Sustainable Utilization Technology for Improving the Freshness of Oysters—Development of Alkaline Electrolysis Seawater Depuration System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Materials
2.2. Oyster Depuration Process
2.3. Refrigeration Storage of Depurated Oysters
2.4. pH Measurement
2.5. Chemical Compositions Analyses
2.6. Sensory Evaluation
2.7. Determination of Total Aerobic Plate Count (TAPC)
2.8. Volatile Basic Nitrogen (VBN) Measurement
2.9. Quantitative Determination of Impurity and Dirt Expelled from Oyster
2.10. Glycogen Content Assay
2.11. Statistical Analysis
3. Results and Discussion
3.1. Chemical Composition
3.2. The Effects of pH, and Temperature on Microbial Quality during Depuration
3.3. The Effects of pH and Temperature on the Amount of Discharge Spat out by Live Oysters during Depuration
3.4. The Quality of Depurated Oysters during Storage
3.4.1. Effects of Depuration on Quality of Oysters during Storage
3.4.2. Effects of Depuration on VBN during Storage
3.4.3. Effects of Depuration of Oysters on Sensory Evaluation Score during Storage
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, Q.K.; Li, W.; He, Y.; Ren, D.; Kow, F.; Song, L.; Yu, X. Novel antioxidative peptides from the protein hydrolysate of oysters (Crassostrea talienwhanensis). Food Chem. 2014, 145, 991–996. [Google Scholar] [CrossRef]
- Flore, D.; Aurélie, C.M.; Melha, K.; Beninger, P.G.; Vony, R.; Gilles, B.; Gaëtane, W.C. Exploitable lipids and fatty acids in the invasive oyster (Crassostrea gigas) on the French Atlantic Coast. Mar. Drugs 2016, 14, 104. [Google Scholar]
- Wang, X.; Yu, H.; Xing, R.; Liu, S.; Chen, X.; Li, P. Optimization of oyster (Crassostrea talienwhanensis) protein hydrolysates using response surface methodology. Molecules 2020, 25, 2844. [Google Scholar] [CrossRef] [PubMed]
- Croci, L.; Nadia, L.M.; Suffredini, E.; Pavoni, E. Assessment of human enteric viruses in Shellfish from the northern adriatic sea. Int. J. Food Microbiol. 2007, 114, 252–257. [Google Scholar] [CrossRef]
- Chang, J.L.; Lai, V.I.; Tan, S.H.; Yasin, Z. The Effects of Salinity on the Filtration Rates of Juvenile Tropical Oyster (Crassostrea iredalei). Trop. Life Sci. Res. 2016, 27 (Supp. 1), 45–51. [Google Scholar] [CrossRef] [PubMed]
- Bruno, C.; Barillé, L.; Yves, R. Selective Feeding of the Oyster (Crassostrea gigas) Fed on a Natural Microphytobenthos Assemblage. Estuaries Coasts 2001, 24, 126–134. [Google Scholar]
- Eve, G.; Lunt, J.; Freeman, C.J.; Paul, V.J. Feeding behavior of oysters (Crassostrea virginica) and clams (Mercenaria mercenaria) in shallow estuaries. Mar. Ecol. Prog. Ser. 2017, 567, 125. [Google Scholar] [CrossRef] [Green Version]
