Identification and Counting of Coffee Trees Based on Convolutional Neural Network Applied to RGB Images Obtained by RPA
Abstract
:1. Introduction
2. Materials and Methods
2.1. Image Data Acquisition
2.2. Image Processing
2.3. Deep Learning
2.4. Detection Algorithm
- S: grid dimension;
- C: number of classes in the database.
2.5. Validation
- True Positives (TPs)—objects that were coffee plants and were detected;
- False Positives (FPs)—objects that were not coffee plants and were detected;
- False Negatives (FNs)—objects that were coffee plants and were not detected.
2.6. Plant Count
3. Results
3.1. Training
3.2. Coffee Plant Detection
3.3. Plant Count
3.4. Counting Prototype Performance
4. Discussion
4.1. Training
4.2. Coffee Plant Detection
4.3. Counting Prototype Performance
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lowenberg-Deboer, J.; Erickson, B. Setting the record straight on precision agriculture adoption. Agron. J. 2019, 111, 1552–1569. [Google Scholar] [CrossRef] [Green Version]
- Ren, G.; Lin, T.; Ying, Y.; Chowdhary, G.; Ting, K.C. Agricultural robotics research applicable to poultry production: A review. Comput. Electron. Agric. 2020, 169, 105216. [Google Scholar] [CrossRef]
- Marin, D.B.; Ferraz, G.A.e.S.; Santana, L.S.; Barbosa, B.D.S.; Barata, R.A.P.; Osco, L.P.; Ramos, A.P.M.; Guimarães, P.H.S. Detecting coffee leaf rust with UAV-based vegetation indices and decision tree machine learning models. Comput. Electron. Agric. 2021, 190, 106476. [Google Scholar] [CrossRef]
- Zhang, J.; Huang, Y.; Pu, R.; Gonzalez-Moreno, P.; Yuan, L.; Wu, K.; Huang, W. Monitoring plant diseases and pests through remote sensing technology: A review. Comput. Electron. Agric. 2019, 165, 104943. [Google Scholar] [CrossRef]
- Nicol, L.A.; Nicol, C.J. Adoption of Precision Agriculture in Alberta Irrigation Districts with Implications for Sustainability. J. Rural Community Dev. 2021, 16, 152–174. [Google Scholar]
- Zhou, Z.; Majeed, Y.; Diverres Naranjo, G.; Gambacorta, E.M.T. Assessment for crop water stress with infrared thermal imagery in precision agriculture: A review and future prospects for deep learning applications. Comput. Electron. Agric. 2021, 182, 106019. [Google Scholar] [CrossRef]
- Bhatnagar, V.; Poonia, R.C.; Sunda, S. State of the art and gap analysis of precision agriculture: A case study of Indian Farmers. Int. J. Agric. Environ. Inf. Syst. 2019, 10, 72–92. [Google Scholar] [CrossRef]
- Kayad, A.; Sozzi, M.; Gatto, S.; Whelan, B.; Sartori, L.; Marinello, F. Ten years of corn yield dynamics at field scale under digital agriculture solutions: A case study from North Italy. Comput. Electron. Agric. 2021, 185, 106126. [Google Scholar] [CrossRef]
- Jiménez-Brenes, F.M.; López-Granados, F.; Torres-Sánchez, J.; Peña, J.M.; Ramírez, P.; Castillejo-González, I.L.; de Castro, A.I. Automatic UAV-based detection of Cynodon dactylon for site-specific vineyard management. PLoS ONE 2019, 14, e0218132. [Google Scholar] [CrossRef]
- Gomes, J.F.S.; Leta, F.R. Applications of computer vision techniques in the agriculture and food industry: A review. Eur. Food Res. Technol. 2012, 235, 989–1000. [Google Scholar] [CrossRef]
