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Abstract: Accurately predicting the height of water flowing fractured zone is of great significance to
coal mine safety mining. In recent years, most mines in China have entered deep mining. Aiming at
the problem that it is difficult to accurately predict the height of water flowing fractured zone under
the condition of large mining depth, the mining depth, height mining, inclined length of working
face and coefficient of hard rock lithology ratio are selected as the main influencing factors of the
height of water flowing fractured zone. The relationship between various factors and the height of
water flowing fractured zone is analyzed by SPSS software. Based on the data mining tool Weka
platform, Bayesian classifier, artificial neural network and support vector machine model are used
to mine and analyze the measured data of water flowing fractured zone, and the detailed accuracy,
confusion matrix and node error rate are compared. The results show that, the accuracy rate of
instance classification of the three models is greater than 60%. The accuracy of the artificial neural
network model is the highest and the node error rate is the lowest. In general, the training effect of
the artificial neural network model is the best. By predicting engineering examples, the prediction
accuracy of the model reaches 80%, and a good prediction effect is obtained. The height prediction
system of water flowing fractured zone is developed based on VB language, which can provide a
reference for the prediction of the height failure grade of water flowing fractured zone.

Keywords: water flowing fractured zone; Weka platform; Bayes classifier; neural network; support
vector machine

1. Introduction

After the mining of the coal seam, under the action of the mine pressure, the overlying
roof strata will move, which will lead to the fissure and fracture of the rock strata. According
to the theory of “upper three zones” [1], the water flowing fractured zone refers to the sum
of the caving zone and the fracture zone. The fracture channel is easily formed in the water
flowing fractured zone. Once these fractures are penetrated, the water-conducting channel
will be formed, which will lead to the increase of mine water inflow, which will lead to
water inrush and other mine flood accidents, which will seriously threaten the safety of
coal mining. Therefore, it is very important for coal mine safety production to accurately
predict the development height of water flowing fractured zone.

Domestic and foreign research focus on the development height of water flowing frac-
tured zone after coal mining. In order to ensure the safe mining under the aquifer, foreign
countries have carried out long-term research on this. In the 1970s, Britain formulated
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regulations on coal mining under water bodies; in 1973, Russian researchers also proposed
the calculation method of the height of the water flowing fractured zone and formulated
the safety regulations for mining under water bodies; Japan has more than ten mines threat-
ened by water damage, developed a special waterproof measure, for the composition and
thickness of alluvium developed a safety procedure [2]. At present, the empirical formula
given in ‘Regulations of Buildings, Water Bodies, Railways, Main Roadway Coal Pillar
Setting and Coal Mining’ [3] is widely used in the calculation formula of water flowing
fractured zone in China. These empirical formulas only consider the influence of mining
thickness on the height of water flowing fractured zone, and are obtained by regression
statistics. For example, the calculation formula of the height Hf of water flowing fractured
zone in hard rock is as follows:

H f =
100∑ M

1.2∑ M + 2.0
± 8.9 (1)

or
H f= 30

√
∑ M + 10 (2)

In the formula: M is mining thickness.
With the continuous exploitation of coal resources, many mines in China have entered

the deep mining stage of coal resources [4–6]. For example, the maximum mining depth of
Suncun Coal Mine in Xinwen Coalfield has even reached 1350 m [7]. A large number of
studies have shown [8–12] that the factors affecting the height of water flowing fractured
zone are buried depth of coal seam, inclined length of working face, coefficient of hard rock
lithology ratio and mining advance speed. Therefore, it is obviously unreasonable to use
the empirical formula to calculate the height of the water flowing fractured zone.

