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Abstract: The fast development of electric vehicles (EVs) has resulted in several topics of research
in this area, such as the development of a charging pricing strategy, charging control, location of
the charging station, and the structure within the charging station. This paper proposes the optimal
design of the structure of an EV fast-charging station (EVFCS) connected with a renewable energy
source and battery energy storage systems (BESS) by using metaheuristic algorithms. The optimal
design of this structure aims to find the number and power of chargers. Moreover, the renewable
energy source and BESS can reduce the impact on the grid, so these energy sources are considered as
ones of the optimally-designed structure of EVFCS in this work. Thus, it is necessary to determine
the optimal sizing of the renewable energy source, BESS, and the grid power connected to EVFCS.
This optimal structure can improve the profitability of the station. To solve the optimization problem,
three metaheuristic algorithms, including particle swarm optimization (PSO), Salp swarm algorithm
(SSA), and arithmetic optimization algorithm (AOA), are adopted. These algorithms aim to find
the optimal structure which maximizes the profit of the EVFCS determined by its net present value
(NPV), and the results obtained from these algorithms were compared. The results demonstrate
that all considered algorithms could find the feasible solutions of the optimal design of the EVFCS
structure where PSO provided the best NPV, followed by AOA and SSA.

Keywords: electric vehicle (EV); electric vehicle fast-charging station (EVFCS); renewable energy; particle
swarm optimization (PSO); Salp swarm algorithm (SSA); arithmetic optimization algorithm (AOA)

1. Introduction

Nowadays, electric vehicles (EVs) play an important role in the automotive industry
due to the use of fossil fuels and the environmental impacts of vehicles powered by internal
combustion engines. For these reasons, the government and private sectors are coordinating
attempts to reduce emissions of pollution and greenhouse gases. However, one of the most
significant problems in promoting the popularity of EVs is the lack of EV charging stations
(EVCS). In addition, EV customers can charge their EVs at home or work; however, the
relatively long charging time may cause inconvenience in their use. Thus, it is necessary to
install EV fast-charging stations (EVFCS) where EVs can be charged in less than 20 min
in public, such as in parking lots [1,2]. On the other hand, the disadvantage to EVFCS
is their high power usage, which can affect the grid. To solve this problem, renewable
energy such as photovoltaic (PV), wind turbine (WT) and battery energy storage systems
(BESS) must be installed in the EVFCS to mitigate the impacts on the grid. Moreover, when
considering the design and development of EVFCS, one of the most important issues is
to find the appropriate configuration of the EVFCS structure. This problem has resulted
in various research about the optimal design of EVFCS or EVCS [2–11]. Over the past few
decades, many proposals related to EVFCS or EVCS, including charging pricing strategies
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or charging schedules, sizing and placing of the charging station, charging control, and
design of EVCS or EVFCS structure have been investigated.

Several works have considered the problem of the optimal pricing strategy and the
charging schedule of EVCS where different schemes or methods to minimize the charging
cost have been presented. In [12], Zhang et al. proposed a pricing scheme to optimize
charging scheduling for EVCS, which could minimize the service dropping rate of EVCS.
The optimal charging schedule for EVs was presented by Savari et al. [13] to minimize
the charging cost and charging time. The optimization algorithms, consisting of arrival
time-based priority algorithm (ATP) and state of charge (SOC) based priority algorithm
(SPB), were applied to solve the problem and compared with conventional algorithms,
which are particle swarm optimization (PSO) and shuffled frog leaping algorithm (SFLA).
Abbas et al. presented shifting peak hours demand to non-peak hours with a reduction
in the average-to-peak ratio to minimize the charging cost and maximize the availability
of charging capacity for EVs [14]. In [15], Hou et al. proposed varied charging pricing
schemes to plan EV pathways by considering the charging fee, energy consumption, total
time consumption, and driving distance. The charging pricing scheme was determined to
maximize total revenues and balancing profits of EVCS by using PSO. The optimal charging
scheduling scheme of EVs was introduced by Savari et al. [16] to reduce the charging cost by
using PSO. Leou and Hung investigated the charging schedule of an electric bus charging
station to determine the optimal contracted power capacity to minimize energy costs [17].
In [18], Shaaban et al. developed the online coordination approach for plug-in hybrid
electric vehicles to minimize charging costs. This method aimed to optimally allocate the
charging energy in low pricing periods to achieve minimum charging cost.

In addition, several methods to determine the optimal sizing and placing of the
charging station have been proposed. In [1], Sadeghi-Barzani et al. used a mixed-integer
non-linear programming (MINLP) approach by considering the station development cost,
losses of EV energy and electric grid, as well as the placement of electric substations and
urban roads, to find the optimal placing and sizing of the charging station. Second-order
conic programming to formulate an optimization model by considering the time-varying
nature of distributed generation and load consumption was proposed by Erdinc et al. [19].
This optimization model was adopted to obtain the optimal sizing and siting of various
renewable resources-based DG units, charging stations, and energy storage systems within
the distribution system. Hosseini and Sarder applied a Bayesian network (BN) model for
handling risk assessment and decision-making to help address the uncertainty in charging
station site selection that utilises economic, environmental, and social criteria (with a total
of eleven sub-criteria) [20]. In [21], Hu et al. designed the optimal layout of the charging
station by using a combined genetic algorithm with binary particle swarm optimization
(GA-BPSO) to maximize the average number of covered EVs. Therefore, the problem of
locating the charging station can be solved by using optimization algorithms. Furthermore,
the control of the charging problem within EVCS has been designed and developed in a
few works.