- Vibhute, A.; Bodhe, S.K. Applications of Image Processing in Agriculture: A Survey. Int. J. Comput. Appl. 2012, 52, 34–40. [Google Scholar] [CrossRef]
- Rico-Fernández, M.P.; Rios-Cabrera, R.; Castelán, M.; Guerrero-Reyes, H.I.; Juarez-Maldonado, A. A contextualized approach for segmentation of foliage in different crop species. Comput. Electron. Agric. 2019, 156, 378–386. [Google Scholar] [CrossRef]
- Karpathy, A.; Leung, T. Karpathy_Large-scale_Video_Classification_2014_CVPR_paper. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Washington, DC, USA, 23–28 June 2014; pp. 10–20. [Google Scholar]
- Lecun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Otter, D.W.; Medina, J.R.; Kalita, J.K. A Survey of the Usages of Deep Learning for Natural Language Processing. IEEE Trans. Neural Netw. Learn. Syst. 2020, 32, 604–624. [Google Scholar] [CrossRef] [Green Version]
- Xie, B.; Zhang, H.K.; Xue, J. Deep Convolutional Neural Network for Mapping Smallholder Agriculture Using High Spatial Resolution Satellite Image. Sensors 2019, 19, 2398. [Google Scholar] [CrossRef] [Green Version]
- van Klompenburg, T.; Kassahun, A.; Catal, C. Crop yield prediction using machine learning: A systematic literature review. Comput. Electron. Agric. 2020, 177, 105709. [Google Scholar] [CrossRef]
- Osco, L.P.; dos de Arruda, M.S.; Marcato Junior, J.; da Silva, N.B.; Ramos, A.P.M.; Moryia, É.A.S.; Imai, N.N.; Pereira, D.R.; Creste, J.E.; Matsubara, E.T.; et al. A convolutional neural network approach for counting and geolocating citrus-trees in UAV multispectral imagery. ISPRS J. Photogramm. Remote Sens. 2020, 160, 97–106. [Google Scholar] [CrossRef]
- Lewis, K.P.; Espineli, J.D. Classification and detection of nutritional deficiencies in coffee plants using image processing and convolutional neural network (Cnn). Int. J. Sci. Technol. Res. 2020, 9, 2076–2081. [Google Scholar]
- Kerkech, M.; Hafiane, A.; Canals, R. Deep leaning approach with colorimetric spaces and vegetation indices for vine diseases detection in UAV images. Comput. Electron. Agric. 2018, 155, 237–243. [Google Scholar] [CrossRef]
- Cui, C.; Fearn, T. Modern practical convolutional neural networks for multivariate regression: Applications to NIR calibration. Chemom. Intell. Lab. Syst. 2018, 182, 9–20. [Google Scholar] [CrossRef]
- Chen, Y.T.; Chen, S.F. Localizing plucking points of tea leaves using deep convolutional neural networks. Comput. Electron. Agric. 2020, 171, 105298. [Google Scholar] [CrossRef]
- Huang, Y.; Chen, Z.; Yu, T.; Huang, X.; Gu, X. Agricultural remote sensing big data: Management and applications. J. Integr. Agric. 2018, 17, 1915–1931. [Google Scholar] [CrossRef]
- Kattenborn, T.; Leitloff, J.; Schiefer, F.; Hinz, S. Review on Convolutional Neural Networks (CNN) in vegetation remote sensing. ISPRS J. Photogramm. Remote Sens. 2021, 173, 24–49. [Google Scholar] [CrossRef]
- Martinelli, F.; Scalenghe, R.; Davino, S.; Panno, S.; Scuderi, G.; Ruisi, P.; Villa, P.; Stroppiana, D.; Boschetti, M.; Goulart, L.R.; et al. Advanced methods of plant disease detection. A review. Agron. Sustain. Dev. 2015, 35, 1–25. [Google Scholar] [CrossRef] [Green Version]