V. Palchik [13–16] used the method of borehole detection to study the crack develop-
ment law of overlying strata after coal mining in Donetsk coalfield, Ukraine, and divided
the overlying strata into three zones, namely caving zone, fractured zone and continuous
deformation zone. Domestic scholars mainly use theoretical analysis [17–21], numerical
simulation [22–24] and similar material simulation [25–28], field measurement [29,30] and
other methods to study the height of water flowing fractured zone. The calculation method
in the ‘three under’ regulation is simple, but only one influencing factor of coal seam mining
thickness is considered. Due to the large difference of mine occurrence conditions, it is only
suitable for preliminary estimation. The theoretical calculation and numerical simulation
method are better than the calculation method in the procedure, but there are shortcomings
such as single calculation and simple model. The accuracy of similar material simulation
test and field measurement is high, but the workload is heavy, the operation is complex
and the cost is high. The prediction method proposed in this paper has comprehensive
considerations, simple operation and high prediction accuracy. In this paper, on the basis of
previous studies, collected 43 groups of coal seam mining depth greater than 400m of water
flowing fractured zone development height of the measured data, using SPSS software to
analyze the various factors and water flowing fractured zone relationship. Based on the
data mining tool Weka platform, Bayesian classifier, artificial neural network and support
vector machine model are used to mine and analyze the measured data of water flowing
fractured zone. After comparing and analyzing the three models, the optimal model is
obtained and the engineering example is predicted.

2. Modeling

In order to realize the accurate prediction of the height of the water flowing fractured
zne [31–33], the prediction process is constructed, as shown in Figure 1.
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2.1. Selection of Raw Data

By collecting and collating the actual data of the observation of the water flowing
fractured zone in China, four influencing factors of mining depth, coefficient of hard rock
lithology ratio, height mining and inclined length of working face are selected. Finally,
43 [34] sets of original data of water flowing fractured zone are selected. The first 33 sets
of data are used as training samples. The specific data are shown in Table 1, and the last
10 sets of data are used as prediction samples. It can be seen from Table 1 that the mining
depth of coal seam is mainly between 400~700 m, the thickness of coal seam is mainly
medium thick coal seam and thick coal seam, and the inclined length of working face is
between 110~230 m.

Table 1. Raw data.

Serial Number Mining Depth s/m
Coefficient of

Hard Rock
Lithology Ratio b

Height Mining
M/m

Inclined Length
of Working Face

l/m

Height of Water
Flowing Fractured

Zone H/m

1 412.4 0.09 2.2 157 35.4
2 489 0.47 4.5 160 54.79
3 472.5 0.53 4.5 132 57.45
4 424.42 0.26 3.4 120 45.1
5 590 0.51 9 220 76.37
6 420.5 0.52 3 209 52.01
7 649.1 0.23 3 186 42.99
8 475.2 0.28 3.9 209 49.05
9 568.6 0.65 3.65 132 60.14

10 557.25 0.45 5.8 186 65.25
11 412.55 0.08 2.2 157 35.2
12 679 0.46 2.1 180 44.54
13 403.2 0.1 1.8 120 22
14 665 0.19 7.5 222 70.3
15 433 0.52 7 168 47.55
16 434.1 0.35 3 145 38.41
17 485 0.36 4.8 175 43.43
18 441.97 0.36 3.4 120 28.63
19 437.17 0.05 3.4 120 86.4
20 463 0.62 7.6 116 22.61
21 403.1 0.08 2 136 57.49
22 476.4 0.63 3.65 132 55
23 515.7 0.35 4.5 147 86.8
24 450 0.72 8 170 51.4
25 499.9 0.47 4.8 150 45
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Table 1. Cont.

Serial Number Mining Depth s/m
Coefficient of

Hard Rock
Lithology Ratio b

Height Mining
M/m

Inclined Length
of Working Face

l/m

Height of Water
Flowing Fractured

Zone H/m

26 490 0.52 4 135 45
27 420.06 0.14 3 145 30.29
28 516 0.74 2.95 206.1 54.5
29 434.4 0.46 3.4 136 45.1
30 445.4 0.07 4 195 38.81
31 499.92 0.47 4.8 150 54
32 419.03 0.16 3 145 32.83
33 550 0.81 2.4 180 55.32

2.2. Correlation Analysis

In order to study the development height of water flowing fractured zone under large
buried depth (mining depth >400 m), mining depth (X1), coefficient of hard rock lithology
ratio (X2), height mining (X3) and inclined length of working face (X4) are selected as the
main influencing factors.