- Rodrick, G.E.; Schneider, K.R. Molluscan shellfish depuration. In Proceedings of the Fourth International Conference on Molluscan Shellfish Safety, Conselleri’a de Pescay Asuntos Maritimos de Xunta de Galicia and Intergovernamental Oceanographic Commision of UNESCO, Santiago de Compostela, Spain, 4–8 June 2003; pp. 210–218. [Google Scholar]
- Cruz-Romero, M.; Smiddy, M.; Hill, C.J.; Kelly, P. Effects of ultra-pressure treatment on physicochemical characteristic of fresh oysters (Crassostrea gigas). Innov. Food Sci. Emerg. Technol. 2004, 5, 161–169. [Google Scholar] [CrossRef]
- Cruz-Romero, M.; Kerry, J.; Kelly, A. Changes in the microbiological and physicochemical quality of high pressure treated oysters (Crassostrea gigas) during chilled storage. Food Control 2008, 19, 1139–1147. [Google Scholar] [CrossRef]
- Zang, X.M.; Wu, L.J.; Wu, J.Y.; Fang, X.B. Study on the ultra-high pressure processing technology of oyster. Food Nutr. China 2010, 1, 55–58. [Google Scholar]
- Ahmadi, H.; Anany, H.; Walkling-Ribeiro, M.; Griffiths, M.W. Biocontrol of Shigella flexneri in ground beef and vibrio cholera in seafood with bacteriophage-assisted high hydrostatic Pressure (HPP) treatment. Food Bioprocess Technol. 2015, 8, 1160–1167. [Google Scholar] [CrossRef]
- Liu, C.C.; Lu, J.Z.; Su, Y.C. Effects of flash freezing followed by frozen storage, on reducing vibrio parahaemolyticus in Paciffic raw oyster (Crassostrea gigas). J. Food Prot. 2009, 72, 174–177. [Google Scholar] [CrossRef]
- Riondet, C.; Cachon, R.; Wache, Y.; Alcaraz, G.; Divie, C. Extracellular oxidoreduction potential modifies carbon and electron flow in Escherichia coli. J. Bacteriol. 2000, 182, 620–626. [Google Scholar] [CrossRef] [PubMed]
- Tian, X.; Yu, Q.Q.; Wu, W.; Dai, R.T. Inactivation of Microorganisms in Foods by Ohmic Heating: A Review. J. Food Prot. 2018, 81, 1093–1107. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.; Hung, Y.C.; Brackett, R.E. Roles of oxidation-reduction potential in electrolyzed oxidizing and chemi cally modified water for the inactivation of food-related pathogens. J. Food Prot. 2000, 63, 19–24. [Google Scholar] [CrossRef] [PubMed]
- Manousaridis, G.; Nerantzaki, A.; Paleologos, E.K.; Tsiotsias, A.; Savvaidis, I.N.; Kontominas, M.G. Effect of ozone on microbial, chemical and sensory attributes of shucked mussels. Food Microbiol. 2005, 22, 1–9. [Google Scholar] [CrossRef]
- Hernández, K.L.; Sedas, V.P.; Dehaibe, S.R.; Valencia, V.S.; Mozo, I.R.; Herrera, D.M.; Primo, A.F.; Serrano, R.U. Improved microbial safety of direct ozone-depurated shell stock Eastern oysters (Crassostrea virginica) by superchilled storage. Front. Microbiol. 2018, 9, 2802. [Google Scholar] [CrossRef] [PubMed]
