Bioremoval of Methylene Blue from Aqueous Solutions by Green Algae (Bracteacoccus sp.) Isolated from North Jordan: Optimization, Kinetic, and Isotherm Studies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Microalgal Culture
2.3. Isolation, Cultivation, and Classification of Microalgae
2.4. Characterization of Dye Aqueous Solutions
- a.
- Immobilization of Bracteacoccus sp.
- b.
- Batch experiments
- c.
- Removal Kinetics
- d.
- Removal isotherms
3. Results and Discussion
3.1. Characterization of Dye Aqueous Solutions
3.2. Optimization of the Removal of MB
3.2.1. Effects of Incubation Temperatures, Initial MB Concentrations, and Contact Time
3.2.2. Effects of Adsorbent Dose
3.2.3. Effects of Immobilization
Kinetic Models
3.3. Isotherm Models
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yu, K.L.; Lee, X.J.; Ong, H.C.; Chen, W.H.; Chang, J.S.; Lin, C.S.; Show, P.L.; Ling, T.C. Adsorptive removal of cationic methylene blue and anionic Congo red dyes using wet-torrefied microalgal biochar: Equilibrium, kinetic and mechanism modeling. Environ. Pollut. 2021, 272, 115986. [Google Scholar] [CrossRef] [PubMed]
- Homaeigohar, S. The nanosized dye adsorbents for water treatment. Nanomaterials 2020, 10, 295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krishna Moorthy, A.; Govindarajan Rathi, B.; Shukla, S.P.; Kumar, K.; Shree Bharti, V. Acute toxicity of textile dye Methylene blue on growth and metabolism of selected freshwater microalgae. Environ. Toxicol. Pharmacol. 2021, 82, 103552. [Google Scholar] [CrossRef] [PubMed]
- Lellis, B.; Fávaro-Polonio, C.Z.; Pamphile, J.A.; Julio, C.P. Effects of textile dyes on health and the environment and bioremediation potential of living organisms. Biotechnol. Res. Innov. 2019, 3, 275–290. [Google Scholar] [CrossRef]
- Omar, H.; El-Gendy, A.; Al-Ahmary, K. Bioremoval of toxic dye by using different marine macroalgae. Turk. J. Bot. 2018, 42, 15–27. [Google Scholar] [CrossRef]
- Elgarahy, A.M.; Elwakeel, K.Z.; Mohammad, S.H.; Elshoubaky, G.A. A critical review of biosorption of dyes, heavy metals and metalloids from wastewater as an efficient and green process. Clean. Eng. Technol. 2021, 4, 100209. [Google Scholar] [CrossRef]
- Chen, Z.; Chen, H.; Pan, X.; Lin, Z.; Guan, X. Investigation of Methylene Blue Biosorption and Biodegradation by Bacillus thuringiensis 016. Water Air Soil Pollut. 2015, 3, 226. [Google Scholar] [CrossRef]
- Elnahas, M.O.; Hou, L.; Wall, J.D.; Majumder, E.W. Bioremediation Potential of Streptomyces sp. MOE6 for Toxic Metals and Oil. Polysaccharides 2021, 2, 47–68. [Google Scholar] [CrossRef]
- Dolganyuk, V.; Belova, D.; Babich, O.; Prosekov, A.; Ivanova, S.; Katserov, D.; Patyukov, N.; Sukhikh, S. Microalgae: A promising source of valuable bioproducts. Biomolecules 2020, 10, 1153. [Google Scholar] [CrossRef]
- Doǧar, Ç.; Gürses, A.; Açikyildiz, M.; Özkan, E. Thermodynamics and kinetic studies of biosorption of a basic dye from aqueous solution using green algae Ulothrix sp. Colloids Surf. B Biointerfaces 2010, 76, 279–285. [Google Scholar] [CrossRef]
- Aravindhan, R.; Rao, J.R.; Nair, B.U. Removal of basic yellow dye from aqueous solution by sorption on green alga Caulerpa scalpelliformis. J. Hazard. Mater. 2007, 142, 68–76. [Google Scholar] [CrossRef] [PubMed]