(1) Mining depth

According to the theory of mine pressure control, in a certain range, the greater the
mining depth, the greater the mine pressure, mine pressure is proportional to the size and
depth of coal mining.

(2) Coefficient of hard rock lithology ratio

The coefficient of hard rock lithology ratio refers to the ratio of hard rock to statistical
height above the roof of coal seam. The hard rock participating in the statistics refers to
sandstone, mixed rock and igneous rock. The specific calculation formula is as follows:

b =
∑ h

(15 ∼ 20)M
(3)

In the formula: M is height mining; ∑ h is the cumulative thickness of hard rock strata
within the height range of the estimated water flowing fractured zone.

(3) Mining thickness

When the working face advances, periodic pressure will be generated, resulting in
roof caving. With the increase of coal seam mining thickness, the plastic zone of overlying
strata becomes larger, resulting in the height of caving zone is also larger.

(4) Inclined length of working face

Before the coal seam is fully mined, the development height of the water flowing
fractured zone gradually increases with the mining of the working face; when the coal seam
is fully mined, the influence of the inclined length of the working face on the development
of the high belt is not obvious.

In order to determine the relationship between the influencing factors and the height
of the water flowing fractured zone, each scatter plot was established for research [35–39].
It can be seen from Figure 2 that there is a certain linear relationship between the mining
depth (Figure 2a), the coefficient of hard rock lithology ratio (Figure 2b), the height mining
(Figure 2c) and the inclined length of working face (Figure 2d) and the height of the water
flowing fractured zone (y), as shown below:

y1 = 0.083X1 + 9.009 (4)

y2 = 12.103X2 + 44.711 (5)
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y3 = 2.667X3 + 38.359 (6)

y4 = 0.142X4 + 26.698 (7)
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Figure 2. Relationship between influencing factors and height of water flowing fractured zone.

2.3. Normalization

In order to better retain valid data, it is necessary to reduce the dimension and noise
of the raw data, that is, normalization and discretization. The purpose of normalization
is to concentrate the values between 0 and 1, and the specific results are shown in Table 2.
The normalized calculation formula is as follows:

Gij =
Xij − min(Xj)

max(Xj)− min(Xj)
(8)

In the formula: Xij is the sample before normalization, Gij is the normalized sam-
ple, Xj is the minimum value in the original sample, Xj is the maximum value in the
original sample.
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Table 2. Normalization results.

NO X1 X2 X3 X4 Y

1 0.034 0.053 0.056 0.387 35.400
2 0.311 0.553 0.375 0.415 54.790
3 0.252 0.632 0.375 0.151 57.450
4 0.077 0.276 0.222 0.038 45.100
5 0.677 0.605 1.000 0.981 76.370
6 0.063 0.618 0.167 0.877 52.010
7 0.892 0.237 0.167 0.660 42.990
8 0.261 0.303 0.292 0.877 49.050
9 0.600 0.789 0.257 0.151 60.140
10 0.559 0.526 0.556 0.660 65.250
11 0.034 0.039 0.056 0.387 35.200
12 1.000 0.539 0.042 0.604 44.540
13 0.000 0.066 0.000 0.038 22.000
14 0.949 0.184 0.792 1.000 70.300
15 0.108 0.618 0.722 0.491 47.550
16 0.112 0.395 0.167 0.274 38.410
17 0.297 0.408 0.417 0.557 43.430
18 0.141 0.408 0.222 0.038 28.630
19 0.123 0.000 0.222 0.038 86.400
20 0.217 0.750 0.806 0.000 22.610
21 0.000 0.039 0.028 0.189 57.490
22 0.266 0.763 0.257 0.151 55.000
23 0.408 0.395 0.375 0.292 86.800
24 0.170 0.882 0.861 0.509 51.400
25 0.351 0.553 0.417 0.321 45.000
26 0.315 0.618 0.306 0.179 45.000
27 0.061 0.118 0.167 0.274 30.290
28 0.409 0.908 0.160 0.850 54.500
29 0.113 0.539 0.222 0.189 45.100
30 0.153 0.026 0.306 0.745 38.810
31 0.351 0.553 0.417 0.321 54.000
32 0.058 0.145 0.167 0.274 32.830
33 0.532 1.000 0.083 0.604 55.320

