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Abstract: The petroleum industry plays a vital role in the economies of developing countries. Refinery
wastewater pollution has increased in recent years due to the increase in the industrial and urban
use of petroleum products. The present work demonstrates how textile waste can be modified into
a material that can effectively remove sulfur pollutants from refinery wastewater. An economic
activated carbon (AC) material was developed by using cotton spinning waste from a textile company.
The chemical activation was carried out using nitric acid (HNO3), hydrogen peroxide (H2O2), and
potassium hydroxide (KOH). The characterization of the obtained activated carbons was performed
using the SEM, BET, and FTIR techniques. The effect of the experimental adsorption condition was
investigated using both bed and batch isotherms. The results show that effluent flow has the highest
effect on sulfur compound adsorption. The greatest adsorption capacity of the sulfur compounds
was found to be around 168.4 mg·g−1. The equilibrium data were investigated using the Freundlich,
Langmuir, Dubinin–Radushkevich, Tóth, and Sips isotherm models. The Langmuir model exhibited
the best fit (R2 = 0.98) for the sulfur compounds’ adsorption, which implies that their adsorption
onto the synthesized AC was homogeneous. The kinetic data were tested with pseudo-first-order,
pseudo-second-order, and intraparticular diffusion equations. The pseudo-second-order equation
described the kinetic data well (R2 = 0.99), indicating that this adsorption may be restricted by the
chemisorption process. These properties under optimal conditions make the obtained ACs suitable
for use in refinery wastewater treatment.

Keywords: cotton waste; activated carbon; kinetic study; bed adsorption; chemical activation;
removal; refinery wastewater

1. Introduction

Environmental pollution has increased in recent years with the increase in industrial
and urban development. The petroleum industry plays a vital role in the economies
of developing countries across the world. Oil refining is an essential operation during
petroleum processing, and it uses a huge quantity of chemical products and generates both
solid waste and wastewater [1], which are considered hazardous waste. In fact, refinery
wastewater has high quantities of heavy metals (more than 50 mg·dm−3), phenols (more
than 150 mg·dm−3), benzene (more than 75 mg·dm−3), and Chemical Oxygen Demand
(COD) (between 280 and 1100 mg·dm−3) [2–6].

The removal of hazardous components is a requirement before the discharge of this
type of wastewater and before its reuse [7,8]. Therefore, treating effluent is required in
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order to eliminate hazardous contaminants [9]. Several methods have been investigated for
the treatment of refinery wastewater, including physical, chemical, and biological methods.

A membrane bioreactor has been successfully used to remove pollutants from
petroleum industry wastewater. Rahman et al. evaluated the use of a cross-flow membrane
bioreactor for the treatment of refinery wastewater. Their results showed that this technique
can remove more than 93% of COD from refinery effluents and that its efficiency does not
depend on the hydraulic retention time [10]. Razavi et al. studied the use of a hollow-
fiber membrane bioreactor to treat refinery wastewater. The effects of flux, temperature,
and hydraulic retention parameters were evaluated. According to the findings of this
investigation, COD elimination can reach 82% [11]. However, this method comes with
several specific precautions. Membrane fouling is a major problem that can frequently
occur. Moreover, this seriously affects the quality of the reclaimed water and the efficiency
of the membrane. However, its use was only recently tested in a pilot test [12–14].

Yan et al. [15] investigated the use of electrochemical processes in the treatment of
petroleum refinery wastewater. These processes introduce air and a few particles of iron
into classical two-dimensional reactors. In optimal experimental conditions, the salinity
and COD removal efficiency were 84 µS cm−1 and 92.8%, respectively. However, the use of
the electrochemical method is limited for organic material removal [16,17]. Its higher cost
and lower efficiency also limit its industrial application [18–20].