In the development of charging control, a few authors presented different charging
control methods for solving the problem of the EVCS operation. In [22,23], Khalid et al.
presented the topologies and charging control methods of advanced converters to reduce
the oscillation in input supply, along with improving the energy flow between ESS and
grid. The combined AC-DC model system, supported by a battery-swapping station, was
proposed by Khalid et al. [24] to improve the issue of the power conversion and solve the
limited distribution lines problem related to their thermal limit, due to the increasing power
demand from EVs. Stojkovic analyzed the optimal charging control of EVs within EVCS
powered by PV with 10 chargers [25]. This paper showed that such control could reduce the
operational cost of EVCS and power losses in distribution feeders while meeting customer
demands. In [26], Chen et al. designed the multiple-charger multiple-port charging (MCMP)
system to provide the scheduling of a constrained number of chargers to accommodate
a greater number of EVs. Savio et al. developed the converter control of multiport EV
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charging to reduce the charging time because this controller provided constant current and
voltage by closed-loop charging [27]. A few works which were mentioned above proposed
the development of charging control; however, one of the important problems of EVFCS or
EVCS development is to find the optimal design of structures within EVFCS or EVCS.

In the optimal designs of EVFCS or EVCS, many methods have been proposed and
applied to optimize the designs of EVFCS or EVCS and operation. Some authors attempted
to solve the optimal placement problem of EVFCS or EVCS by using different metaheuristic
algorithms. In [3], Ahmad et al. proposed the optimal placing of the solar-powered
charging station in the IEEE 33-bus system. Chicken swarm optimization (CSO), teaching-
learning-based optimization (TLBO) and Java algorithms were applied to optimally place
the charging stations with multi-objective problems by considering improved voltage
profile, minimum power loss, and reduced cost as the objective functions. The multi-
objective function maximizing voltage stability index, minimizing active and reactive
power losses and average voltage deviation index were considered by Tounsi Fokui et al. [4]
to optimize the placement of EVCS in the IEEE 69-bus system. A hybrid bacterial foraging
optimization algorithm and PSO (BFOA-PSO) technique were proposed to solve this
problem. Yenchamchalit et al. applied the cuckoo search algorithm (CSA), genetic algorithm
(GA), and simulated annealing algorithm (SAA) to optimize the sizing of the installed PV
within EVFCS and the position of EVFCS in the IEEE 33-bus system [5].

In addition, different metaheuristic algorithms have been presented in many works
to optimize the structures such as the number and power of chargers, sizing of renewable
energy sources and BESS, and operations of EVFCS or EVCS. The stand-alone electric
tuk-tuk charging station in the Democratic Republic of Congo was designed by Vermaak
and Kusakana [6] where the charging station was powered by energy from wind, PV, and
BESS. HOMER software was applied to select the best configuration of those structures
to maximize the total net present cost. Hafez and Bhattacharya introduced the optimal
design of EVCS by considering the minimization of the lifecycle cost as the objective by
using HOMER software [7]. The optimal energy storage system (ESS) size in EVFCS was
proposed by Hussain et al. [8] to minimize the ESS cost and ensure the resilience of EVs
during power outages. In [9], Dai et al. used the multi-agent particle swarm optimization
algorithm (MAPSO) to find the optimal sizing of PV and BESS and determine the charging
and discharging pattern of BESS and electric exchange with the grid. The results showed
that the optimal sizing of the structures and operation could minimize the electricity cost.
The optimal configuration of PV and battery, and the optimal design of operation for EVCS
by using improved hybrid optimization genetic algorithm (iHOGA) software version 2.4,
were examined by Badea et al. [10]. This software was applied to design PV and battery
sizing to ensure that EVCS could accommodate EVs throughout all 24 h of the day in order
to maximize the net present cost. In [11], Bhatti et al. computed the minimum numbers
of PV modules and energy storage unit batteries for PV grid-connected charging systems
by using PSO to decrease the charging price and impact on the grid. However, most of
the papers about the design of EVFCS or EVCS have only focused on the problem of the
placement or configuration structures within EVFCS or EVCS.

In [2], Domínguez-Navarro et al. presented the optimal design of EVFCS incorporating
renewable energy sources and storage systems to maximize the profit measured by its net
present value (NPV). GA was applied to find the structure of the EVFCS, consisting of the
number and power of chargers, the number and type of wind generators, the installed area
of PV panels, the storage system capacity, and the maximum power of the grid connected
to the station. This algorithm was also used to optimize the operation of EVFCS and find
the best solution that maximizes the profit or the NPV. The simulation results provided by
GA were compared to those of PSO. However, the GA algorithm used in this work is very
traditional, although many new and efficient optimization algorithms have been proposed.
In addition, this work used an Erlang B queueing model to model the EV demand by
simulating the arrival time of each EV, and also for the EV queueing system. Applying this
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method to model the EV demand is appropriate; however, using this method for the EV
queueing system is too complex and unnecessary.

Consequently, this paper proposes the optimal design of the structure of EVFCS for
maximizing NPV. The optimal structural design of the EVFCS aims to find the number
and power of chargers, the installed area of the PV panel, the sizing of BESS, and the grid
power connected to the EVFCS. Moreover, the EV queueing system in this work is simpler
than the methods in [2]. By using this concept, when EV customers arrive at the station and
the chargers are unavailable, customers then immediately leave the station. To solve the
optimization problem, three metaheuristic algorithms comprising PSO [28], Salp swarm
algorithm (SSA) [29], and arithmetic optimization algorithm (AOA) [30] are employed.
PSO is the traditional efficient algorithm which has been widely used to successfully
solve many optimization problems [31–33]. SSA is a new algorithm which has efficiently
solved several optimization problems in different fields [34–36]. Finally, AOA is a recently-
proposed optimization algorithm which has been adopted to solve some optimization
problems [37,38]. Thus, these algorithms are applied to find the optimal station’s structure
and used to manage the energy flow within the EVFCS, and their performance compared.
The EVFCS can then achieve the maximum profit determined by its NPV, and solutions
from these three algorithms are compared.