- Bento, N.L.; Ferraz, G.A.E.S.; Barata, R.A.P.; Soares, D.V.; dos Santos, L.M.; Santana, L.S.; Ferraz, P.F.P.; Conti, L.; Palchetti, E. Characterization of Recently Planted Coffee Cultivars from Vegetation Indices Obtained by a Remotely Piloted Aircraft System. Sustainability 2022, 14, 1446. [Google Scholar] [CrossRef]
- Bazame, H.C.; Molin, J.P.; Althoff, D.; Martello, M. Detection, classification, and mapping of coffee fruits during harvest with computer vision. Comput. Electron. Agric. 2021, 183, 106066. [Google Scholar] [CrossRef]
- Santana, L.S.; Ferraz, G.A.e.S.; Cunha, J.P.B.; Santana, M.S.; de Faria, R.O.; Marin, D.B.; Rossi, G.; Conti, L.; Vieri, M.; Sarri, D. Monitoring Errors of Semi-Mechanized Coffee Planting by Remotely Piloted Aircraft. Agronomy 2021, 11, 1224. [Google Scholar] [CrossRef]
- Yiannis, A.; Partel, V. UAV-Based High Throughput Phenotyping in Citrus Utilizing Multispectral Imaging and Artificial Intelligence. Remote Sens. 2019, 11, 410. [Google Scholar] [CrossRef] [Green Version]
- Redmon, J.; Farhadi, A. YOLO9000: Better, Faster, Stronger. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 7263–7271. [Google Scholar]
- Uzkent, B.; Yeh, C.; Ermon, S. Efficient Object Detection in Large Images Using Deep Reinforcement Learning. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, Village, CO, USA, 1–5 March 2020; pp. 1824–1833. [Google Scholar]
- Dreossi, T.; Ghosh, S.; Yue, X.; Keutzer, K.; Sangiovanni-Vincentelli, A.; Seshia, S.A. Counterexample-guided data augmentation. In Proceedings of the IJCAI International Joint Conference on Artificial Intelligence, Stockholm, Sweden, 13–19 July 2018; pp. 2071–2078. [Google Scholar] [CrossRef] [Green Version]
- Shorten, C.; Khoshgoftaar, T.M. A survey on Image Data Augmentation for Deep Learning. J. Big Data 2019, 6, 60. [Google Scholar] [CrossRef]
- Perez, L.; Wang, J. The Effectiveness of Data Augmentation in Image Classification using Deep Learning. Comput. Vis. Pattern Recognit. 2017, 11, 1–8. [Google Scholar]
- Liu, L.; Pan, Z.; Lei, B. Learning a Rotation Invariant Detector with Rotatable Bounding Box. Comput. Vis. Pattern Recognit. 2017. [Google Scholar] [CrossRef]
- Werfel, J.; Xie, X.; Seung, H.S. Learning curves for stochastic gradient descent in linear feedforward networks. Neural Comput. 2005, 17, 2699–2718. [Google Scholar] [CrossRef] [PubMed]
- Richards, B.A.; Lillicrap, T.P.; Beaudoin, P.; Bengio, Y.; Sacramento, J.; Saxe, A.; Scellier, B.; Schapiro, A.C.; Senn, W. A deep learning framework for neuroscience. Nat. Neurosci. 2019, 22, 1761–1770. [Google Scholar] [CrossRef] [PubMed]
- Miyashita, D.; Kousai, S.; Suzuki, T.; Deguchi, J. A Neuromorphic Chip Optimized for Deep Learning and CMOS Technology with Time-Domain Analog and Digital Mixed-Signal Processing. IEEE J. Solid-State Circuits 2017, 52, 2679–2689. [Google Scholar] [CrossRef]
- Nandakumar, S.R.; Le Gallo, M.; Piveteau, C.; Joshi, V.; Mariani, G.; Boybat, I.; Karunaratne, G.; Khaddam-Aljameh, R.; Egger, U.; Petropoulos, A.; et al. Mixed-Precision Deep Learning Based on Computational Memory. Front. Neurosci. 2020, 14, 406. [Google Scholar] [CrossRef]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; p. 10. [Google Scholar]
- Redmon, J. YOLOv3: An Incremental Improvement. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018. [Google Scholar]