2.4. Discretization

The discretization is divided into supervised and unsupervised discretization of
numerical attributes, which is used to discretize some numerical attributes in the data
set to the classification attributes. The ‘mining depth’, ‘coefficient of hard rock lithology
ratio’, ‘height mining’ and ‘inclined length of working face’ are equidistantly divided
into 3 sections. Similarly, the height of water flowing fractured zone is also divided into
3 sections, 0~40 m is denoted by ‘1’ (water flowing fractured zone height grade ‘low’),
40~60 m is denoted by ‘2’ (water flowing fractured zone height grade ‘medium’), >60 m is
denoted by ‘3’ (water flowing fractured zone height grade ‘high’). The calculation formula
of discretization is as follows:

Lij =


Q =

max(Gj)−min(Gj)
3

0, min(Gj) < Gij < min(Gj) + Q
1, min(Gj) + Q < Gij < min(Gj) + 2Q
2, min(Gj) + 2Q < Gij < max(Gj)

(9)

In the formula: Lij is the discretized sample, max(Gj) is the maximum value of the
normalized sample data, min(Gj) is the minimum value of the normalized sample data, Q
is the step size.

The repeated data from the discretization results are as follows: the first group and
the 11th group of sample data are repeated, the second group and the 17th group of sample
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data are repeated, the fourth group and the 21st group of sample data are repeated, the
13th group, the 27th group and the 32nd group of sample data are repeated, the 16th
group and the 18th group of sample data are repeated, the 25th group and the 31st group
of sample data are repeated, and the 26th group and the 29th group of sample data are
repeated. The first group, the second group, the fourth group, the thirteenth group, the
sixteenth group, the twenty-fifth group, the twenty-sixth group and the twenty-seventh
group were removed, and the remaining 25 groups of data were used as training samples,
as shown in Table 3.

Table 3. Training samples.

NO X1 X2 X3 X4 Y

1 1 2 2 1 2
2 3 2 3 3 3
3 1 2 1 3 2
4 3 1 1 2 2
5 1 1 1 3 2
6 2 3 1 1 3
7 2 2 2 2 3
8 1 1 1 2 1
9 3 2 1 2 2
10 3 1 3 3 3
11 1 2 3 2 2
12 1 2 2 2 2
13 1 2 1 1 1
14 1 1 1 1 3
15 1 3 3 1 1
16 1 1 1 1 2
17 1 3 1 1 2
18 2 2 2 1 3
19 1 3 3 2 2
20 2 3 1 3 2
21 1 2 1 1 2
22 1 1 1 3 1
23 2 2 2 1 2
24 1 1 1 1 1
25 2 3 1 2 2

3. Comparative Analysis of Model Prediction

This paper mainly from the confusion matrix, node error rate, detailed accuracy of the
three aspects of comparative analysis.

3.1. Confusion Matrix

The confusion matrix is a special matrix used to show the performance of the algorithm.
The larger the diagonal value of the confusion matrix, the more examples of classification.
The confusion matrix results of the three models are shown in Table 4. Visualize Classifier
errors, in which the instances of correct classification are represented by crosses, and the
instances of wrong classification are represented by blocks. Blue indicates a low forecast
grade, red indicates a medium forecast grade, green indicates a high forecast grade, The
error scatter plots of the three models are shown in Figure 3.

The training samples are a total of 25 sets of data. It can be seen from Table 4 that there
are 5 data with ‘low’ height grade of water flowing fractured zone in Naive Bayes model,
3 of which are predicted as ‘medium’; There are 14 data with a height grade of ‘medium’ in
the water flowing fractured zone, of which 2 are predicted to be ‘low’ and 1 is predicted to
be ‘high’; There are six data with a height grade of ‘high’ in the water flowing fractured
zone, of which one is predicted to be ‘low’ and two are predicted to be ‘medium’. There
are 16 correct classification examples and 9 wrong classification examples in Naive Bayes
model. The correct rate is 64% and the error rate is 36%.
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Table 4. Confusion matrix.