- Mahalakshmi, S.; Lakshmi, D.; Menaga, U. Biodegradation of different concentration of dye (Congo red dye) by using green and blue green algae. Int. J. Environ. Res. 2015, 9, 735–744. [Google Scholar]
- Omar, H.H. Algal decolorization and degradation of monoazo and diazo dyes. Pak. J. Biol. Sci. 2008, 11, 1310–1316. [Google Scholar] [CrossRef] [Green Version]
- Guolan, H.; Hongwen, S.; Li, C.L. Study on the physiology and degradation of dye with immobilized algae. Artif. Cells Blood Substit. Biotechnol. 2000, 28, 347–363. [Google Scholar] [CrossRef] [PubMed]
- El-Sheekh, M.M.; Gharieb, M.M.; Abou-El-Souod, G.W. Biodegradation of dyes by some green algae and cyanobacteria. Int. Biodeterior. Biodegrad. 2009, 63, 699–704. [Google Scholar] [CrossRef]
- Daneshvar, N.; Khataee, A.R.; Rasoulifard, M.H.; Pourhassan, M. Biodegradation of dye solution containing Malachite Green: Optimization of effective parameters using Taguchi method. J. Hazard. Mater. 2007, 143, 214–219. [Google Scholar] [CrossRef]
- Vasanth Kumar, K.; Sivanesan, S.; Ramamurthi, V. Adsorption of malachite green onto Pithophora sp., a fresh water algae: Equilibrium and kinetic modelling. Process Biochem. 2005, 40, 2865–2872. [Google Scholar] [CrossRef]
- Khan, I.; Saeed, K.; Zekker, I.; Zhang, B.; Hendi, A.H.; Ahmad, A.; Ahmad, S.; Zada, N.; Ahmad, H.; Shah, L.A.; et al. Review on Methylene Blue: Its Properties, Uses, Toxicity and Photodegradation. Water 2022, 14, 242. [Google Scholar] [CrossRef]
- Cengiz, S.; Cavas, L. Removal of methylene blue by invasive marine seaweed: Caulerpa racemosa var. cylindracea. Bioresour. Technol. 2008, 99, 2357–2363. [Google Scholar] [CrossRef]
- Omeodisemi, D. Experimental Modelling Studies on the removal of crystal violet, methylene blue and malachite green dyes using Theobroma cacao (Cocoa Pod Powder). J. Chem. Lett. 2021, 2, 9–24. [Google Scholar]
- Jabar, J.M.; Odusote, Y.A.; Alabi, K.A.; Ahmed, I.B. Kinetics and mechanisms of congo-red dye removal from aqueous solution using activated Moringa oleifera seed coat as adsorbent. Appl. Water Sci. 2020, 10, 136. [Google Scholar] [CrossRef]
- Boulaiche, W.; Hamdi, B.; Trari, M. Removal of heavy metals by chitin: Equilibrium, kinetic and thermodynamic studies. Appl. Water Sci. 2019, 9, 39. [Google Scholar] [CrossRef]
- Botelho Junior, A.B.; Pinheiro, É.F.; Espinosa, D.C.R.; Soares Tenório, J.A.; Galluzzi Baltazar, M.D.P. Adsorption of lanthanum and cerium on chelating ion exchange resins: Kinetic and thermodynamic studies. Sep. Sci. Technol. 2022, 57, 60–69. [Google Scholar] [CrossRef]
- Saxena, M.; Sharma, N.; Saxena, R. Highly efficient and rapid removal of a toxic dye: Adsorption kinetics, isotherm, and mechanism studies on functionalized multiwalled carbon nanotubes. Surf. Interfaces 2020, 21, 100639. [Google Scholar] [CrossRef]
- Kumar, V.; Saharan, P.; Sharma, A.K.; Umar, A.; Kaushal, I.; Mittal, A.; Al-Hadeethi, Y.; Rashad, B. Silver doped manganese oxide-carbon nanotube nanocomposite for enhanced dye-sequestration: Isotherm studies and RSM modelling approach. Ceram. Int. 2020, 46, 10309–10319. [Google Scholar] [CrossRef]
- Munagapati, V.S.; Wen, H.Y.; Wen, J.C.; Gutha, Y.; Tian, Z.; Reddy, G.M.; Garcia, J.R. Anionic congo red dye removal from aqueous medium using Turkey tail (Trametes versicolor) fungal biomass: Adsorption kinetics, isotherms, thermodynamics, reusability, and characterization. J. Dispers. Sci. Technol. 2021, 42, 1785–1798. [Google Scholar] [CrossRef]