The main contributions of this work are as follows:

1. The optimal design of the EVFCS is investigated in order to maximize the NPV and
optimize the energy flows in the EVFCS while the simple queueing method is used.

2. The optimal structure of the EVFCS consisting of the number and power of chargers,
the installed area of PV panels, the BESS capacity, and the maximum grid power
connected to the EVFCS is determined.

3. Three optimization algorithms including PSO, SSA, and AOA are applied to solve the
design problem, and the solutions of these algorithms are compared.

The rest of the paper is divided as follows. Section 2 introduces the problem for-
mulation of the optimal design of the EVFCS. Input data models used in this work are
provided in Section 3. In Section 4, the formulations of the metaheuristic algorithms are
given. Section 5 shows the simulation results together with comparison results. Finally, the
conclusion of this work is presented.

2. Problem Formulation

The EVFCS considered in this work consist of many chargers to charge the batteries
of the EVs. PV and BESS are also taken into account to increase profitability and reduce
the impact on the grid. The design problem of the EVFCS is to find the optimal variables,
the number and power of the chargers, the installed area of PV panels, the BESS capacity
installed, and the maximum power of the grid connected to the EVFCS. This section defines
the objective function and constraints of this work.

2.1. Objective Function

The objective function is to maximize NPV [2,6,7,9,10] formulated as the provided
Equation (1):

NPV =
n

∑
t=1

NCFt

(1 + i)t − I (1)

where NCFt is the net cash flow ($) at year t, I is the investment cost ($), i is the interest rate
(%), and n is the time of the cash flow considered (year). The NCFt at each year t can be
calculated as following Equation (2):

NCFt =
8760

∑
h=1

(INFLOWh −OUTFLOWh)− Crt − Cmt − Cgridt (2)
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where INFLOWh is the cash inflows ($) at an hour h, OUTFLOWh is the cash outflows ($)
at an hour h, Crt is the cost of replacing BESS ($) at year t, Cmt is the cost of maintaining
BESS ($) at year t which is equal to $1181.10/year [2] in this work, and Cgridt denotes the
cost of contracting power to the grid ($) at year t. The INFLOWh and OUTFLOWh can be
computed as provided Equations (3) and (4):

INFLOWh = Eevh × Cs + Es2gh × Csale (3)

OUTFLOWh = Eg2sh × Cbuy (4)

where Eevh, Es2gh and Eg2sh are the energy charged to EVs (kWh), the energy sold to the
grid (kWh) and the energy purchased from the grid (kWh) at an hour h, respectively, and
Cs, Csale, and Cbuy are the sale price of energy to EV ($/kWh), the sale price of energy to
the grid ($/kWh), and the buy price of energy from the grid ($/kWh), respectively. The Crt
and Cgridt are formulated as Equations (5) and (6) below:

Crt =

8760
∑

h=1
EDstoh

ETVsto
× Csto× Estoinst (5)

Cgridt = Cgcm × Pgcmax (6)

where EDstoh is the energy discharged from BESS (kWh) at an hour h, ETVsto is the life
cycle by battery capacity (kWh) or its volume of total energy, Estoinst is the BESS capacity
installed (kWh), Csto is the cost of BESS ($/kWh), Cmt is the cost of BESS maintaining at
year t, Cgcm is the cost of contracting power to the grid ($) at the mount m, and Pgcmax is
the maximum grid power connected to the EVFCS (kW). The investment cost from (1) is
calculated as Equation (7):

I = Cch×Qch× Pchinst + Cpv× Apvinst + Csto× Estoinst (7)

where Pchinst is the power of the chargers installed (kW), Apvinst is the area installed of PV
panels (m2), Cch and Cpv are the cost of the charger ($) and the cost of PV panels ($/m2),
and Qch is the number of chargers installed.

2.2. Constraints

Various constraints must be considered while solving the optimization problem. The
constraints of the considered problem comprise the energy balance within the EVFCS, limit
of BESS, limits of the installed PV, and limit of the power exchange between the grid and
EVFCS [2].

2.2.1. Equality Constraints

1. Energy balance:

The energy balance at each hour in the EVFCS must be equal to zero. In each hour h,
the summation of the energy generated from PV, the energy purchased from the grid, and
the energy discharged from BESS must be equal to the summation of the energy charged to
EVs, the energy sold to the grid and the energy charged to BESS. So, the energy balance is
formulated as given Equation (8):

Ephh + Eg2sh + EDstoh = Eevh + Es2gh + ECstoh (8)

where Esoch and Esoch−1 are the SOC of BESS at an hour h and at an hour h− 1, respectively.

2. State of charge (SOC) of BESS:
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SOC of BESS at an hour h is equal to SOC of BESS at the previous hour h − 1, plus the
charged energy at that hour h, minus the discharged energy at that hour h. SOC of BESS is
shown in Equation (9) below:

Esoch = Esoch−1 + ECstoh − EDstoh (9)

where Esoch and Esoch−1 are the SOC of BESS at an hour h and at an hour h− 1, respectively.