The microbiological treatment of industrial refinery wastewater has also been inves-
tigated using several types of microorganisms [21,22]. This method has been used to
oxidize organic matter existing in refinery effluent into simple products, such as CH4, H2O,
and CO2, under aerobic, anaerobic, and semi-aerobic conditions [23,24]. Ebrahimi et al.
investigated the use of this kind of treatment in an experimental pilot plant. He demon-
strated, in suitable experimental conditions, a COD removal efficiency of around 78% and
a biomass production of 1420 g daily [25]. Hayat et al. carried out an investigation of a
microbiological approach to treat refinery wastewater. The interaction between metals and
the functional groups of microorganisms was analyzed. The quantitative results revealed
that the bacteria had developed a new level of metal resistance [22]. However, firstly, the
use of a biological approach for refinery effluent treatment can cause serious problems
due to the excessive production of sludge [26]. Secondly, these methods generate diverse
operational problems, such as the generation of residual sludge and toxic gases, the partial
elimination of refractory compounds, and the need for a large land area.

Many researchers have successfully used the adsorption approach to treat refinery
wastewater [27–31]. The selection of this method is based on its high potential to remove
toxic compounds and its cost-effective nature. El-Naas evaluated the use of activated carbon
using local material prepared from date pits as a precursor in the treatment of refinery
wastewater. Several kinetic and isotherm models were tested with batch adsorption. The
Sips isotherm was proved to be the best model to describe the equilibrium isotherm,
whereas the pseudo-second-order model gave the best fit for the kinetics data. More than
85% regeneration efficiency was found after four cycles of regeneration [32]. Qinxuan et al.
investigated the use of prepared activated carbon in the treatment of refinery wastewater.
Their results showed that the activated carbon experimental conditions (the calcination
time and temperature, chemical reagent concentration, and weight ratio of AC) have an
important effect on the COD removal efficiency. Their results also showed that the COD
efficiency increases with a decrease in the weight ratio of effluent [33]. Several researchers
have used biomass as a precursor of activated carbon in the treatment of refinery wastewater.
Lagerstroemia speciosa has been used as a precursor of activated carbon and showed potential
to recover platinum from refinery wastewater [34]. Rice husk activated carbon has been
successfully evaluated as an effective adsorbent of phenolic compound content in refinery
wastewater using a column approach [35]. Date activated carbon has also been evaluated
as an effective adsorbent that can reduce COD in refinery effluent [36–38].

The growth of the textile industry has resulted in massive amounts of solid waste.
Indeed, 106 M tons of textile solid waste is produced annually worldwide [39]. This amount
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increases from one year to the next due to the boom of the fashion industry [40]. Around
the world, cotton is used the most. Cotton waste can be used as a low-cost lignocellulosic
material [41–43].

Not only can cotton waste can be used to produce yarns and nonwovens [44–48], but
it can also be used as a reinforcement for composite materials [49,50].

Some researchers have studied the possibility of transforming cotton waste into acti-
vated carbon. Zhao et al. [51] studied the production of activated carbon by using cotton
woven waste. The waste was first dissolved using 80% H3PO4 and pre-soaked in a solution
of 7.5% (NH4)2HPO4. In the optimum conditions of 700–800 ◦C, 30 min of carbonization,
and 30 min of activation, good adsorption results were obtained.

Sartova [52] utilized the boiling layer method to prepare AC from cotton biomass
(stems and balls from cotton plants boiled at 800 to 850 ◦C for 8 min), and he demonstrated
that the AC obtained had adsorption properties higher than those of industrial AC made
from wood. Wanassi [53] employed cotton waste to produce activated carbon through
carbonization using zinc chloride chemical activation. The obtained product enabled a high
removal of anionic dye from textile wastewater.

Xu [54,55] optimized the production of activated magnetic carbon from textile waste
yarn using FeCl3. The results proved that this treatment is able to change the pyrolysis
process of cotton textile waste, decrease the pyrolytic carbonization temperature, and
prevent the production of volatiles. Fe2O3 and Fe3O4 resulting from FeCl3 could help pore
formation on the obtained activated carbon.