- Li, Z.; Gou, M.; Yue, X.; Tian, Q.; Yang, D.; Qiu, F.; Zhang, T. Facile fabrication of bifunctional ZIF-L/cellulose composite membrane for efficient removal of tellurium and antibacterial effects. J. Hazard. Mater. 2021, 416, 125888. [Google Scholar] [CrossRef]
- Tang, W.; Xu, X.; Ye, B.C.; Cao, P.; Ali, A. Decolorization and degradation analysis of Disperse Red 3B by a consortium of the fungus: Aspergillus sp. XJ-2 and the microalgae Chlorella sorokiniana XJK. RSC Adv. 2019, 9, 14558–14566. [Google Scholar] [CrossRef] [Green Version]
- Bonyadi, Z.; Nasoudari, E.; Ameri, M.; Ghavami, V.; Shams, M.; Sillanpää, M. Biosorption of malachite green dye over Spirulina platensis mass: Process modeling, factors optimization, kinetic, and isotherm studies. Appl. Water Sci. 2022, 12, 167. [Google Scholar] [CrossRef]
- Mohebbrad, B.; Bonyadi, Z.; Dehghan, A.A.; Rahmat, M.H. Arsenic removal from aqueous solutions using Saccharomyces cerevisiae: Kinetic and equilibrium study. Environ. Prog. Sustain. Energy 2019, 38, S398–S402. [Google Scholar]
- Gül, D.; Taştan, B.E.; Bayazıt, G. Assessment of algal biomasses having different cell structures for biosorption properties of acid red P-2BX dye. S. Afr. J. Bot. 2019, 127, 147–152. [Google Scholar] [CrossRef]
- Mansour, A.T.; Alprol, A.E.; Abualnaja, K.M.; El-Beltagi, H.S.; Ramadan, K.M.A.; Ashour, M. The Using of Nanoparticles of Microalgae in Remediation of Toxic Dye from Industrial Wastewater: Kinetic and Isotherm Studies. Materials 2022, 15, 3922. [Google Scholar] [CrossRef]
- Shi, H.; Li, W.; Zhong, L.; Xu, C. Methylene blue adsorption from aqueous solution by magnetic cellulose/graphene oxide composite: Equilibrium, kinetics, and thermodynamics. Ind. Eng. Chem. Res. 2014, 53, 1108–1118. [Google Scholar] [CrossRef]
- Majhi, P.K.; Kothari, R.; Pandey, A.; Tyagi, V.V. Adsorptive behavior of free and immobilized Chlorella pyrenoidosa for decolorization. Biomass Convers. Biorefinery 2021, 11, 3023–3036. [Google Scholar] [CrossRef]
- Dewi, R.S.; Mumpuni, A.; Tsabitah, N.I. Batik Dye Decolorization by Immobilized Biomass of Aspergillus sp. IOP Conf. Ser. Earth Environ. Sci. 2020, 550, 012020. [Google Scholar] [CrossRef]
- Kumar, S.D.; Santhanam, P.; Nandakumar, R.; Anath, S.; Balaji Prasath, B.; Shenbaga Devi, A.; Jeyanthi, S.; Jayalakshima, T.; Ananthi, P. Preliminary study on the dye removal efficacy of immobilized marine and freshwater microalgal beads from textile wastewater. Afr. J. Biotechnol. 2014, 13, 2288–2294. [Google Scholar]
- Coates, J. Interpretation of Infrared Spectra, A Practical Approach. Encycl. Anal. Chem. 2006, 1–23. [Google Scholar] [CrossRef]
- Marungrueng, K.; Pavasant, P. High performance biosorbent (Caulerpa lentillifera) for basic dye removal. Bioresour. Technol. 2007, 98, 1567–1572. [Google Scholar] [CrossRef]
- Afshariani, F.; Roosta, A. Experimental study and mathematical modeling of biosorption of methylene blue from aqueous solution in a packed bed of microalgae Scenedesmus. J. Clean. Prod. 2019, 225, 133–142. [Google Scholar] [CrossRef]
- El Sikaily, A.; Khaled, A.; El Nemr, A.; Abdelwahab, O. Removal of Methylene Blue from aqueous solution by marine green alga Ulva lactuca. Chem. Ecol. 2006, 22, 149–157. [Google Scholar] [CrossRef]