2.2.2. Inequality Constraints

1. Limits of BESS:

The discharged energy by BESS at each hour h must be less than the SOC of BESS at
the previous hour h − 1. The energy charged to BESS must be less than the installed BESS
capacity minus SOC of BESS at the previous hour, as shown in Equations (10) and (11):

EDstoh ≤ Esoch−1 (10)

ECstoh ≤ Estoinst − Esoch−1 (11)

2. Limits of the stored energy in BESS:

The SOC of BESS at an hour h must be equal to or less than the installed BESS capacity
and equal to or higher than its minimum SOC, as shown in Equations (12) and (13):

Esoch ≤ Estoinst (12)

Esoch ≥ SOCmin × Estoinst (13)

where SOCmin is the minimum SOC of BESS capacity.

3. Limits of BESS powers:

The power discharged and charged by BESS at each hour h must be less than the
power of the installed BESS, as defined by Equations (14) and (15):

PDstoh ≤ Pstoinst (14)

PCstoh ≤ Pstoinst (15)

where PDstoh and PCstoh are the power discharged and charged by BESS at an hour h,
respectively.

4. Limit of the power generated by PV:

The power generated by PV at an hour h must be less than the power of the installed
PV, defined in Equation (16):

Pphh ≤ Pphinst (16)

where Pphh is the power generated by PV at an hour h, and Pphinst is the power of the
installed PV.

5. Limits of the connected grid power to EVFCS:

The power purchased and sold at an hour h between the grid and EVFCS must be
equal to or less than the maximum power of the connected grid to the station, as shown in
Equations (17) and (18):

Ps2gh ≤ Pgcmax (17)

Pg2sh ≤ Pgcmax (18)

where Ps2gh and Pg2sh are the power purchased to the grid and sold from the grid at an
hour h, respectively.
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3. Input Data Models

In this section, the input data used to simulate the optimization problem consisting of
EV demands, energy generated from PV, and BESS operation are explained as shown below.

3.1. EV demands

The EV demands are initially modeled as the input data. This model is determined by
the EV types and their battery capacities, the SOC level of the EV’s battery, and the time
that EVs arrive at the EVFCS.

In the first step, the types of EVs are classified according to the battery capacity of
the EVs. This data was based on the registration of electric vehicle data obtained from
the Traffic General Direction of Spain [2]. This data is used to provide discrete probability
distributions of battery capacity for each type of EV that can be charged in the EVFCS,
including motorcycles, cars, and vans. The discrete probability distributions of the battery
capacity of EVs are shown in Table 1.

Table 1. Probability of EV’s battery capacity.

Type Battery Capacity
(kWh) Probability (%) Accumulated

Probability (%)

Motorcycle 3.6 0.115 0.115
Small car 16 0.370 0.485
Large car 25 0.380 0.865

Van 63 0.135 1.000

In the second step, the SOC of each EV’s battery is simulated using the Lognormal
Distribution [2,39] as shown in Equation (19):

SOC(E; µ, σ) =
1

Eσ
√

2π
× e−(InE−µ)2/2σ2

(19)

where µ and σ are the average and typical deviation values of the logarithm equation,
respectively, and E is the initial SOC level in the EV’s battery which is between 0 and 1. In
this work, µ and σ are 3 and 0.6, respectively [2].

In the model process, the battery capacity of EVs and EV type that arrives at the EVFCS
are obtained by comparing the accumulated probability in Table 1 with a random number
between 0 and 1. Another random number is also generated to give the random E value for
each EV that arrives at the EVFCS to obtain the SOC level of the EV’s battery.

Then, when the battery capacity and the SOC of each EV are obtained, these two
values will be used to calculate the charging time [2] as in presented Equation (20):

Charging time =
EV′s battery capacity× (1− SOC)

Pchinst
(20)

Finally, the time that EVs arrive at the EVFCS can be simulated by using Erlang B
queueing method and Sequential Monte Carlo (SMC) [2]. In this work, the simulation
results obtained from [2] are adopted to determine the electricity demands or loads of EVs
by the time and number of EVs arriving at the EVFCS as presented in Figure 1.

3.2. PV Energy and BESS

PV is considered in this work to reduce the usage energy from the grid, and it can also
improve the profit of the EVFCS by selling the excess electricity to the grid. The hourly
power generated by the PV panels can be calculated as given Equation (21) [2,6,40]:

Ppvh = Gh × Apvinst × η (21)
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where Gh is the hourly global solar irradiance at the PV panel (W/m2) at an hour h, and η
is the system efficiency value, which is 17% [2] in this work.

Gh is obtained from the Photovoltaic Geographical Information System (PVGIS) pro-
gram [41], which calculates the total solar irradiance of the inclined panel of each area [2].

Lithium-ion (Li-ion) batteries [2,8,11,42,43] have been considered as the BESS [2,8,10,11,44,45]
in this work, and the BESS operates under two conditions. In the first condition, the energy from
PV is considered the first priority to feed the EVFCS. If the energy from PV is greater than the
energy needed from the EVFCS, the excess energy will be stored in the BESS. When the BESS
reaches its maximum capacity, the excess energy is then sold to the grid. In the other condition,
once PV is unavailable or the energy generated from PV is less than the energy demand of the
EVFCS, the BESS firstly feeds the energy to the EVFCS until the BESS’s minimum capacity is
reached. Buying energy from the grid is the last option. Aside from that, the calculated energy
flows and management must be limited in the constraints as in (8)–(18) [2,9–11].
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4. Metaheuristic Algorithms

To solve the optimization problem, three metaheuristic algorithms consisting of PSO,
SSA, and AOA are applied. The formulations of each algorithm are described in the
following subsections.