- Venkitanarayanan, K.S.; Ezeike, G.O.; Hung, Y.C.; Doyle, M.P. Efficacy of electrolyzed oxidizing water for inactivating Escherichia coli O157:H7, Salmonella enteritidis, and Listeria monocytogenes. Appl. Environ. Microbiol. 1999, 65, 4276–4279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hsu, S.Y.; Kao, H.Y. Effects of storage conditions on chemical and physical properties of electrolyzed oxidizing water. J. Food Eng. 2004, 65, 465–471. [Google Scholar] [CrossRef]
- Pal, M.; Deressa, A.; Ayele, Y.; Ferede, Y.; Kelbessa, W. Potential Application of Electrolyzed Water in Food Processing Establishments. Beverage Food World 2015, 42, 30–31. [Google Scholar]
- Shen, X.S.; Liu, C.J.; Cai, Y.Q.; Liu, C.C. Antibacterial effects of electrolyzed oxidizing seawater against food-borne pathogens in bacteria suspensions and on food processing surfaces. Microbiology 2008, 35, 1833–1839. [Google Scholar]
- Naka, A.; Yakubo, M.; Nakamura, K.; Kurahashi, M. Effectiveness of slightly acidic electrolyzed water on bacteria reduction: In vitro and spray evaluation. PeerJ 2020, 8, e8593. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sorio, J.C.; Peralta, J.P. Evaluation of a small-scale UV-treated recirculating depuration system for oysters (Crassostrea iredalei). Am. J. Food Sci. Technol. 2017, 5, 117–124. [Google Scholar] [CrossRef] [Green Version]
- Yaldagard, M.; MortazaviSeyed, S.A.; Tabatabaie, F. The principles of ultra- pressure technology and its application in food processing/preservation: A review of microbiological and quality aspects. Afr. J. Biotechnol. 2008, 7, 2739–2767. [Google Scholar]
- He, H.; Adams, R.M.; Farkas, D.F.; Morrissey, M.T. Use of High-pressure Processing for Oyster Shucking and Shelf-life Extension. J. Food Sci. 2002, 67, 640–645. [Google Scholar] [CrossRef]
- Chen, J.; Pei, Y.; Xu, S.Y. Application of Ultra-high Pressure Processing Technology. J. Econ. Public Financ. 2019, 5, 341–346. [Google Scholar] [CrossRef]
- Balasubramaniam, V.M. Process development of high pressure-based technologies for food: Research advances and future perspectives. Curr. Opin. Food Sci. 2021, 42, 270–277. [Google Scholar] [CrossRef]
- Shimamura, Y.; Shinke, M.; Hiraishi, M.; Tsuchiya, Y.; Masuda, S. The application of alkaline and acidic electrolyzed water in the sterilization of chicken breasts and beef liver. Food Sci. Nutr. 2015, 1, 431–440. [Google Scholar] [CrossRef]
- Al-Haq, M.I.; Sugiyama, J.; Isobe, S. Applications of Electrolyzed Water in Agriculture & Food Industries. Food Sci. Technol. Res. 2005, 11, 135–150. [Google Scholar]
- Forghani, F. Application of Electrolyzed Water in Agriculture. In Electrolyzed Water in Food; Fundamentals and Applications; Springer: Berlin/Heidelberg, Germany, 2019; Chapter 9; pp. 223–230. [Google Scholar]