- Nacèra, Y.; Aicha, B. Equilibrium and kinetic modelling of methylene blue biosorption by pretreated dead streptomyces rimosus: Effect of temperature. Chem. Eng. J. 2006, 119, 121–125. [Google Scholar] [CrossRef]
- Rubin, E.; Rodriguez, P.; Herrero, R. Removal of Methylene Blue from aqueous solutions using as biosorbent Sargassum muticum: An invasive macroalga in Europe. J. Chem. Technol. Biotechnol. 2005, 80, 291–298. [Google Scholar] [CrossRef] [Green Version]
- Maurya, N.S.; Mittal, A.K.; Cornel, P.; Rother, E. Biosorption of dyes using dead macro fungi: Effect of dye structure, ionic strength and pH. Bioresour. Technol. 2006, 97, 512–521. [Google Scholar] [CrossRef]
- Vilar, V.J.P.; Botelho, C.M.S.; Boaventura, R.A.R. Methylene blue adsorption by algal biomass based materials: Biosorbents characterization and process behaviour. J. Hazard. Mater. 2007, 147, 120–132. [Google Scholar] [CrossRef]
- Waranusantigul, P.; Pokethitiyook, P.; Kruatrachue, M.; Upatham, E.S. Kinetics of basic dye (methylene blue) biosorption by giant duckweed (Spirodela polyrrhiza). Environ. Pollut. 2003, 125, 385–392. [Google Scholar] [CrossRef] [PubMed]
- Caparkaya, D.; Cavas, L. Biosorption of methylene blue by a brown alga Cystoseira barbatula Kützing. Acta Chim. Slov. 2008, 55, 547–553. [Google Scholar]
- Tahir, H.; Sultan, M.; Jahanzeb, Q. Removal of basic dye methylene blue by using bioabsorbents Ulva lactuca and Sargassum. Afr. J. Biotechnol. 2008, 7, 2649–2655. [Google Scholar]
- Al-Fawwaz, A.T.; Mufida, A. Decolorization of Methylene Blue and Malachite Green by Immobilized Desmodesmus sp. Isolated from North Jordan. Int. J. Environ. Sci. Dev. 2016, 7, 95–99. [Google Scholar] [CrossRef] [Green Version]
- Rahimi Kooh, M.R.; Thotagamuge, R.; Chou Chau, Y.F.; Mahadi, A.; Lim, C.M. Machine learning approaches to predict adsorption capacity of Azolla pinnata in the removal of methylene blue. J. Taiwan Inst. Chem. Eng. 2022, 132, 104134. [Google Scholar] [CrossRef]
- Nabilah Suhaimi, N.; Rahimi Kooh, M.R.; Lim, C.M.; Chou Chao, C.T.; Chou Chau, Y.F.; Mahadi, A.; Chiang, H.P.; Haji Hassan, N.H.; Thotagamuge, R. The Use of Gigantochloa Bamboo-Derived Biochar for the Removal of Methylene Blue from Aqueous Solution. Adsorpt. Sci. Technol. 2022, 2022, 8245797. [Google Scholar] [CrossRef]
Chemical Structure | |
---|---|
Molecular formula | C16H18N3ClS |
Molecular weight | 319.85 g mol−1 |
Density | 1.1 g cm−3 |
The length of MB molecule | 13.82 Å or 14.47 Å |
The width of MB | 9.5 Å |
pKa | 3.8 |
Solubility in water | 43.6 g L−1 at 25 °C |
Melting point | 100–110 °C |
λmax | 664 |
Isotherms | Parameters | 4 °C | 20 °C | 30 °C |
---|---|---|---|---|
Langmuir | qm (mg g−1) | 0.3603 | 0.4034 | 0.3572 |
b (L g−1) | 3.0051 | 3.3369 | 2.4986 | |
R2 | 0.9310 | 0.9413 | 0.9600 | |
Freundlich | KF ((mg g−1) (L mg−1)1/n) | 0.1477 | 0.1435 | 0.1614 |
1/n | 0.2550 | 0.3055 | 0.2292 | |
R2 | 0.8766 | 0.8246 | 0.8882 | |
D-R | qm (mg g−1) | 7.2046 | 8.0645 | 6.7935 |
KD (mol2 kJ−2) | 3.0043 | 3.3355 | 0.8166 | |
ε (KJ mol−1) | 0.0624 | 0.0566 | 0.0239 | |
R2 | 0.8766 | 0.8246 | 0.8882 | |
Temkin | kT (L mg−1) | 1.2055 | 1.5026 | 1.1133 |
bT (kJ mol−1) | 1.9115 | 1.6221 | 2.2640 | |
R2 | 0.8185 | 08031 | 0.8436 |
Adsorbent | Experimental Conditions | Removal % qmax(mg g−1) | Ref. |
---|---|---|---|