4.1. Particle Swarm Optimization (PSO)

PSO is a computational method to find the best solution of the optimization problem
proposed by Kennedy and Eberhart in 1995 [28]. A fundamental concept derived from
mimicking the foraging behavior of a flock of birds, each member of the flock will search for
food by following the member which is the closest to the best food source at that moment.
The PSO consists of particles that will constantly find the best solution, and each particle
represents a possible solution. The velocity and position of each particle are modified in
each iteration by using following Equations (22) and (23):

Xi(t + 1) = Xi(t) + Vi(t + 1) (22)

Vi(t+ 1) = w(t)×Vi(t) + c1× rand(Pbesti(t)−Xi(t)) + c2× rand(Gbest(t)−Xi(t)) (23)
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where Xi(t) and Vi(t) are the position and velocity of a particle i at iteration t, respectively,
Xi(t + 1) and Vi(t + 1) are the position and velocity of a particle i at iteration t + 1, Pbesti(t)
and Gbesti(t) are the best position of the particle i (personal best) and the best position of
the whole particle (global best) at iteration t, respectively, rand is a random value between
0 and 1, c1 and c2 are positive constant values which are both set to 2 in this work, and w(t)
denotes the inertia weight at iteration t. The w(t) can be calculated as Equation (24) below:

w(t) = wmax −
wmax − wmin

Itermax
× Iter (24)

where wmax and wmin are the maximum and minimum inertia weights which are set to
0.9 and 0.4 in this work, respectively, Itermax is the maximum iteration, and Iter is the current
iteration [46].

4.2. Salp Swarm Algorithm (SSA)

SSA is an efficient population-based algorithm proposed by Mirjalili in 2017 [29]. SSA
parodies the Salp swarm behavior during ocean foraging. Salps typically form a swarm
called a Salp chain in dense waters where a Salp at the front of the chain is the leader and
the rest of the Salps are followers. Each Salp represents the position in an x-dimensional
search space where x is a vector of variables of an optimization problem. The leader Salp
position can be updated by Equation (25) below:

x1
j =

{
Fj + c1((UBj − LBj)× c2 + LBj), c3 ≤ 0
Fj − c1((UBj − LBj)× c2 + LBj), c3 > 0

(25)

where xj
1 and Fj denote the leader Salp position and the food source position in dimension

j, respectively, UBj and LBj are the upper and lower bounds of each variable in dimension j,
respectively, and c1, c2, and c3 are random variables generated between 0 and 1 to preserve
the search space, c1 is the major parameter as it helps to balance the capabilities of the
exploration and exploitation phases. c1 can be calculated by presented Equation (26):

c1 = 2× e−(
4×Iter

Itermax )
2

(26)

When the leader Salp position is obtained, the next step is to update the positions of
followers, which are calculated as given Equation (27):

xi
j =

1
2
(xi

j + xi−1
j ) (27)

where xj
i denotes the position of the follower i in dimension j, and i is greater than 1.

4.3. Arithmetic Optimization Algorithm (AOA)

AOA is the population-based algorithm proposed by Abualigah in 2021 [30]. In the
process of AOA, the simple arithmetic operators (Subtraction (S), Addition (A), Division
(D), and Multiplication (M)) are used to optimize and determine the best solutions.

The first step of the AOA is to randomly create a candidate solution (X) in each
iteration. The best candidate solution is supposed to be the optimum solution so far. X can
be formulated as shown in Equation (28):

X =



x1,1 · · · x1,j x1,n−1 x1,n
x2,1 · · · x2,j · · · x2,n

· · · . . .
...

. . .
...

xN−1,1 · · · xN−1,j
... xN−1,n

xN,1 · · · xN,j xN,n−1 xN,n

 (28)
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Then, the algorithm calculates the math optimizer accelerated (MOA) function which
is used to select the search phase. MOA function value at each iteration is a coefficient
calculated by following Equation (29):

MOA(Iter) = Min + Iter× (
Max−Min

Itermax
) (29)

where Min and Max are the minimum and maximum values of the accelerated func-
tion, respectively.

The simulation of the behaviors of Arithmetic operators has been operated by the
simple rule. For the exploration phase, the position is updated by provided Equation (30):

xi,j(Iter + 1) =
{

xbest,j ÷ (MOP + ε)× ((UBj − LBj)× µ + LBj), r2 < 0.5
xbest,j ×MOP× ((UBj − LBj)× µ + LBj), otherwise

(30)

where xi,j(Iter + 1) is the position j of the solution i at iteration Iter + 1, xi,j(Iter) is the position
j of solution i at iteration Iter, xbest,j denotes the best-obtained solution of position j, and ε
indicates a small integer number. UBj and LBj are the upper and lower bounds of position j,
respectively, and µ indicates the control parameter to adapt the search process, which is 0.5 in
this work. MOP is the math optimized probability calculated by following Equation (31):

MOP(Iter) = 1− Iter1/α

Iter1/α
max

(31)

where α indicates a sensitive parameter and defines the exploitation accuracy over the
iterations which is equal to 5 in this work.