- AOAC. Official Methods of Analysis, 17th ed.; Association of Official Analytical Chemists: Rockville, MA, USA, 2000. [Google Scholar]
- Lee, H.H.; Jung, W.Y.; Lee, W.K.; Min, J.G. Initial freshness of pacific oyster (Crassostea gigas) affects its quality and self-life during freezing storage. J. Food Nutr. Res. 2017, 5, 629–635. [Google Scholar] [CrossRef] [Green Version]
- Songsaeng, S.; Sophanodra, P.; Kaewsrithong, J.; Ohshima, T. Quality changes in oyster (Crassisrea belcheri) during frozen storage as affected by freezing and antioxidant. Food Chem. 2010, 123, 286–290. [Google Scholar] [CrossRef]
- Cao, R.; Xue, C.; Liu, Q.; Xue, Y. Microbiological, chemical, and sensory assessment of Pacific oysters (Crassostrea gigas) stored at different temperatures. Czech J. Food Sci. 2009, 27, 102–108. [Google Scholar] [CrossRef] [Green Version]
- Maturin, L.; Peeler, J.T. The aerobic plate count (APC) indicates the level of microorganisms in a product. In Potential Food Safety Hazard; Chapter 9: Aerobic Plate Count; US Food and Drug Administration: Silver Spring, MD, USA, 1998. [Google Scholar]
- AOAC. Aerobic plate count in foods, Dry rehydratable film. Sec. 17. 02. 07, Method 990. 12. In Official Methods of Analysis of AOAC International, 16th ed.; Cunniff, P.A., Ed.; AOAC International: Gaithersburg, MD, USA, 1995; pp. 10–11. [Google Scholar]
- Zamir, R.; Khan, A.; Qasim, R. Physiochemical changes in tissue of edible oyster (Crassostyea glomerata) at refrigerated temperature. Iran. J. Fish. Sci. 2001, 3, 1–12. [Google Scholar]
- Kamata, H.; Hamada, T. Comparison of anthrone and enzymatic methods for hepatic glycogen analyses. Bull. Nat. Inst. Anim. Ind. 1985, 43, 85–92. (In Japanese) [Google Scholar]
- Qin, Y.; Zhang, Y.; Ma, H.; Wu, X.; Xiao, S.; Li, J.; Mo, R.; Yu, Z. Comparison of the Biochemical Composition and Nutritional Quality Between Diploid and Triploid Hong Kong Oysters, Crassostrea hongkongensis. Front. Physiol. 2018, 9, 1674. [Google Scholar] [CrossRef] [Green Version]
- Celik, M.Y.; Karayucel, S.; Ismihan Karayucel, I.; Eyuboglu, B.; Recep Ozturk, R. The effects of environmental factors on survival, growth and biochemical composition of transplanted oysters (Ostreaedulis Linnaeus, 1758) from Aegean Sea to southern Black Sea. Aquac. Res. 2013, 46, 959–968. [Google Scholar] [CrossRef]
- Grizzle, R.E.; Ward, K.M.; Peter, C.R.; Cantwell, M.; David Katz, D.; Sullivan, J. Growth, morphometrics and nutrient content of farmed eastern oysters, Crassostrea virginica (Gmelin), in New Hampshire, USA. Aquac. Res. 2017, 48, 1525–1537. [Google Scholar] [CrossRef]
- Berthelin, C.; Kellner, K.; Mathieu, M. Histological characterization and glucose incorporation into glycogen of the Pacific oyster Crassostrea gigas storage cells. Mar. Biotechnol. 2000, 2, 136–145. [Google Scholar] [CrossRef]