Marine green alga Ulva lactuca | pH = 10, initial MB concentration: 25 g L−1, alga concentrations: 2.5 g L−1 at room temperature (25 ± 2 °C) | 40.2 mg g−1 | [40] |
Pretreated dead Streptomyces rimosus | Biosorbent dose: 5 g L−1 Temperature: 20 °C Initial Concentration: 50 mg L−1 Contact time: 5 min | 68% removal efficiency (6.93 mg g−1) | [41] |
Green macroalga Caulerpa lentillifera | Sorbent amount: 0.5–2.0 g Temperature: 25 °C Initial Concentration: 10 mg L−1 Contact time: 1.0 h | 417 mg g−1 | [38] |
Sargassum muticum | Sorbent amount: 0.1 g Temperature: room temperature (25 °C). Initial Concentration: 10–1000 mg L−1 Contact time: 2.0 h | 279.2 mg g−1 | [42] |
Dead macrofungi | Sorbent dose: 0.07–2.10 g L−1 Temperature: 20 °C Initial Concentration: 100–200 mg L−1 The pH = 7.5 ± 0.2 Contact time: 48 h | 204.38–232.73 mg g−1 | [43] |
Dead algal biomass | T = 20 °C pH = 6.0 Initial concentration: 40–800 mg L−1 Contact time: 3 h | 171, 104, and 74 mg g−1, respectively, for algae, algal waste, and composite material (% removals were 48, 32, and 23%, respectively, for algae Gelidium, algal waste, and composite material). | [44] |
Giant duckweed (Spirodelapolyrrhiza) | Sorbent amount: 0.1–1.0 g Temperature: 25 ± 2 °C Initial Concentration: 300 mg L−1 Contact time: 24 h | 250 mg g−1(90% removal efficiency) | [45] |
Brown Alga Cystoseirabarbatula Kützing | Temperature:25, 35, and 45 °C. Adsorbent dosage: 0.1 g 30 mL of various concentration dye solution (5–100 mg L−1) Contact time = 6 h | 38.61 mg g−1 at 35 °C | [46] |
Algae (Ulva Lactuca and Sargassum) | Co = 3 × 10−6−3 × 10−5 M Temperature = 303–318 K Adsorbent amount: 0.1–1.0 g Contact time = 25 min | 96% Removal efficiency | [47] |
Caulerpa racemosa var. cylindracea | alga amount = 0.1–2.0 g 30 mL of the MB solution (5–100 mgL−1) pH = 3–11 Temperature = 27 °C | 5.23 mg g−1 at 18 °C. | [19] |
Immobilized Desmodesmus sp. | alga dosage = 0.25 g L−1 pH = 6.8 Temperature = 25 °C | 98.6% decolorization efficiency | [48] |
Green microalgae Bracteacoccus sp. | alga dosage = 0.06 g mL−1 pH = 7.0 Temperature = 30 °C, Contact time = 60 min Initial Concentration: 15 mg L−1 | 96% removal efficiency (0.3572 mg g−1) | current study |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Fawwaz, A.T.; Al Shra’ah, A.; Elhaddad, E. Bioremoval of Methylene Blue from Aqueous Solutions by Green Algae (Bracteacoccus sp.) Isolated from North Jordan: Optimization, Kinetic, and Isotherm Studies. Sustainability 2023, 15, 842. https://doi.org/10.3390/su15010842
Al-Fawwaz AT, Al Shra’ah A, Elhaddad E. Bioremoval of Methylene Blue from Aqueous Solutions by Green Algae (Bracteacoccus sp.) Isolated from North Jordan: Optimization, Kinetic, and Isotherm Studies. Sustainability. 2023; 15(1):842. https://doi.org/10.3390/su15010842
Chicago/Turabian StyleAl-Fawwaz, Abdullah T., Ahmad Al Shra’ah, and Engy Elhaddad. 2023. "Bioremoval of Methylene Blue from Aqueous Solutions by Green Algae (Bracteacoccus sp.) Isolated from North Jordan: Optimization, Kinetic, and Isotherm Studies" Sustainability 15, no. 1: 842. https://doi.org/10.3390/su15010842
APA StyleAl-Fawwaz, A. T., Al Shra’ah, A., & Elhaddad, E. (2023). Bioremoval of Methylene Blue from Aqueous Solutions by Green Algae (Bracteacoccus sp.) Isolated from North Jordan: Optimization, Kinetic, and Isotherm Studies. Sustainability, 15(1), 842. https://doi.org/10.3390/su15010842