- Tian, Y.; Yang, G.; Wang, Z.; Wang, H.; Li, E.; Liang, Z. Apple detection during different growth stages in orchards using the improved YOLO-V3 model. Comput. Electron. Agric. 2019, 157, 417–426. [Google Scholar] [CrossRef]
- Girshick, R.; Donahue, J.; Darrell, T.; Malik, J.; Berkeley, U.C.; Malik, J. Rich feature hierarchies for accurate object detection and semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; Volume 1, p. 5000. [Google Scholar] [CrossRef] [Green Version]
- Huang, R.; Pedoeem, J. YOLO-LITE: A Real-Time Object Detection Algorithm Optimized for Non-GPU Computers. In Proceedings of the IEEE International Conference on Big Data (Big Data), Seattle, WA, USA, 10–13 December 2018; p. 7. [Google Scholar]
- Sokolova, M.; Japkowicz, N.; Szpakowicz, S. Beyond accuracy, F-score and ROC: A family of discriminant measures for performance evaluation. In AI 2006: Advances in Artificial Intelligence; AAAI Work Technical Report; Springer: Berlin/Heidelberg, Germany, 2006; Volume WS-06-06, pp. 24–29. [Google Scholar] [CrossRef] [Green Version]
- Xie, G.; Lu, W. Image Edge Detection Based on Opencv. Int. J. Electron. Electr. Eng. 2013, 1, 104–106. [Google Scholar] [CrossRef] [Green Version]
- Ruder, S. An overview of gradient descent optimization. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1–14. [Google Scholar]
- Rumelhart, D.E.; Hinton, G.E.; Willians, R.J. Learning representations by back-propagating errors. Nature 1986, 323, 533–536. [Google Scholar] [CrossRef]
- Vogl, T.P.; Mangis, J.K.; Rigler, A.K.; Zink, W.T.; Alkon, D.L. Biological Cybernetics Accelerating the Convergence of the Back-Propagation Method. Biol. Cybern. 1988, 59, 257–263. [Google Scholar] [CrossRef]
- Dias, J.S. Sensibilidade Paramétrica como Guia para o Treinamento Híbrido de Redes Neurais; Universidade Federal de Santa Catarina: Florianópolis, Brazil, 1998. [Google Scholar]
- Hasan, A.S.M.M.; Sohel, F.; Diepeveen, D.; Laga, H.; Jones, M.G.K. A survey of deep learning techniques for weed detection from images. Comput. Electron. Agric. 2021, 184, 106067. [Google Scholar] [CrossRef]
- Kamilaris, A.; Prenafeta-Boldú, F.X. A review of the use of convolutional neural networks in agriculture. J. Agric. Sci. 2018, 156, 312–322. [Google Scholar] [CrossRef] [Green Version]
- Wang, A.; Zhang, W.; Wei, X. A review on weed detection using ground-based machine vision and image processing techniques. Comput. Electron. Agric. 2019, 158, 226–240. [Google Scholar] [CrossRef]
- Osco, L.P.; Marcato Junior, J.; Marques Ramos, A.P.; de Castro Jorge, L.A.; Fatholahi, S.N.; de Andrade Silva, J.; Matsubara, E.T.; Pistori, H.; Gonçalves, W.N.; Li, J. A review on deep learning in UAV remote sensing. Int. J. Appl. Earth Obs. Geoinf. 2021, 102, 102456. [Google Scholar] [CrossRef]
- Xu, W.; Zhao, L.; Li, J.; Shang, S.; Ding, X.; Wang, T. Detection and classification of tea buds based on deep learning. Comput. Electron. Agric. 2022, 192, 106547. [Google Scholar] [CrossRef]
- Sozzi, M.; Cantalamessa, S.; Cogato, A.; Kayad, A.; Marinello, F. Automatic Bunch Detection in White Grape Varieties Using YOLOv3, YOLOv4, and YOLOv5 Deep Learning Algorithms. Agron. J. 2022, 12, 319. [Google Scholar] [CrossRef]