Naive Bayes Artificial Neural Network Support Vector Machine

a b c Classified As a b c Classified As a b c Classified As

2 3 0 a = 1 4 1 0 a = 1 0 5 0 a = 1
2 11 1 b = 2 2 12 0 b = 2 0 13 1 b = 2
1 2 3 c = 3 1 1 4 c = 3 0 2 4 c = 3
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It can be seen from Table 4 that there are 5 data with ‘low’ height grade of water flowing
fractured zone in artificial neural network model, of which 1 is predicted as ‘medium’;
there are 14 data with a height grade of ‘medium’ in the water flowing fractured zone, of
which 2 are predicted to be ‘low’. There are six data with a height grade of ‘high’ in the
water flowing fractured zone, of which one is predicted to be ‘low’ and one is predicted
to be ‘medium’. There are 20 correct classification examples and 5 wrong classification
examples in the artificial neural network model. The correct rate is 80% and the error rate
is 20%.

It can be seen from Table 4 that there are 5 data with ‘low’ height grade of water
flowing fractured zone in support vector machine model, all of which are predicted as
‘medium’; there are 14 data with a height grade of ‘medium’ in the water flowing fractured
zone, and one is predicted to be ‘high’. There are 6 data with a height grade of ‘high’ in
the water flowing fractured zone, and 2 are predicted to be ‘medium’. There are 17 correct
classification examples and 8 wrong classification examples in the support vector machine
model. The correct rate is 68% and the error rate is 32%.

The accuracy of instance classification is: artificial neural network > support vector
machine > Naive Bayes.

3.2. Node Error Rate

The node error rate is mainly reflected in the mean absolute error, root mean square
error, absolute relative error and root relative square error. The node error rates of the three
models are shown in Figure 4.

It can be seen from Figure 4 that the Naive Bayesian model is slightly larger than
the support vector machine in the mean absolute error and the absolute relative error. In
terms of root mean square error and root relative square error, support vector machine is
slightly larger than Naive Bayesian; the value of the node error rate of the two models is
not much different. However, it is clear from the diagram that the value of the artificial
neural network model is the lowest in the node error rate, and the training effect is the best.
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3.3. Detailed Accuracy

The detailed accuracy is mainly reflected in TP Rate (true positive ratio), FP Rate (false
positive ratio), Precision, Recall (recall ratio), F-Measure (harmonic average of precision
and recall rates), MCC, Kappa statistics and characteristic curve area. The detailed accuracy
of the three models is shown in Table 5.

Table 5. Detailed accuracy.

Model TP Rate FP Rate Precision Recall F-Measure MCC Kappa

Naive Bayes 0.64 0.297 0.645 0.64 0.635 0.367 0.3608
Artificial neural network 0.8 0.132 0.834 0.8 0.805 0.68 0.6622
Support vector machine 0.68 0.369 0.556 0.68 0.603 0.36 0.3651

It can be seen from the detailed accuracy that in the TP Rate (TP Rate represents the
proportion of the predicted positive class. The higher the value, the higher the accuracy
of the positive class prediction.), artificial neural network > support vector machine >
naive Bayes; the FP Rate represents the proportion of the negative class contained in the
predicted positive class. The smaller the value of the FP Rate is, the better the effect is.
The FP Rate of the artificial neural network model is the smallest, and the training effect is
the best. The Precision, F-Measure, and MCC values are artificial neural network > naive
Bayes > support vector machine. In terms of Recall and Kappa statistics, artificial neural
network > support vector machine > naive bayes. In general, the artificial neural network
model is optimal.

ROC Area (receiver operating characteristic curve area): Display the ROC area, the
decimal range of [0, 1]. The ROC area is generally greater than 0.5, and the closer to 1,
the better the classification effect of the model. When the value is between 0.5 and 0.7,
the accuracy is low. When the value is between 0.7 and 0.9, it shows a certain accuracy.
When the value is greater than 0.9, it shows a higher accuracy. The ROC values of the
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three models are shown in Table 6, and the ROC curves of the three models are shown in
Figure 5.

Table 6. ROC value of the models.