- Berthelin, C.; Kellner, K.; Mathieu, M. Storage metabolism in the Pacific oyster (Crassostrea gigas) in relation to summer mortalities and reproductive cycle (West Coast of France). Compar. Biochem. Physiol. Part B 2000, 125, 359–369. [Google Scholar] [CrossRef]
- Baccaa, H.; Huveta, A.; Fabiouxa, C.; Daniela, J.Y.; Delaportea, M.; Pouvreaua, S.; Wormhoudt, V.A.; Moal, J. Molecular cloning and seasonal expression of oyster glycogen phosphorylase and glycogen synthase genes. Comp. Biochem. Physiol. Part B: Biochem. Mol. Biol. 2005, 140, 635–646. [Google Scholar] [CrossRef] [Green Version]
- Javier, H.A.; Lee, R.L.; Javier, R., Jr. Calculating correlated color temperatures across the entire gamut of daylight and skylight chromaticities. Appl. Opt. 1999, 38, 5703–5709. [Google Scholar]
- Huidobro, A.; Pastor, A.; Tejada, M. Quality Index method developed for raw gilthead seabream (Sparusaurata). J. Food Sci. 2000, 65, 1202–1205. [Google Scholar] [CrossRef]
- Devatkal, S.K.; Thorat, P.; Manjunatha, M. Effect of vacuum packaging and pomegranate peel extract on quality aspects of ground goat meat and nuggets. J. Food Sci. Technol. 2014, 51, 2685–2691. [Google Scholar] [CrossRef] [Green Version]
- Summo, C.; Caponio, F.; Pasqualone, A. Effect of vacuum-packaging storage on the quality level of ripened sausages. Meat Sci. 2006, 74, 249–254. [Google Scholar] [CrossRef] [PubMed]
- Nikulina, E.O.; Ivanova, G.V.; Kolman, O.I.; Ivanova, A.N.; Perestoronin, D.Y. Research of the influence of vacuum packaging on the quality and safety of meat semi-finished products. Earth Environ. Sci. 2021, 677, 032066. [Google Scholar] [CrossRef]
- Donaldson, M.R.; Cooke, S.J.; Patterson, D.A.; Macdonald, J.S. Cold shock and fish. J. Fish Biol. 2008, 73, 1491–1530. [Google Scholar] [CrossRef]
- Ghanbari, M.; Jami, M.; Domig, K.J.; Kneife, W. Long-term effects of water pH changes on hematological parameters in the common carp (Cyprinus carpio L.). Afr. J. Biotechnol. 2012, 11, 3153–3159. [Google Scholar] [CrossRef]
- Reipschläger, A.; Pörtner, H.O. Metabolic depression during environmental stress: The role of extracellular versus intra cellular pH in Sipunculus nudus. J. Exp. Biol. 1996, 199, 1801–1807. [Google Scholar] [CrossRef]
- Pörtner, H.O.; Bock, C.; Heldmaier, G.; Klingenspor, M. A contribution of acid-base regulation to metabolic depression in marine ectotherms. In Life in the Cold; Springer Verlag: Berlin, Germany, 2000; pp. 443–458. [Google Scholar]
- Lannig, G.; Flores, F.J.; Sokolova, I.M. Temperature-dependent stress response in oysters, Crassostrea virginica: Pollu-tion reduces temperature tolerance in oysters. Aquat. Toxicol. 2006, 79, 278–287. [Google Scholar] [CrossRef]
