose 0.15 0.019 0.127 0.011
Glucose 0.16 0.024 0.152 0.014
Fructose 0.19 0.036 0.181 0.020

Oleic Acid 0.23 0.030 0.127 0.017
Canola Oil 0.26 0.025 0.096 0.014

Waste Cooking Oil 0.28 0.007 0.026 0.004
Food waste hydrolysate 0.08 0.040 0.469 0.011

The sustainability of B. thailandensis was monitored by employing FWH as a complete
macronutrient and micronutrient source with no additional supplementation. During batch
shake flask fermentation, the FWH supported a biomass production of 1.73 g/L with maxi-
mum RL concentrations of 0.81 g/L within 72 h of fermentation (Figure 1). Furthermore,
yield of RLs was also higher (0.04 g/g) and more suitable than sole carbohydrates (glucose
0.024 g/g, fructose 0.036 g/g, sucrose 0.019 g/g). It is presumably due to the co-substrate
availability in FWH, which allowed it to perform better as a feedstock.
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3.2. Bioreactor Scale Fermentation with Food Waste Hydrolysate

On the basis of the shake flask performance of B. thailandensis E264, the RLs fermen-
tation was scaled up in a bioreactor with the most preferred feedstocks, i.e., glycerol and
FWH. To establish the fermentation feasibility, biochemical profiling of FWH was estab-
lished in the form of available nutrients in the hydrolysate and monitored throughout
the bioprocess (Figure 2). At the beginning of culture, total carbohydrates, volatile fatty
acids (including alcohols), and amino nitrogen were 19.23 g/L, 2.23 g/L, and 0.083 g/L,
respectively, and were actively consumed by B. thailandensis, as depicted in Figure 2a. The
vertically extending line of standard deviation shows the distribution of data in relation
to the mean. During the initial 15 h of active growth, the amino nitrogen was rapidly con-
sumed, after which both cell dry mass production and nitrogen slowed, indicating the onset
of the stationary phase. This stage is reported to be crucial for active carbon bioconversion,
RLs biosynthesis, and the overall productivity of the system [24]. The FWH supports
the formation of RLs’ precursor by providing complex carbon sources that are consumed
at a differential rate. Volatile fatty acids were valorized faster for generating major RL
precursors, while sugars were utilized at a slower rate [8,10]. The order of VFA preference
in the FWH was caproate > isovalerate > acetate > valerate, whereas butyrate was the least
preferred (Figure 3). Alcohols were also consumed as a substrate during the bioprocess. At
the end of fermentation, 77.5% of VFAs were utilized, and carbohydrates were reduced to
11.62 g/L. The observed biomass and RLs were 1.304 g/L and 0.616 g/L, respectively.
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The fermentation profile on pure glycerol as substrate (Figure 2b) was also established
for process comparison and to identify the key advantages of using FWH as a potential
feedstock. The growth pattern of B. thailandensis E264 in a glycerol-enriched medium was
significantly different from the one employing FWH. A consistent increase in cell biomass
(6.204 g/L) was observed during fermentation for 48 h which prolonged the onset of the
early stationary process. For RLs synthesis with this strain on a pure substrate, typical
fermentation has been reported to be carried out for extended periods [8,24]. This affects
the economic feasibility of RLs, with a longer time being proportional to the higher cost
of production. The overall RLs concentration was 1.037 g/L, which is higher than that
obtained on FWH. However, a deeper analysis of fermentation kinetics is additionally
required for production and process predictions as it provides a better overview of substrate
utilization, biomass formation, and product recovery by biological routes. A comparison
of the fermentation runs in the present study and other reports revealed variable perfor-
mance kinetics (Table 2), which highlights a differential performance of FWH utilization by
B. thailandensis.
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Table 2. Comparison of rhamnolipid production metrics for different upscaled batch and shake flask
fermentations carried out for B. thailandensis E264.