In the exploitation phase, the AOA is operated by executing Subtraction (S) and
Addition (A) which is conditioned by MOA value for the condition of r1 is not greater than
MOA value. The exploitation operators (S and A) of AOA explore the search space in depth
on various intensive regions and both operators’ search techniques are used to find a better
solution, which is modeled as given Equation (32):

xi,j(Iter + 1) =
{

xbest,j −MOP× ((UBj − LBj)× µ + LBj), r3 < 0.5
xbest,j + MOP× ((UBj − LBj)× µ + LBj), otherwise

(32)

4.4. Imprementation

The implementation of the proposed method to solve the optimization problem is
shown in the flowchart in Figure 2:



Sustainability 2023, 15, 771 11 of 22Sustainability 2022, 14, x FOR PEER REVIEW 11 of 22 
 

 

Start

Initialize the structure values, number and power 
of chargers, installed area of PV, BESS capacity, 

power of grid connected to EVFCS

Calculate the EV data consisting of type 
of EV, mentioned in Table 1, and SOC 

of EV s battery by (19)

Calculate the energy from PV by (21)

Simulate the energy flows and 
management of EVFCS that meet the 

device s constraints as in (8)-(18)

Evaluate the fitness function (NPV) by (1)

Stop

Apply a metaheuristic algorithm 
(PSO/SSA/AOA) to solve the 

optimization problem

Apply queueing method

Initialize parameters of metaheuristic 
algorithm (PSO/SSA/AOA)

 

Figure 2. Flowchart of the proposed method for solving the optimal design of the EVFCS problem. 

5. Simulation Results 

This work aims to find the optimal structure of the EVFCS in order to maximize the 

NPV. The simulation was operated in MATLAB, and the computer specification was an 

Intel Core i7, RAM 16 GB. The input data and parameters for the system model are ex-

plained in this section. The simulation results consisting of the queuing of EV and EV 

demands are presented. PSO, SSA, and AOA were applied to solve the optimization prob-

lem and to find the optimal energy flows and management within the EVFCS, and the 

results obtained from these algorithms were compared. In addition, since this work con-

siders the optimal design of the EVFCS, the EVFCS is assumed to be optimally placed in 

one station. The energy is also assumed to flow within a station or the energy does not 

flow into any bus, so power loss has not been considered in this work.  

5.1. Input System Data 

The data used to simulate the metaheuristic algorithms for solving the problem can 

be found in this subsection. The limits of the system variables which are also used to ini-

tialize the positions of the metaheuristic algorithms are presented in Table 2 [2], and the 

charging power levels of chargers are shown in Table 3 [47–49] to ensure that the charger 

power limits used in this work in Table 2 are within the range of the fast charger. The 

economic parameters are presented in Table 4. The parameters in Table 4 are the values 

used in the Spanish system and the electricity market of Spain [2], and these are adopted 

to evaluate the NPV in this work. Additionally, the purchase and sale prices of energy to 

the grid and the energy sale price to EVs are fixed throughout the year [2,11]. The 

Figure 2. Flowchart of the proposed method for solving the optimal design of the EVFCS problem.

5. Simulation Results

This work aims to find the optimal structure of the EVFCS in order to maximize the
NPV. The simulation was operated in MATLAB, and the computer specification was an Intel
Core i7, RAM 16 GB. The input data and parameters for the system model are explained in
this section. The simulation results consisting of the queuing of EV and EV demands are
presented. PSO, SSA, and AOA were applied to solve the optimization problem and to find
the optimal energy flows and management within the EVFCS, and the results obtained
from these algorithms were compared. In addition, since this work considers the optimal
design of the EVFCS, the EVFCS is assumed to be optimally placed in one station. The
energy is also assumed to flow within a station or the energy does not flow into any bus, so
power loss has not been considered in this work.

5.1. Input System Data

The data used to simulate the metaheuristic algorithms for solving the problem can be
found in this subsection. The limits of the system variables which are also used to initialize
the positions of the metaheuristic algorithms are presented in Table 2 [2], and the charging
power levels of chargers are shown in Table 3 [47–49] to ensure that the charger power
limits used in this work in Table 2 are within the range of the fast charger. The economic
parameters are presented in Table 4. The parameters in Table 4 are the values used in the
Spanish system and the electricity market of Spain [2], and these are adopted to evaluate
the NPV in this work. Additionally, the purchase and sale prices of energy to the grid and
the energy sale price to EVs are fixed throughout the year [2,11]. The minimum SOC level
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of BESS is 10% or 0.1 p.u, and its life cycle is 2000 cycles, and the cost of maintaining BESS
is set to be constant throughout the year [2]. Finally, the time of the cash flow and interest
rate are 20 years and 2.69%, respectively [2,6].

Table 2. Limits of optimization variables.

Variable Type Lower Bound Upper Bound

Number of chargers: Qch Integer 1 10
Charger power (kW): Pchinst Integer 44 220

Installed photovoltaic panels area
(m2): Apvinst

Real 0 1875

Battery capacity (kWh): Estoinst Real 0 500
Maximum grid power connected

to the EVFCS (kW): Pgcmax
Real 0 600

Table 3. Charging power levels.

Power Level Type Maximum Power (kW) Standard

Level 1 (Slow) [47,49] 1.4–3.7 SAE J1772 (Type 1)

Level 2 (Slow) [47] 3.7–43.5
IEC 62196 (Type 2),
SAE J1772 (Type 1),

SAE J3068

Level 3 (Fast) [48]

50 CHAdeMoO 1.0
120 GB/T
150 SAE Combo-1, CHAdemo 1.0
200 CCS Combo 2
350 SAE Combo-1, CHAdemo 1.2

Table 4. Economic costs for evaluating NPV.