Most of these previous studies were conducted at the laboratory scale with no focus
on a specific application. The main objective of our work, realized with the collaboration
of a big refinery company in Tunisia, was to synthesize activated carbon from cotton fiber
spinning waste and to use it to remove sulfur compounds from refinery wastewater. The
whole process is illustrated in Figure 1.
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2. Materials and Methods
2.1. Materials and Chemicals

The raw material used was recycled spinning cotton fiber waste obtained from Tunisian
Textile Industries Company (SITEX) in Tunisia. In a previous study, we optimized the
fraying process of spinning yarn waste using a mechanical machine [46]. Approximately
20% of the obtained fibers were judged to be non-reusable for another cycle of the spinning
process because of their bad quality (bad mechanical properties and a high ratio of short
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fibers). So, in reality, we used the waste of the waste of a low-quality and low-cost cotton
fiber to produce our activated carbon (AC).

H2O2, KOH, and HNO3 were purchased from Chimitex, Sousse 4000, Tunisia,
Ltd. (Sousse, Tunisia). All the chemical reagents were used as received without
additional treatment.

2.2. Preparation of Activated Carbon

Cotton waste fiber was washed with distilled water for the removal of impurities.
Then, it was oven-dried at 85 ◦C until a 7–10% moisture content was obtained.

About 40 g of the dried fibers was heated to 700 ◦C at a heating rate of 5 ◦C/min
in a horizontal furnace under a purified N2 flow (10 NL/min). After the calcination
process, the char was cooled under N2 flow to room temperature. Afterward, the char was
chemically activated using nitric acid (HNO3), hydrogen peroxide (H2O2), and potassium
hydroxide (KOH).

For HNO3 activation, the char was impregnated with HNO3 at a ratio of 3:1 (g HNO3/g
char). For H2O2 activation, 50 mL of commercial H2O2 solution (110 vol.; 33% w/v) was
used. For KOH activation, the char was impregnated with OH solution at a ratio of 3:1 (g
KOH/g char). For all samples, the reaction was kept at ambient temperature (25 ◦C) for
24 h. Then, the mix was dried at 85 ◦C for 12 h. After drying, each sample was heated to
700 ◦C at a heating rate of 5 ◦C/min in a horizontal furnace under purified N2 flow.

After cooling down, the activated carbon (AC) was washed in hot distilled water to
remove any unused activating agent and then oven-dried at 85 ◦C for 24 h for further
utilization. The resulting ACs were denoted as HNAC, HOAC, and KAC.

2.3. Characterization Methods

Various techniques were explored to characterize the raw materials and their derived
activated carbon.

2.3.1. Morphologies of ACs

The morphologies of the raw materials and their derived activated carbon were ana-
lyzed using scanning electron microscopy (FEI model Quanta 400 SEM, Philips, Andover,
MA, USA).

The FEI Quanta 400 is a high-resolution field-emission scanning electron microscope.
It is equipped with SE, backscatter, and energy-dispersive spectroscopy detectors, and it can
operate in high vac, low vac, and Wet modes. It is also equipped with a cooling stage. The
FEI Quanta 400 is an environmental SEM (ESEM). The major advantage of ESEM modes is
that any material, dry non-conductive up to extreme conditions, for example, wet specimens
and those containing volatile components, such as oil, can be viewed and analyzed. So,
no treatment or preparation is needed to view the specimen. The magnification number
is 1200.

2.3.2. Textural Characterization

HNAC, HOAC, and KAC activated carbon textural characterization were performed
using N2 adsorption isotherms at 77 K with an ASAP 2020 instrument (Micromeritics,
Atlanta, GA, USA). Before the analyses, carbon was outgassed overnight under a vacuum
at 623 K. The BET surface areas (SBET) of the samples were determined using N2 adsorption
isotherms in a relative pressure (P/P0) range of 0.05–0.30. The micropore surface (Smic)
area and micropore volume (Vmicro) were investigated using the t-plot method. The
average pore diameter (Dp) was determined according to the Density Functional Theory
(DFT) method.

2.4. Fourier Transform Infrared Spectra (FTIR)

The surface chemistries of the activated carbon samples were characterized using
an FTIR analysis. The samples were blended with KBr and then tabulated. The infrared
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spectra of the samples were recorded using a Perkin Elmer model to detect the surface
functional groups. The infrared spectra were recorded in the wave range of 600–4000 cm−1.