Parameters
Study Comparisons

This Study Kourmentza et al. [11] Funston et al. [24] Dubeau et al. [8]

Fermentation type Batch bioreactor Batch bioreactor Batch bioreactor Batch shake flask
Working volume 0.6 L 0.6 L 8.0 L 4.0 L 0.2 L 0.2 L
Nutrient Medium Nutrient broth Food waste

hydrolysate
Nutrient broth Nutrient broth Nutrient broth

Substrate Glycerol Used cooking oil Glycerol Glycerol Canola oil
Temperature 30 ◦C 37 ◦C 25 ◦C 37 ◦C

Time 72 h (3 days) 120 h (5 days) 264 h (11 days) 312 h (13 days)
CDMmax (g/L) 6.204 1.304 12.6 7.98
RLsmax (g/L) 1.037 0.616 2.20 2.06 0.42 1.47

Yx/s (g/g) 0.124 0.068 0.23 0.156
YRLs/s (g/g) 0.021 0.034 0.10 0.19
YRLs/x (g/g) 0.167 0.472 0.43 0.258
PRLs (g/L/h) 0.014 0.009 0.018 0.007 0.001 0.004

3.3. Characterization of Rhamnolipids Produced on Food Waste Hydrolysate

The RLs synthesized by B. thailandensis from different feedstocks had similar chemical
signatures. Figure 4 shows typical FT-IR analysis of extracted RLs, which revealed the
presence of conspicuous absorbance bands forming fingerprint regions specific to gly-
coplipids. Both glycerol and FWH-based biosurfactants have typical bands at 3299 cm−1

for the O-H group, amide N-H functions, and 2924 cm−1 for the aliphatic C-H group.
The specific band at 2854 cm−1 infers to -C-H- vibrations of lipids. The specific band at
1637 cm−1 corresponds to C=O of ester and carboxylic acid groups. Further broad bands
from 1320 cm−1 to 1500 cm−1 resemble δ(CH), asymmetric COO-, and broad C-H of CH2
and CH3 groups. Another strong absorption band between 1000 and 1100 cm−1 attributes
to the -COC- group in rhamnose structure. This confirms the presence of rhamnose-type
glycolipids as the extracted biosurfactant. Numerous other studies have also reported
similar results for RLs [19,25].
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green arrows indicate C=O of ester and carboxylic acid groups at 1637 cm−1 and blue arow indicates
rhamnose -COC- group between 1000 cm−1 and 1100 cm−1.

Further, the profiling of the RLs was performed with MS, which revealed the type and
proportion of RL isoforms. However, the RLs congeners known to be synthesized by B. thai-
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landesis E264 were identified in both glycerol and FWH fermentation. Initial MS spectrum
for both fermentation types display presence of all major mono-rhamnolipids Rha-C14-C14,
Rha-C14-C16 and di-rhamnolipids Rha-Rha-C12-C12, Rha-Rha-C12-C14, Rha-Rha-C14-C14,
and Rha-Rha-C14-C16 (Figure 5). Dubeau et al. 2009 [8] and Elshikh et al. 2017 [26] screened
similar high-chain-length RLs from B. thailandensis E264. The observations from the LC-
MS-MS analysis of Figure S1 and summarized in Table 3, using standard glycerol led to the
synthesis of Rha-Rha-C14-C14 as the most dominant congener (32.59%). On the contrary,
FWH allowed the synthesis of Rha-Rha-C12-C14 as the most abundant congener (44.91%).
The mono-rhamnolipid congeners displayed similar relative abundance among fermenters.
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Table 3. LC-MS-MS-based comparison of relative abundance (%) for rhamnolipid congeners recov-
ered from pure substrate (glycerol) and food waste hydrolysate batch fermentations using B. thailand-
ednsis E264.

Rhamnolipid Congeners Pseudomolecular Ion (m/z)
Relative Abundance (%)

Pure Substrate (Glycerol) Food Waste Hydrolysate

Mono-rhamnolipids (total) 12.89 15.65
Rha-C14-C14 615 12.35 15.57
Rha-C14-C16 643 0.54 0.08

Di-rhamnolipids (total) 87.11 84.35
Rha-Rha-C12-C12 705 2.39 19.33
Rha-Rha-C12-C14 733 29.22 44.91
Rha-Rha-C14-C14 761 32.59 16.22
Rha-Rha-C14-C16 789 22.91 3.89

3.4. Economical Rhamnolipid Properties and Performance

To evaluate the surfactant performance of FWH-derived RLs, the surface activity of the
RLs mixture was measured. The CMC at which FWH-derived RL demonstrated maximum
surface activity was 800 mg/L (Figure 6). In addition, the solution also achieved a surface
tension reduction from 71.14 to 53.15 mN/m. Furthermore, the emulsification activity was
also investigated, where the increase in RL concentration gradually improved the E24 and
maximized at 54.6% at 800 mg/L concentration (Figure 7).
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4. Discussion