Composition (% Wet Basis) | Depuration Time (h) | 20 °C | 15 °C | 10 °C | 5 °C |
---|---|---|---|---|---|
Moisture | 0 | 83.3 ± 0.6 aA | 83.2 ± 0.5 aA | 83.1 ± 0.6 aA | 83.0 ± 0.5 aA |
6 | 83.3 ± 0.6 aA | 83.3 ± 0.6 aA | 83.3 ± 0.6 aA | 83.0 ± 0.6 aA | |
12 | 83.4 ± 0.8 aA | 83.2 ± 0.6 aA | 83.0 ± 0.8 aA | 83.0 ± 0.6 aA | |
Crude Protein | 0 | 9.0 ± 0.2 aA | 9.0 ± 0.2 aA | 9.1 ± 0.3 aA | 9.1 ± 0.2 aA |
6 | 9.1 ± 0.2 aA | 9.1 ± 0.2 aA | 9.1 ± 0.2 aA | 9.1 ± 0.2 aA | |
12 | 9.1 ± 0.2 aA | 9.1 ± 0.2 aA | 9.2 ± 0.3 aA | 9.2 ± 0.2 aA | |
Crude fat | 0 | 2.3 ± 0.1 aA | 2.3 ± 0.1 aA | 2.2 ± 0.1 aA | 2.2 ± 0.1 aA |
6 | 2.3 ± 0.1 aA | 2.2 ± 0.1 aA | 2.2 ± 0.1 aA | 2.2 ± 0.1 aA | |
12 | 2.2 ± 0.1 aA | 2.2 ± 0.2 aA | 2.1 ± 0.1 aA | 2.1 ± 0.2 aA | |
Carbohydrate | 0 | 4.6 ± 0.2 aA | 4.7 ± 0.2 aA | 4.6 ± 0.2 aA | 4.6 ± 0.1 aA |
6 | 4.6 ± 0.1 aA | 4.6 ± 0.1 aA | 4.6 ± 0.1 aA | 4.6 ± 0.1 aA | |
12 | 4.6 ± 0.1 aA | 4.8 ± 0.1 aA | 4.7 ± 0.1 aA | 4.8 ± 0.1 aA | |
Glycogen (mg/100g) | 0 | 685.5 ± 0.6 aA | 678.5 ± 0.4 aA | 680.5 ± 0.6 aA | 683.5 ± 0.5 aA |
6 | 683.5 ± 0.4 aA | 679.5 ± 0.5 aA | 677.5 ± 0.5 aA | 681.5 ± 0.6 aA | |
12 | 682.5 ± 0.5 aA | 675.5 ± 0.4 aA | 678.5 ± 0.6 aA | 680.5 ± 0.5 aA |
Composition (% Wet Basis) | Depuration Time (h) | pH = 9 | pH = 10 | pH = 11 |
---|---|---|---|---|
Moisture | 0 | 83.2 ± 0.6 aA | 83.2 ± 0.4 aA | 83.1 ± 0.5 aA |
6 | 83.3 ± 0.6 aA | 83.3 ± 0.5 aA | 83.3 ± 0.6 aA | |
12 | 83.2 ± 0.5 aA | 83.1 ± 0.5 aA | 82.9 ± 0.6 aA | |
Crude Protein | 0 | 9.0 ± 0.2 aA | 9.0 ± 0.2 aA | 9.1 ± 0.3 aA |
6 | 9.1 ± 0.2 aA | 9.1 ± 0.2 aA | 9.1 ± 0.2 aA | |
12 | 9.1 ± 0.2 aA | 9.1 ± 0.2 aA | 9.2 ± 0.3 aA | |
Crude fat | 0 | 2.3 ± 0.1 aA | 2.3 ± 0.1 aA | 2.2 ± 0.1 aA |
6 | 2.3 ± 0.2 aA | 2.2 ± 0.1 aA | 2.2 ± 0.1 aA | |
12 | 2.2 ± 0.1 aA | 2.2 ± 0.2 aA | 2.1 ± 0.1 aA | |
Carbohydrate | 0 | 4.6 ± 0.2 aA | 4.7 ± 0.2 aA | 4.6 ± 0.1 aA |
6 | 4.7 ± 0.2 aA | 4.6 ± 0.1 aA | 4.6 ± 0.1 aA | |
12 | 4.7 ± 0.1 aA | 4.8 ± 0.2 aA | 4.8 ± 0.1 aA | |
Glycogen (mg/100g) | 0 | 682.5 ± 0.5 aA | 685.5 ± 0.4 aA | 683.5 ± 0.5 aA |
6 | 683.6 ± 0.6 aA | 684.5 ± 0.4 aA | 681.5 ± 0.6 aA | |
12 | 681.5 ± 0.5 aA | 685.5 ± 0.5 aA | 680.5 ± 0.5 aA |
Depuration Time (h) | |||||
---|---|---|---|---|---|
TACP (log/CFU/g) | 0 | 3 | 6 | 9 | 12 |
pH = 9.0 | |||||
20 °C | 5.3 ± 0.5 aA | 5.3 ± 0.3 aA | 5.2 ± 0.4 abA | 4.9 ± 0.4 abA | 4.7 ± 0.5 bA |
15 °C | 5.3 ± 0.4 aA | 5.2 ± 0.5 abAB | 4.7 ± 0.4 bB | 4.5 ± 0.5 bcAB | 4.2 ± 0.4 cBC |
10 °C | 5.2 ± 0.3 aA | 4.8 ± 0.3 abBC | 4.5 ± 0.3 bBC | 4.1 ± 0.3 cBC | 3.8 ± 0.5 cC |
5 °C | 5.2 ± 0.4 aA | 4.6 ± 0.3 bC | 4.2 ± 0.4 cC | 3.8 ± 0.4 dC | 3.6 ± 0.4 dC |
pH = 10.0 | |||||
20 °C | 5.3 ± 0.5 aA | 5.1 ± 0.3 aA | 5.0 ± 0.2 abA | 4.8 ± 0.3 abcA | 4.0 ± 0.2 abcA |