2.5. Adsorption Experiment
2.5.1. Bed Adsorption

A schematic of the device used for the bed adsorption experiment is shown in Figure 2.
Carbonized fibers (5) were packed into a glass column (4) to study their adsorption capacity.
The wastewater (2) was introduced in a funnel (1) and passed through an input valve (3) to
adjust the flow at 4–5.10 m3·h−1. First, the bed adsorption device was wetted using distilled
water flowing through the column in order to improve the wetting characteristics of the
activated carbon fibers. Second, the refinery wastewater sample (2) content in the funnel (1)
was allowed to drain through the activated carbon bed (5) to the received reservoir (6) by
gravity. Treated water was reclaimed every hour.
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2.5.2. Batch Adsorption

The wastewater samples were collected from a local petroleum refinery (Tunisian
Society of Refining Industry (STIR)) and preserved in dark-colored plastic containers at RT.
Table 1 shows the main characteristics of the refinery wastewater.

Table 1. Refinery wastewater characteristics.

Characteristic Value

pH 12.9
Conductivity (ms·cm−1) 126.7
Sulfide (mg·L−1) 3476
NaOH (wt%) 7.5

Batch adsorption equilibrium experiments were carried out by reacting a known
amount (4.0 g) of CA with 50 mL of a real wastewater sample in a sealed glass bottle. Five
samples with different initial sulfur concentrations (100, 300, 500, 800, and 1000 mg·L−1)
were tested. The bottles were kept on a shaker at a constant temperature for 24 h until they
reached equilibrium (final pH: 10.5).

The adsorption capacity Qt at contact time t was calculated as follows [56]:

Qt =
(C0 − Ct)·V

M
(1)
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where Ct is the sulfur solution concentration at time t (mg/L), Ci is the initial sulfur
concentration (mg/L) at time 0, M is the weight of the adsorbent (g), and V is the volume
of the solution (L).

2.5.3. Determination of COD

The determination of COD was performed using potassium dichromate based on the
American Public Health Association (APHA) standard method [57]. COD in mg·L−1 was
calculated using the following equation:

COD =
n·(a − b)

V
·8000 (2)

where a (mL) is the ferrous ammonium sulfate required for the titration of the blank, b (mL)
is the ferrous ammonium sulfate required for the titration of the sample, n is the normality
of the ferrous ammonium sulphate, and V (mL) is the sample volume.

2.6. Kinetic Models

The kinetics of the adsorption was investigated to evaluate the potential of using
synthesized activated carbon as an adsorbent of sulfur compounds in refinery wastewater.
In this study, several experimental conditions were explored to determine the factors that
can affect the adsorption speed. The obtained experimental results were tested with three
mathematical models that can describe the kinetics of interaction between synthesized
activated carbon and sulfur compounds. Three of the most widely used kinetic models
were investigated: pseudo-first-order, pseudo-second-order, and intra-particular diffusion
models. Table 2 illustrates the mathematical forms of each model, where k1 represents
the pseudo-first-order rate constant (min−1), k2 represents the pseudo-second-order rate
constant (L·mg−1·min−1), and kid is the diffusion intraparticular constant (mL−1·min−1/2).

Table 2. Kinetic models.

Model Equation Reference

Pseudo-first-order log
(
qe − qt

)
= log

(
qe

)
− k1

2.303 t [58]

Pseudo-second-order t
qt

= 1
k2q2

eq
+ 1

q2
eq

t [59]

Intraparticular diffusion qt = Kid·t
1
2 + C [60]

2.7. Adsorption Isotherm Studies

Equilibrium parameters and sulfur compound adsorption were tested using several
isotherm models. This investigation was performed to evaluate the nature of the interac-
tions that may exist between the obtained carbon and sulfur compounds. The Langmuir,
Freundlich, Dubinin–Radushkevich, Tóth, and Sips models were used as isotherm models.
Table 3 presents the linear forms of each model studied.

Table 3. Isotherm models.