Parameter Price

PV panels 118.110 $/m2

EV charger 590.550 $/kW
BESS (Li-ion) 177.165 $/kWh

BESS maintenance 1181.100 $/year
Sell energy to EV 0.207 $/kWh

Sell energy to Grid 0.065 $/kWh
Buy energy from grid 0.159 $/kWh

Contracted power to grid 0.142 $/kW/month

5.2. Results

In this subsection, the optimal structural design of the EVFCS is simulated, and the
simulation results consisting of the EV demands, the queuing of EVs, and the energy flows
and management are presented. Then, the optimal station’s structure configuration and
economic aspects are obtained by using three optimization algorithms, which are PSO, SSA,
and AOA.

5.2.1. EV Demands

The battery capacity and SOC of the EV’s battery are simulated for each EV by using
(19) and the data from Table 1. Then, the simulation results are used to calculate the energy
needed to fill the battery of EVs. The results of the simulation of the EV demands are shown
in Figure 3.
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In this subsection, the battery capacity and SOC level of each EV are obtained, and
these results are calculated to find the energy to charge the battery of each EV. Then, the
EVs are allocated to the chargers (queuing of EVs) that can be found in the next subsection.



Sustainability 2023, 15, 771 14 of 22

5.2.2. Queuing of EVs

The queuing method of EVs is explained in this subsection. Firstly, EVs that arrive at
the EVFCS during a day are divided into 3 periods in an hour (20 min per period) because
the charging time of each EV is defined as not more than 20 min in this work. Then, the
EVs are allocated to the chargers, and if EV customers arrive at the station and the chargers
are unavailable, customers then immediately leave the station. The number of EVs arriving
at the EVFCS in each period is presented in Figure 4. For example, if the EVFCS comprises
4 chargers, the queuing of the EVs to these chargers can be presented in Figure 5.
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Then, the hourly global solar irradiance calculated by (21) is obtained as in Figure 6 to
find the hourly power generated by the PV panels.
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The number of EVs allocated to the chargers in each period provided by the queueing
method in this subsection and the energy fed into the battery of each EV obtained from
Section 5.2.1 are used to calculate the energy charged to EVs in each hour (Eevh). In
addition, the hourly global solar irradiance in Figure 6 is adopted to obtain the hourly
power generated by the PV panels. Then, the energy charged to EVs in each hour and the
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hourly power generated by the PV panels are applied to calculate the energy flows in the
EVFCS as presented in the next subsection.

5.2.3. Performance Comparison of the Optimization Algorithms

The optimal solutions of the EVFCS design obtained by the considered metaheuristic
algorithms are presented in terms of the station’s structure configuration and economic
aspects. The optimal structures of the EVFCS provided by each algorithm are shown in
Table 5. In this table, the installed number of chargers (Qch), the installed power of chargers
(Pchinst), the installed area of PV panels (Apvinst), the installed BESS capacity (Estoinst), the
maximum grid power connected to the EVFCS (Pgcmax), and the computational time are
presented. The energy flows and management of the EVFCS over the course of a year are
simulated by using these optimization algorithms and presented as the daily energy flows
and management of the EVFCS in Figure 7.

Table 5. Optimal structure of the EVFCS design generated by each algorithm.

Algorithm Qch Pchinst
(kW)

Apvinst
(m2)

Estoinst
(kWh)

Pgcmax
(kW)

Average
Charging

Time
(min)

Computational
Time
(min)

PSO 4 71.04 1875.00 45.81 264.37 19.67 30.81
SSA 4 75.05 1833.56 136.48 289.79 18.95 31.64

AOA 4 80.73 1875.00 60.40 317.17 16.29 30.42
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From Table 5, the number of chargers obtained from all algorithms is 4. It can be seen from
Table 5 and Figure 7 that AOA could achieve the highest power of chargers, followed by SSA
and PSO which are 80.73 kW, 75.05 kW, and 71.04 kW, respectively, resulting in the average
charging time of AOA being the lowest at 16.29 min. SSA provided the highest installed BESS
capacity at 136.48 kWh, followed by AOA and PSO at 60.40 kWh and 45.81 kWh, respectively.
The highest maximum grid power connected to the EVFCS obtained by AOA is 317.17 kW,
while those of PSO and SSA are slightly different at 264.37 kW and 289.79 kW, respectively.
The installed area of PV panels provided by PSO, SSA, and AOA are also slightly different at
1875.00 m2, 1833.56 m2, and 1875.00 m2, respectively.

The simulation results in the economic aspects during the cash flow time (20 years)
provided by the considered metaheuristic algorithms are shown in Table 6. The NPV,
investment cost, BESS replacement cost, maintenance cost, cost of buying energy from the
grid, and cost of selling energy to the grid and EV customers are presented in this Table.

Table 6. Results in the economic aspects provided by each algorithm.