15 °C | 5.3 ± 0.4 aA | 5.1 ± 0.2 aA | 4.6 ± 0.3 aA | 4.0 ± 0.2 abB | 3.5 ± 0.2 abcB |
10 °C | 5.2 ± 0.4 aA | 4.6 ± 0.3 bB | 3.6 ± 0.2 cB | 3.0 ± 0.3 dC | 1.5 ± 0.5 eC |
5 °C | 5.2 ± 0.5 aA | 4.5 ± 0.3 bB | 3.0 ± 0.2 cC | 1.5 ± 0.4 dD | 1.0 ± 0.3 eD |
pH = 11.0 | |||||
20 °C | 5.2 ± 0.4 aA | 4.3 ± 0.3 bA | 3.6 ± 0.2 cA | 3.0 ± 0.3 dA | 2.4 ± 0.2 eA |
15 °C | 5.3 ± 0.5 aA | 4.2 ± 0.2 bA | 3.1 ± 0.3 cB | 3.0 ± 0.2 cA | 2.3 ± 0.2 dA |
10 °C | 5.2 ± 0.4 aA | 4.0 ± 0.3 bA | 2.5 ± 0.2 cB | 1.5 ± 0.3 dB | 0.0 ± 0.0 eB |
5 °C | 5.3 ± 0.4 aA | 3.8 ± 0.3 bB | 2.0 ± 0.2 cD | 0.0 ± 0.4 dC | 0.0 ± 0.0 dB |
Weight (mg) | Depuration Time (h) | 20 °C | 15 °C | 10 °C | 5 °C |
---|---|---|---|---|---|
pH = 9.0 | 3 | 580.5 ± 0.6 aB | 585.2 ± 0.5 aB | 600.2 ± 0.5 aB | 602.2 ± 0.4 aB |
6 | 650.2 ± 0.2 aA | 658.5 ± 0.6 aA | 660.2 ± 0.4 aA | 666.2 ± 0.6 aA | |
9 | 679.2 ± 0.5 aA | 686.2 ± 0.5 aA | 691.4 ± 0.6 aA | 689.6 ± 0.5 aA | |
12 | 680.2 ± 0.6 aA | 687.2 ± 0.4 aA | 692.2 ± 0.5 aA | 690.2 ± 0.4 aA | |
pH = 10.0 | 3 | 595.2 ± 0.5 aB | 590.2 ± 0.3 aB | 604.2 ± 0.3 aB | 600.2 ± 0.5 aB |
6 | 655.2 ± 0.6 bA | 660.2 ± 0.5 bA | 658.2 ± 0.5 bA | 669.2 ± 0.6 aA | |
9 | 684.2 ± 0.5 aA | 686.5 ± 0.4 aA | 689.2 ± 0.5 aA | 694.2 ± 0.5 aA | |
12 | 685.2 ± 0.6 aA | 687.2 ± 0.5 aA | 690.8 ± 0.4 aA | 695.2 ± 0.4 aA | |
pH = 11.0 | 3 | 602.2 ± 0.6 aB | 606.2 ± 0.5 aB | 609.2 ± 0.4 aB | 610.2 ± 0.4 aB |
6 | 670.2 ± 0.5 aA | 666.2 ± 0.4 aA | 668.2 ± 0.6 aA | 672.2 ± 0.6 aA | |
9 | 685.8 ± 0.6 aA | 685.2 ± 0.5 aA | 690.6 ± 0.4 aA | 691.4 ± 0.4 aA | |
12 | 686.3 ± 0.5 aA | 685.6 ± 0.4 aA | 691.2 ± 0.3 aA | 692.2 ± 0.5 aA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsai, H.-S.; Hsiao, Y.-T.; Weng, Y.-M.; Liu, J.-M. Sustainable Utilization Technology for Improving the Freshness of Oysters—Development of Alkaline Electrolysis Seawater Depuration System. Sustainability 2023, 15, 785. https://doi.org/10.3390/su15010785
Tsai H-S, Hsiao Y-T, Weng Y-M, Liu J-M. Sustainable Utilization Technology for Improving the Freshness of Oysters—Development of Alkaline Electrolysis Seawater Depuration System. Sustainability. 2023; 15(1):785. https://doi.org/10.3390/su15010785
Chicago/Turabian StyleTsai, Hsin-Shan, Yu-Tien Hsiao, Yih-Ming Weng, and Jen-Ming Liu. 2023. "Sustainable Utilization Technology for Improving the Freshness of Oysters—Development of Alkaline Electrolysis Seawater Depuration System" Sustainability 15, no. 1: 785. https://doi.org/10.3390/su15010785
APA StyleTsai, H. -S., Hsiao, Y. -T., Weng, Y. -M., & Liu, J. -M. (2023). Sustainable Utilization Technology for Improving the Freshness of Oysters—Development of Alkaline Electrolysis Seawater Depuration System. Sustainability, 15(1), 785. https://doi.org/10.3390/su15010785