Model Equation Linear Form Reference

Langmuir qe =
qm ·KL ·Ce
1+KL ·Ce

Ce
qe

= 1
qm

·Ce +
1

KL ·qm
[61]

Freundlich qe = KF·C
1
n
e log(qe) = log(KF) +

1
n · log(Ce) [62]

Dubinin–
Radushkevich

qe
qmDR

= exp
(
−βε2)

ln(qe) = ln(qmDR)−
( RT

E

)2·(ln
(

CS
Ce

)2
) [63]

Tóth qe
qm

= KL ·Ce

[1+(KL ·Ce)
n]

1/n ( Ce
qe
)

n
=

(
1

qm ·KL

)n
+

(
1

qm

)n
·(Ce)

n [64]

Sips qe
qm

= KSCe
n

1+KSCen
1

qe
= 1

qm
+ 1

KLqmCen [65]
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3. Results and Discussion
3.1. Activated Carbon Characterization

Through calcination and HNO3, H2O2, and KOH activation, the waste of cotton fibers
was successfully transferred into activated carbon with different structures. Figure 3 shows
the SEM images of the HNAC, HOAC, and KAC activated carbons. It can be seen that the
chemical activation contributed to the formation of macroporosity. A hollow core can be
observed throughout the length of the fiber, with a diameter of around 0.5–5.0 µM and
an almost circular shape. The activated carbon has a highly porous structure, with a core
diameter between approximately 0.5 and 5 µM (Figure 3b,d). This macroporosity may be
related to the chemical destruction of lignin in the internal wall of the cotton fibers. The
reference activated carbon (Figure 3a) presents macroporosity, while the morphology is
characterized by the appearance of the core in the fiber, whose diameter depends on the
activating agent. The largest diameter is obtained with the use of hydrogen peroxide as
an activated reagent (Figure 3b). As shown in Figure 3b–d, the structure of the precursor
(initially with a clean surface) is destroyed after each chemical treatment. Interestingly, the
surface of the HOAC activated carbon changes obviously under the influence of chemical
activation (compared with the other activated carbons).
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(d) KAC.

The infrared spectra of the different activated carbons are shown in Figure 4. The FTIR
spectrum of HOAC is shown in Figure 4c. It can be seen that the main spectral changes are
restricted to between 1300 and 900 cm−1. This indicates that the oxidation of the obtained
char with the H2O2 solutions contributes to the increase in the number of OH surface
groups. More precisely, these hydroxyl groups (OH) absorb radiation at 1195 cm−1.

At 1300 cm−1, there was a slight deviation in intensity. In fact, oxygen groups (C=O,
CO2

− or C=O) formed at very low concentrations. Moreover, for that reason, the oxidation
state of the activated carbon surface did not improve because of the reaction with H2O2.
Therefore, H2O2 was able to oxidize the material, and, hence, the surface chemistry of the
AC was significantly altered
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HNO3 is a dehydrating agent that reduces the release of volatile matter and produces
a high yield of carbon content in activated carbon.

According to Figure 4, we can conclude that there was a new modification of the
FTIR spectrum of the HNAC sample and that new bands appeared. In fact, a new band at
1460 cm−1 was detected; this may be due to the vibrations of carboxyl groups (O–H). The
increase in the intensity of the band at 1720 cm−l can be assigned to the C=O stretching
vibration. The band at 3400 cm−1, due to the O–H stretching vibration, can be assigned
to carboxyl acid groups. The existence of nitrate and nitro surface groups was confirmed
by the appearance of new bands in the region of 1538 cm−l. In conclusion, the chemical
activation using HNO3 fixed carboxyl groups and likely fixed nitro and nitrate groups.
However, the activation using H2O2 and KOH probably fixed carboxyl, ketone, and ether
groups. This was due to the nature of the activation using HNO3, which can break the
porous texture of the activated carbons compared with the other two oxidizing treatments.
However, activation using H2O2 and KOH does not support the formation of ketone and
ether groups.

The pore structure of the samples was determined using nitrogen adsorption at 77 K.
The specific surface area was calculated using the Brunauer–Emmett–Teller equation. The
micropore volume and surface area were calculated using a t-plot. According to Table 4,
the maximal values of the pore volume size and specific surface area were identified in
the chemical activation using H2O2. This was because oxidation treatment favors the
dehydrogenation that was observed for this type of activation.