- Ahmad, J.; Muhammad, K.; Ahmad, I.; Ahmad, W.; Smith, M.L.; Smith, L.N.; Jain, D.K.; Wang, H.; Mehmood, I. Visual features based boosted classification of weeds for real-time selective herbicide sprayer systems. Comput. Ind. 2018, 98, 23–33. [Google Scholar] [CrossRef]
- Gu, C.; Wang, D.; Zhang, H.; Zhang, J.; Zhang, D.; Liang, D. Fusion of Deep Convolution and Shallow Features to Recognize the Severity of Wheat Fusarium Head Blight. Front. Plant Sci. 2021, 11, 599886. [Google Scholar] [CrossRef]
Development Stage (Age) | Images (Cuts) | Objects (Plants) |
---|---|---|
Training | 1302 | 7458 |
Three months 1 | 187 | 931 |
Three months 2 | 161 | 811 |
Six months 1 | 216 | 770 |
Six months 2 | 966 | 6216 |
Plant Age | Model | TP | FP | FN | Precision | Recall | AP |
---|---|---|---|---|---|---|---|
Three months 1 | 1000 it. | 282 | 220 | 529 | 0.562 | 0.348 | 0.36 |
2000 it. | 357 | 272 | 454 | 0.568 | 0.44 | 0.375 | |
3000 it. | 438 | 318 | 373 | 0.579 | 0.54 | 0.463 | |
4000 it. | 417 | 353 | 394 | 0.542 | 0.514 | 0.392 | |
Three months 2 | 1000 it. | 517 | 37 | 414 | 0.933 | 0.555 | 0.777 |
2000 it. | 707 | 57 | 224 | 0.925 | 0.759 | 0.842 | |
3000 it. | 770 | 96 | 161 | 0.889 | 0.827 | 0.887 | |
4000 it. | 705 | 66 | 226 | 0.914 | 0.757 | 0.872 | |
Six months 1 | 1000 it. | 507 | 55 | 263 | 0.902 | 0.658 | 0.862 |
2000 it. | 593 | 94 | 177 | 0.863 | 0.77 | 0.853 | |
3000 it. | 695 | 118 | 75 | 0.855 | 0.903 | 0.873 | |
4000 it. | 705 | 109 | 65 | 0.866 | 0.916 | 0.874 | |
Six months 2 | 1000 it. | 4848 | 282 | 1368 | 0.945 | 0.78 | 0.943 |
2000 it. | 5351 | 399 | 865 | 0.931 | 0.861 | 0.951 | |
3000 it. | 5664 | 544 | 552 | 0.912 | 0.911 | 0.944 | |
4000 it. | 5899 | 532 | 317 | 0.917 | 0.949 | 0.955 |
Ages | Manual Count | Algorithm (4000 it.) | Algorithm (3000 it.) | ||
---|---|---|---|---|---|
Count | Absolute Count | Error (%) | Absolute Count | Error (%) | |
Three months 1 | 860 | 735 | 14.5 | 771 | 10.3 |
Three months 2 | 943 | 716 | 24.1 | 769 | 18.5 |
Six months 1 | 713 | 690 | 3.2 | 674 | 5.5 |
Six months 2 | 5962 | 5687 | 4.6 | 5523 | 7.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santana, L.S.; Ferraz, G.A.e.S.; Santos, G.H.R.d.; Bento, N.L.; Faria, R.d.O. Identification and Counting of Coffee Trees Based on Convolutional Neural Network Applied to RGB Images Obtained by RPA. Sustainability 2023, 15, 820. https://doi.org/10.3390/su15010820
Santana LS, Ferraz GAeS, Santos GHRd, Bento NL, Faria RdO. Identification and Counting of Coffee Trees Based on Convolutional Neural Network Applied to RGB Images Obtained by RPA. Sustainability. 2023; 15(1):820. https://doi.org/10.3390/su15010820
Chicago/Turabian StyleSantana, Lucas Santos, Gabriel Araújo e Silva Ferraz, Gabriel Henrique Ribeiro dos Santos, Nicole Lopes Bento, and Rafael de Oliveira Faria. 2023. "Identification and Counting of Coffee Trees Based on Convolutional Neural Network Applied to RGB Images Obtained by RPA" Sustainability 15, no. 1: 820. https://doi.org/10.3390/su15010820
APA StyleSantana, L. S., Ferraz, G. A. e. S., Santos, G. H. R. d., Bento, N. L., & Faria, R. d. O. (2023). Identification and Counting of Coffee Trees Based on Convolutional Neural Network Applied to RGB Images Obtained by RPA. Sustainability, 15(1), 820. https://doi.org/10.3390/su15010820