Naive Bayes Artificial Neural
Network

Support Vector
Machine Class

0.86 0.95 0.75 1
0.815 0.945 0.646 2
0.829 0.978 0.851 3

Average weight 0.827 0.954 0.716
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It can be seen from Table 6 that the average ROC value of artificial neural network
model is 0.954, with high accuracy. The ROC values of Naive Bayes model and support
vector machine model are between 0.7 and 0.9, with certain accuracy. Overall, Artificial
Neural Network > Naive Bayes > Support Vector Machine.

3.4. Prediction Using Artificial Neural Network Models

Through the above comparative analysis, it is concluded that the effect of the artificial
neural network model is the best. The artificial neural network model is used to predict the
measured data of 10 groups of water flowing fractured zone height. The prediction results
are shown in Table 7.
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Table 7. Comparison of prediction results.

Serial
Number

Mining
Depth/m

Coefficient of
Hard Rock

Lithology Ratio

Height
Mining/m

Inclined
Length of
Working
Face/m

Height of
Water

Flowing
Fractured
Zone/m

Height Grade of
Water Flowing
Fractured Zone Comparison

Actual Prediction

1 420 0.71 3.7 70 56.8 medium medium correct
2 478.3 0.54 3.85 209 52.15 medium medium correct
3 568.4 0.85 2.94 180.4 57 medium medium correct
4 453.6 0.16 4 195 44.96 medium medium correct
5 412.5 0.24 2.2 136 35.2 low low correct
6 411.7 0.3 2.2 136 35.21 low low correct
7 475 0.37 6.1 170 64.6 high low error
8 453.5 0.42 1.6 180 30.3 low medium error
9 818.5 0.45 7.55 230 74.57 high high correct
10 427.3 0.43 4.6 120 56.6 medium medium correct

It can be seen from Table 7 that there are 10 groups of prediction data, only 2 groups
of data prediction errors. The 7th group of samples to be tested is predicted to be ‘low’ (the
actual damage level is ‘high’), and the 8th group of samples to be tested is predicted to be
‘medium’ (the actual damage level is ‘low’). The correct rate of prediction reaches 80%, and
good prediction results are obtained.

4. Water Flowing Fractured Zone Height Prediction System Based on VB Language

Based on VB language, the height prediction system of water flowing fractured zone
is developed. The software design flow chart is shown in Figure 6.
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(1) User management module includes user’s department, login account, login password,
user name, user role, mobile phone number and notes. User management interface is
designed to give managers and ordinary users different permissions, user managers
can also be real-time input measured data.

(2) The factors affecting the height of water flowing fractured zone can be divided into
three categories: geological factors, time factors and mining factors. In order to
comprehensively collect the measured data of the height of water flowing fractured
zone under various influencing factors, the measured data module of the height of
water flowing fractured zone is designed, including the name of the mining area,
the number of working face and the number of holes, the mining depth, the mining
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thickness, the dip angle of coal seam, the coefficient of hard rock lithology ratio,
the inclined length of working face, the advance speed, the lithology combination
structure of overburden rock, the compressive strength of roof, the hardness of coal
seam and the measured value.

(3) Prediction module mainly includes four methods, namely the neural network model,
the empirical formula in the ‘three under’ procedure, theoretical calculation formula
and multiple linear regression formula.

5. Conclusions

(1) Based on the Weka platform, 33 groups of measured data of water flowing fractured
zone height are used as training samples, and Naive Bayes, artificial neural network
and support vector machine models are used for training respectively. The prediction
results are compared and analyzed by confusion matrix, node error rate and detailed
accuracy. It is concluded that the artificial neural network model is the best.

(2) Based on artificial neural network, taking mining depth, coefficient of hard rock
lithology ratio, height mining and inclined length of working face as the main factors,
the accuracy of the height prediction model of water flowing fractured zone is 80%,
which has achieved good prediction effect and can provide reference for the prediction
of height failure grade of water flowing fractured zone.

(3) Based on VB computer language, the height prediction system of water flowing
fractured zone is developed. The system is simple to operate, practical and con-
venient, and realizes the height prediction of water flowing fractured zone under
different methods.
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