Table 4. Textural properties of the studied ACs, calculated using the data of N2 adsorption isotherms.

SBET (m2·g−1) Vt (cm3·g−1) VDR (cm3·g−1) VMES (cm3·g−1)

HOAC 1230 1.20 0.51 0.62
HNAC 842 1.03 0.48 0.59
KAC 915 1.08 0.49 0.60

As can be seen in the BJH pore size distribution, there was an obvious change in the
distribution after carrying out the different chemical activation methods. The pore volume
of HOAC was much larger than that of KAC and HNAC.

After the chemical activation, the BET surface areas of HOAC, HNAC, and KAC
were 1230 m2·g−1, 840 m2·g−1, and 915 m2·g−1, respectively. Moreover, the mesopore
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volume ratio of HOAC was higher than that of HNAC and KAC, providing more chan-
nels for ions to penetrate into the interior micropore surface area and leading to a good
rate performance.

SBET is the BET surface area calculated from the N2 adsorption, Vt is the total pore
volume of N2, VDR is the micropore volume determined using the Dubinin–Raduskevich
equation, and VMES is the volume of mesopores [63].

The lowest nitrogen uptake occurred for HNAC, which indicates a low specific surface
area (840 m2·g−1). The profiles of the isotherms of HOAC, HNAC, and KAC were close
to a type I isotherm with a H4 type of loop (Figure 5). The branches of adsorption and
desorption were nearly horizontal and parallel in the relative pressure range between 0.4
and 0.8.
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The wider H4 hysteresis loop of HOAC compared to that of HNAC and KAC indicates
the domination of a mesoporous structure. However, this type of hysteresis corresponds
to the existence of both micro- and meso-porous structures, which correspond to a large
amount of N2 being adsorbed in the entire relative pressure range. As is well-known, the
effect of chemical activation is to open the pores of activated carbon wider in order to
improve the chemical reagent efficacy.

As can be observed, nitric acid treatment can modify the porous structure of activated
carbon, but the effect of peroxide oxidation is more pronounced. In the case of KOH
activation, KOH diffused into the activated carbon and reacted both inside and outside
simultaneously, leading to a developed pore structure.

To describe the adsorption isotherm of sulfur content by the synthesized activated
carbons, mathematical models were investigated. In this experiment, the Freundlich and
Langmuir models were used as the most common isotherms. The Freundlich parameters (kf
and n) were determined from the linear plot of log Qe vs. log Ce. The Langmuir parameters
(Q0 and b) were calculated from the plot of Ce/Qe vs. Ce. All parameters are listed in
Table 5.
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Table 5. Summary of experimental design parameters.

Flow Rate (L/h) Dosage Rate (mg/L) CODHNAC (mg/L) CODHOAC (mg/L) CODKAC (mg/L)

1 5 1585 1180 1870
1 10 644 485 778
1 15 252 183 304
1 25 60 4 68
2 5 1841 1375 2202
2 10 756 560 907
2 15 348 255 420
2 25 89 65 108
3 5 2105 1563 2515
3 10 912 674 1084
3 15 420 311 524
3 25 114 82 134
4 5 2340 1735 2811
4 10 1140 844 1352
4 15 530 375 621
4 25 135 105 163

The calculated RL values were between 0 and 1, which indicates favorable sulfur
compound adsorption by the synthesized activated carbon.

As can be seen from the correlation coefficient (R2), the Freundlich and Langmuir
isotherms were able to describe the adsorption data obtained regarding the adsorption of
the sulfur content onto the HOAC, HNAC, and KAC activated carbons. As summarized, the
adsorption isotherms followed the Langmuir isotherm. This suggests that the homogenous
surface and the adsorption follow the physisorption of monolayer adsorption patterns.

The better fit of the Langmuir model to the adsorption of the sulfur compounds onto
both activated carbons shows that adsorption was found on the heterogeneous surface.
Furthermore, there was an interaction between the adsorbed molecules and sulfur contents.