Algorithm NPV
($)

Investment
Cost
($)

Battery
Replacement

Cost
($)

Maintenance
Cost

($/year)

Cost of
Purchasing

Energy from
the Grid
($/year)

Income from
Selling

Energy to
the Grid
($/year)

Income from
Selling

Energy to EV
Customers

($/year)

PSO 1,166,314.71 397,396.49 21,447.66 1181.10 50,530.37 18,661.20 137,020.93
SSA 1,132,487.00 418,042.90 59,157.77 1181.10 49,149.20 16,401.24 139,545.10

AOA 1,018,920.31 422,848.30 29,330.82 1181.10 53,670.53 22,461.30 129,003.00

From Table 6 and Figure 7, it is observed that PSO provided the best NPV at $1,166,314.71,
followed by SSA and AOA at $1,132,487.00 and $1,018,920.31 respectively. The investment
cost from the PSO, SSA, and AOA are competitive at $397,396.49, $418,042.90, and $422,848.30,
respectively. SSA was found to have the highest BESS replacement cost at $59,157.77/year
because of the largest installed BESS size resulting in a higher cost than those of PSO and
AOA, which are $21,447.66/year and $29,330.82/year, respectively. In addition, since the
grid power connected to the EVFCS obtained by AOA is much greater than those of PSO
and SSA, this results in the highest cost of buying energy from the grid at $53,670.53/year,
while the costs obtained by PSO and SSA are similar at $50,530.37/year and $49,149.20/year,
respectively. However, AOA could generate the highest income from selling energy to the
grid at $22,461.30/year, followed by PSO which could generate $18,661.20/year and SSA
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at $16,401.24/year. Finally, the incomes from selling energy to EVs given by PSO and SSA
are slightly different at $137,020.93/year and $139,545.10/year respectively, while AOA may
provide only $129,003.00/year.

To further investigate the performance of the considered metaheuristic algorithms, the
convergence curves of PSO, SSA, and AOA for solving the NPV objective are plotted in
Figure 8, and the comparative analysis of the convergence characteristic of the proposed
metaheuristic algorithm are presented in Table 7.

It can be noted from Figure 8 that PSO quickly converged to the feasible solution,
followed by SSA and AOA. PSO also achieved the best NPV while SSA and AOA provided
the second-best and third-best NPVs respectively. Further, Table 7 shows the verification of
the performance of the considered metaheuristic algorithms. The maximum, minimum,
and average values of NPV for each algorithm are provided in this table. By considering
maximum, minimum, and average NPV values, PSO gives the best of all NPV values,
followed by SSA and AOA, respectively.

Overall, in this work, the EV demands including the EV battery capacities, their SOC
levels, and the queuing of EVs were obtained. Then, PSO, SSA, and AOA are used to
find the optimal management of the energy flows in the EVFCS, along with the maximum
NPV. It was found that PSO is the best algorithm to provide the optimal structure of
the EVFCS configuration by considering the maximum NPV, while SSA is second-best,
with competitive performance to PSO. AOA is the worst algorithm to find a solution that
maximizes NPV. Consequently, PSO should be selected to design the optimal structure of
the EVFCS to find a solution with the maximum NPV.
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Table 7. Comparative analysis of the convergence characteristic of the proposed metaheuristic
algorithm.

Algorithm NPV ($)

Max Min Average

PSO 1,166,314.71 1,093,304.50 1,129,809.60
SSA 1,132,487.00 980,483.30 1,056,485.15

AOA 1,018,920.31 870,332.16 944,626.23

6. Conclusions

In this work, the optimal design of the structure of EVFCS is presented. The EV
demands consisting of the battery capacity and SOC of the EV’s battery are simulated
based on the probabilistic distribution, and the energy from PV is calculated by using
realistic values. Moreover, this work has executed the simple EV queuing method where
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EVs are allocated to the chargers, and if the EVs arrive at the station and the chargers
are unavailable, EVs then leave the station. Three algorithms comprising PSO, SSA, and
AOA are applied to find the optimal structure of the EVFCS and optimal management of
the energy flows between PV, BESS, EVFCS, and the grid. Thus, the EVFCS can achieve
the maximum profit determined by its NPV. In the simulation results, the energy charged
to EVs in each hour is obtained by calculating the EV demands and using the queuing
method. Three algorithms could determine the optimal energy flows within the EVFCS
with the different obtained optimal structures and NPVs. The NPV results show that PSO
is the best algorithm to give the optimal structure of the EVFCS, providing the highest NPV.
Although SSA provides a rather different optimal structure of the EVFCS to PSO, SSA gives
a very competitive NPV to that of PSO, while AOA proved the worst algorithm to achieve
the maximum NPV. In conclusion, PSO and SSA are the best and second-best algorithms
respectively for giving the optimal design of the EVFCS structure with the maximum NPV,
while AOA is considered the worst algorithm.

In future work, the optimal design of the EVFCS will be considered in the IEEE distri-
bution systems such as the IEEE 33-bus system, and power losses will be also considered.
Several factors such as CO2 emissions will be considered to enhance the design of the
EVFCS in term of environmental improvement. In addition, more forms of renewable
energy, such as wind turbines, can be considered in the future.
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Abbreviations

ATP arrival time-based priority algorithm
AOA arithmetic optimization algorithm
BESS battery energy storage systems
BN Bayesian network
BFOA-PSO hybrid bacterial foraging optimization algorithm and particle swarm optimization
CSO chicken swarm optimization
CSA cuckoo search algorithm
EVs electric vehicles
EVCS electric vehicle charging stations
EVFCS electric vehicle fast-charging station
ESS energy storage system
GA-BPSO genetic algorithm with binary particle swarm optimization
GA genetic algorithm
IHOGA improved hybrid optimization genetic algorithm
MINLP mixed-integer non-linear programming
MCMP multiple-charger multiple-port charging
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MAPSO multi-agent particle swarm optimization algorithm
NPV net present value
PSO particle swarm optimization
PV photovoltaic
PVGIS photovoltaic geographical information system
SOC state of charge
SPB state of charge-based priority algorithm
SFLA shuffled frog leaping algorithm
SAA simulated annealing algorithm
SSA Salp swarm algorithm
SMC Sequential Monte Carlo
TLBO teaching-learning-based optimization
WT wind turbine
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