This research has shown that both RL quality and quantity are influenced by the choice
of substrate along with the producer strain. Burkholderia thailandensis E264 is emerging as
an environmentally safe, non-pathogenic bacterium with the ability to synthesize longer
chain length RLs [27,28]. This has promoted their application to numerous industrial,
environmental, and biomedical sectors [7,26,29]. Moreover, to meet the high demands
and economically upscale high value RLs from B. thailandensis E264, previous works have
utilized both pure and agro-industrial substrates for RL biosynthesis. A brief comparison
has been provided in Table 2 for the RL production metrics of some batch fermentations
with B. thailandensis E264. Several studies have used pure glycerol as a carbon source,
with maximum RL production reported to be between 1.47–2.06 g/L [8,24]. Additional
nutrients necessary to support growth and RL synthesis are provided by the nutrient-
rich synthetic medium. Furthermore, economical bioproduction studies have used WCO
as a potential substrate for bioconversion to RLs with a concentration of 2.2 g/L [11].
However, the synthetic nutrient broth used as a fermentation base makes it an unviable
option due to the inherently high price of pure nutrients or supplements. Moreover,
fermentation feedstocks contribute 50–80% of the total fermentation cost, thereby hindering
the downstream industrial manufacture of microbial products such as RLs [30]. Another
study used the supplementation of raw soluble fractions of agricultural residues from
the white winemaking process and olive oil extraction for the biosynthesis of RLs from
B. thalandensis. The derived nonfermented grape marcs (NF) and olive pomace residues
(OMP) both resulted in RL production reaching 1.07 g/L and 0.3 g/L, respectively [13].
However, nitrate salts and minerals were added as a supplement to fulfill the required
nitrogen and micronutrients during fermentation. Correia et al. (2022) reported the use of a
co-nutrient medium supplemented with corn steep liquor (CSL) and olive mill wastewater
(OMW) as carbon sources. The RLs produced in the CSL + OMW medium reached 0.253 g/L
after 96 h of fermentation [12].

This research is novel in its attempt to prove post-consumption food waste as a viable
feedstock without additional supplementation for B. thailandensis fermentation. The general
hydrolysis technology involves the use of harsh acids/bases or expensive enzymes to
release the trapped nutrients in the food waste substrate [22,31,32]. Hydrolysis using mixed
cultures from wastewater sludge provides an alternate biological platform that is both
environmentally friendly, inexpensive, and toxic by-product-free [33]. This observation led
us to examine the contents of FWH upon hydrolysis in an LBR, which yielded complex
carbohydrates (19.23 g/L), volatile fatty acids (with alcohols) (2.23 g/L), and free amino
acids (0.083 g/L) as the major constituents. All these macronutrients are known to be
essential for sustaining growth and RL biosynthesis [8]. In contrast to the conventional
post-treatment methods, the conditions used for the processing of FWH in the present study
also did not promote the formation of inhibitory compounds such as Maillard reaction
products (MRPs). In addition, an in-depth substrate screening was also carried out in the
present work to dictate the fermentation RLs kinetics with pure as well as homogeneous
waste residues. The pure complex lipidic substrates (canola oil & WCO) induced biomass
production in B. thailandensis, while RLs were considerably low. Furthermore, the simpler
fatty acids (oleic acid) improved the RL production to 1.21 g/L, indicating that a fatty acid-
rich medium is more favorable for B. thailandensis RLs synthesis. The water-soluble carbon
substrates, i.e., fructose and glycerol, increased RL to 1.44–1.85 g/L and outperformed
all other hydrophilic substrates. Previous literature have utilized glycerol as one of the
most consistent carbon sources during fermentation development for high RL synthesis by
B. thailandensis E264, but in the presence of synthetic nutrients [24,34,35].