3.2. The Results of Fixed-Bed Adsorption

The adsorption bed column was installed as shown in Figure 1, and the refinery
wastewater was allowed to flow under gravity. The diameter and the height of the bed
column were 5.4 cm and 90 cm, respectively. The optimum adsorption conditions were
determined for several parameters influencing the bed experiment, including the activated
carbon dosage ratio and effluent flow. The experiments were designed using the response
surface method. The results were analyzed using the analysis of variance method (ANOVA)
to examine the effect of the parameters on the COD of the treated wastewater. Table 5
shows the 16 levels of the experimental design parameters and their results. For each of
the 16 experiments, the COD was calculated. Figure 6 shows the effect of both activated
carbon dosage and wastewater flow on the COD of the reclaimed effluent. For all samples
of activated carbon at a high rate of wastewater flow, the COD was enhanced by an increase
in the dosage mass. However, at a low flow rate, the COD was reduced. In summary,
OHAC was the most effective adsorbent (compared with the HNAC and KAC activated
carbons) in reducing the COD value of the refinery wastewater.

According to the contour plot (Figure 6), the COD value decreased with the flow rate
of the effluent at a given saturation of each AC, and the decrease was nonlinear, particularly
at low flow rates. This may be due to the combined effect of AC residence time. The lowest
value of COD was obtained with the use of OHAC. This result was correlated with the
activated carbon characteristics.

It can be concluded that the characteristic properties of activated carbon, such as the
specific surface area, perfectly correlate with the decrease in COD. In fact, the highest value
of the specific surface area (1230 g·m−2) was attributed to OHAC, which had the lowest
value of COD.
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3.3. Adsorption Kinetics

Table 6 displays the kinetic parameters. To assess the relationship between the com-
puted and experimental data, the correlation coefficient (R2) was utilized. The pseudo-
second-order model had the greatest R2 value, as shown in Table 6. This indicates that
the experimental data and the calculation for the pseudo-second-order kinetic model
were well-correlated. As a result, the pseudo-second-order model can be considered a
suitable kinetic model that fits the kinetic adsorption of sulfur compounds on HOAC
activated carbon.

Table 6. Kinetic parameters of sulfur compound adsorption.

Kinetic Model Model Parameters R2

Pseudo-first-order
qe (mg·g−1) K1 (min−1)

0.94120 0.003

Pseudo-second-order
qe (mg·g−1) K2 (L·mg−1·min−1)

0.99135 11.10−4

Intraparticular diffusion Kid (mg·g−1·min−0.5) C
0.9111.20 0.13

The agreement between the experimental data and the model-predicted data was
investigated by calculating correlation coefficients (R2 values closer to 1 means a greater ap-
plicability of the model) and by observing the extent to which the experimental adsorption
capacity is close to the theoretical value.
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According to Table 6, there was an excellent connection between the experimental
value and the pseudo-second-order calculated kinetic model. This result was determined
due to the pseudo-second-order calculated kinetic model having the highest correlation
coefficient R2 value (0.99). Consequently, the pseudo-second-order model can be con-
sidered a suitable kinetic model that fits the kinetic adsorption of sulfur compounds on
the HOAC. The electron exchange between the sulfur compounds and HOAC generated
by the chemical adsorption resulted in a high valence liaison. As can be seen in Table 6,
the pseudo-first-order and intraparticular diffusion models had low regression coefficient
values (R2 < 0.94). For the used kinetic model, a statistically significant difference was
observed between the experimental and calculated adsorption capacities.

3.4. Modeling of Adsorption Isotherm

From the aqueous solutions, the equilibrium adsorption isotherms of the sulfur com-
pounds were modeled and investigated on HOAC activated carbon. Five mathematical
models were used in order to describe the experimental data of the adsorption isotherms.
The main purpose of this work was to select the most suitable models that can describe
the experimental results of the adsorption isotherms, determine the theoretical adsorp-
tion isotherm, and give the parameters. The initial goal was to develop a two-parameter
equation in order to simulate the adsorption of sulfur compounds by HOAC. The experi-
mental conditions were as follows: an initial sulfur concentration in a range between 5 and
300 mg·L−1, agitation of 150 rpm, and a controlled temperature of 25 ◦C. For all isotherm
models, the linear equation was investigated to determine its linear parameters with the
use of experimental values of Qe and Ce. The linear correlation coefficient (R2) was used to
evaluate the correlation between the theoretical and experimental values.

According to Table 7, we can conclude that the isotherm parameters were different.
The Langmuir model has highest value of the correlation coefficient (R2 = 0.98). This
shows that the adsorption of the sulfur compounds on synthesized activated carbon fol-
lows the Langmuir isotherm. Both the Dubinin–Radushkevich and Tóth isotherms have
the lowest correlation coefficient values (0.79 and 0.89, respectively), which suggests that
these isotherms are not appropriate for this type of adsorption. However, the monolayer
adsorption capacity obtained using the Langmuir isotherm is higher than that obtained
using the other isotherm models. This indicates that all the active sites of the synthe-
sized activated carbon (HOAC) are similar and that there is no interaction between the
sulfur compounds.

Table 7. Linear isotherm parameters.

Model n KL qm (mg·g−1) R2

Langmuir 0.84 0.02 168.4 0.98
Freundlich 0.84 0.01 17 0.96
Dubinin–Radushkevich E0.16 - - 0.79
Tóth 0.14 5.95 × 10−6 115 0.89
Sips 0.79 0.01 241 0.97

4. Conclusions

In this study, solid waste from the spinning industry was investigated as a precursor
of carbon materials. An ecofriendly activated carbon was successfully synthesized as an
adsorbent of sulfur compounds in refinery wastewater. Kinetic and equilibrium data for
the adsorption of sulfur compounds were obtained and fitted to Langmuir and pseudo-
second-order models, respectively. The results show that introducing hydrogen peroxide,
nitric acid, and potassium hydroxide can successfully increase the pore size distribution,
pore volume, and surface area of carbon derived from cotton waste. In addition, HOAC
(SBET = 1230 m2·g−1 and Vt = 1.20 cm3·g−1) had the best capacity to remove sulfur com-
pounds compared to HNAC and KAC. It was found that, during fixed-bed adsorption, the
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flow rate of effluent was the factor most effective at decreasing the COD of the refinery
wastewater according to the responses and the ANOVA process.

The Langmuir model exhibited the best fit (R2 = 0.98) for the sulfur compounds’
adsorption, which implies that their adsorption onto the synthesized AC was homogeneous.
The kinetic data were tested with pseudo-first-order, pseudo-second, and intraparticular
diffusion equations. The pseudo-second-order equation showed the best description
for the kinetic data (R2 = 0.99), which means that this adsorption can be limited by the
chemisorption process.

Several methods have been investigated for the treatment of refinery wastewater,
including physical, chemical, and biological methods.

As a physical method, membrane bioreactors have been successfully used to remove
pollutants from petroleum industry wastewater. However, membrane fouling is a major
problem that can frequently occur. Moreover, this seriously affects the quality of the
reclaimed water and the efficiency of the membrane. Its use has only been tested in a
pilot test.

Electrochemical processes can also be utilized for the treatment of petroleum refinery
wastewater. Their higher cost and lower efficiency also limit their industrial application.

The microbiological treatment of industrial refiner wastewater has also been investi-
gated using several types of microorganisms. However, the use of a biological approach
for refinery effluent treatment can cause serious problems due to the excessive production
of sludge.

Many researchers have demonstrated that adsorption is a high-potential and cost-
effective approach for the treatment of refinery wastewater. AC has previously been
developed from biomass, such as date pits.

Most of these studies were conducted at the laboratory scale, with no focus on a
specific application.

The main purpose of our work, realized with the collaboration of a big refinery
company in Tunisia, was to synthesize activated carbon from low-quality cotton fiber
spinning waste with and to use it to remove sulfur compounds from refinery wastewater.
The results demonstrate the high efficiency of the obtained AC.

In comparison with other biomasses, cotton spinning waste can be used directly and
does not need any selection or chemical treatment. This makes the management of this
waste utilized directly as activated carbon easier.
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