To overcome nutrient supplementation prerequisites, batch fermentation was upscaled
in a bioreactor with FWH, and kinetics parameters were compared for both FWH and pure
glycerol. Contrary to past research reporting an extended stationary phase (264–312 h) [8,24],
FWH fermentation gained its highest RLs production within 72 h of fermentation. The
achieved maximum cell dry weight and RLs concentration were 1.304 g/L and 0.616 g/L,
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respectively. In addition, the fermenter FWH RLs concentration was slightly lower than
the shake flask FWH RLs (0.81 g/L). This is probably due to the diversion of carbon flux
towards other metabolite pathways such as polyhydroxyalkanoates which also hold high
bio-industrial value [36], The overall fermentation performance with FWH exceeded that
of pure substrates (sugars, lipids, and fatty acids). Furthermore, RLs production yields
with FWH substrates were elevated by 1.6 times (34 mg/g) the amount obtained with
standard glycerol medium (21 mg/g). These observations are in the higher range as RLs
yields reported with other agro-industrial feedstocks are: CSL (16.5 mg/g), CSL + OMW
(23 mg/g), NF (13.37 mg/g), and OMP (15 mg/g) [11–13].

Furthermore, the choice of carbon feedstock also influences the type of RLs isoform
(mono- or di-), fatty acyl chain lengths (C10, C12, C14, and C16), and subsequent down-
stream applications. The high-chain di-rhamnolipids are considered superior surface-active
agents with uses in various domains such as bioremediation, enhanced oil recovery, phar-
macology, dermatology, therapeutics, cosmetics, cleaning, and agriculture [26,29,37]. In
addition, the structural fingerprints of FWH-produced RLs were similar to other literature
reports, which shed evidence on the elevated RL quality obtained from the use of FWH
feedstock [19,25]. Subsequent chemical characterization revealed mainly di-RLs (Rha-Rha-
C12-C12, Rha-Rha-C12-C14, Rha-Rha-C14-C14, and Rha-Rha-C14-C16), with Rha-Rha-C12-C14
as the most abundant congener (44.91%). The RLs fatty acyl chain of C12-C14 was also
synthesized by B. thailandensis using CSL + OMW but mostly as mono-rhamnolipids
Rha-C12-C14 (29.79%) [12]. Other studies have reported Rha-Rha-C14-C14 as being primar-
ily synthesized from pure substrates [24,26,34]. Particularly in FWH, the heterogenous
substrate consumption trend reflected a fast utilization of VFAs over other complex car-
bohydrates. This allowed mixed VFAs to supply different chain-length precursors to the
RLs synthesis enzyme (RhlC) through the inherent FAS II pathway as observed in RLs
producers [10,38]. This observation implies that there is potential for tailoring the synthesis
of unique congener profiles for broader applicability.

The measurement of surface tension data was used to identify the FWH RL critical
micelle concentration at which surfactant complexation occurs. Under the equilibrium
condition, CMC was approximately 800 mg/L and acted as the most probable surface
tension break-point concentration, which is slightly higher than other reported values. The
extraction of RLs from B. thailandensis is known to co-recover proteins, but the emulsifiability
and sensitivity of di-rhamnolipids remain unchanged [39]. To confirm this, aqueous RL
solutions were used against alkane hydrocarbons to form stable emulsions. The emulsion
index of this mixture was above 50% (54.6%), which denotes complete emulsification of the
organic phase. The B. thailandensis RLs produced by Correia et al. [12] with agro-industrial
by-products had E24 below 20%. Thus, FWH RLs are highly favorable for industrial
applications as low-cost biosurfactants.

5. Conclusions

The post-consumption food waste was demonstrated to be superior no-cost feedstock
for biosynthesis among other hydrophilic and hydrophobic substrates used in the present
investigation. The observations revealed that B. thailandensis E264 is a strong biocatalyst,
efficiently performing batch fermentative conversion of food waste while achieving unique
congener profiles and product titers. In addition, the upscaled fed-batch strategies could
further improve the performance and RLs biosynthesis while monitoring the effects of using
alternative waste streams during the feeding phase. This research also demonstrated the
utility of fermentative feedstock selection as a waste management strategy and workflow
for downstream bioconversion to value-added RLs bioprocess development. In conclusion,
this research showed a better biological, eco-friendly method for synthesizing industrially
relevant biochemicals and could direct possible future studies for addressing advanced
bioprocess strategies with B. thailandensis E264 in a sustainable manner.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/su15010059/s1. Figure S1: LC-MS-MS spectra of (a) food waste
hydrolysate and (b) pure glycerol-derived rhamnolipids.
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