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Abstract: This work aimed to investigate the influence of selected material variables on the self-
cleaning and air purification efficiency in NOx pollutants of cement-based photocatalytic composites.
Tests were performed on cement mortars, with seven independent variables considered: the mass
ratio between cement and quartz powder to sand, the water to cement ratio, the total mass amount
of photocatalysts (two different types), the mass content of nanoparticulate silica, the percentage
of quartz powder replacing part of cement, and the ratio between two sands of fine granulation.
Photocatalytic cementitious materials had their self-cleaning properties tested via two methods
(spectrophotometry—the degradation of rhodamine B under UVA irradiation, and the change in the
contact angle—via a goniometer). Air purification properties were tested in the reaction chamber
under UVA and visible light at low irradiance (0.2 W/m2 for UVA, 150 W/m2 for visible). It was
found that TiO2 content and the mass ratio between cement and quartz powder to sand were the
most influential variables within the selected ranges of variability, with the ratio between sands and
quartz content being the least significant variable of the tested properties.

Keywords: cementitious composites; photocatalyst; nitrogen oxide; self-cleaning; spectrophotometry;
goniometer; air purification

1. Introduction

Environmental pollution caused by human activity has been a primary concern for
flora, fauna, and human health, especially in urban areas [1]. The increase in the concentra-
tion of nitrogen oxides, ozone, and other elements requires the development of technology
and techniques to reduce the influence on the environment. The use of cementitious pho-
tocatalytic composites provides a passive solution to the issue [2,3]. It contributes to air
purification by lowering harmful NOX and SOX concentrations through photocatalytic
reactions powered by sun radiation. According to the IUPAC (International Union of Pure
and Applied Chemistry) definition, photocatalysis is a catalytic reaction based on light
absorption by a photocatalyst [4]. The basic process in heterogeneous photocatalysis is the
activation of a semiconductor, i.e., a photocatalyst, by irradiation. Semiconductors contain
a band gap with energy Eg that separates the valence band from the conduction band. The
photocatalysis process begins with energy absorption equal to or greater than Eg. Then,
an h+ hole is formed due to the transition of the e− electron from the valence band to the
conduction band. The resulting hole is a strong oxidant, while the electron is a reducing
agent [5].

Acid rain and photochemical smog are severe problems for large urban agglomer-
ations, as they can threaten human health and negatively affect plant metabolism [6].
Photocatalysts break down harmful chemicals such as nitrogen oxides. The process begins
with the absorption of a quantum of solar radiation, which determines the formation of
O2 peroxide, which forms OH hydroxyl groups in contact with water [7]. Thanks to this,
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oxidation reactions of harmful compounds take place. In cementitious materials, the result-
ing nitrate anions NO3

− then react with the calcium to form a water-soluble salt—calcium
nitrate—which is washed away by precipitation [8].

The most popular photocatalyst used in the photocatalytic cementitious materials
discussed in this paper is titanium (IV) oxide. The first application of “titanium white” was
as a dye, due to its strong brightening properties. However, the destructive effect of this
additive on some organic dyes was noticed. At the end of the 1920s, this anomaly began
to be studied, and theories related to the photocatalytic process were created [9]. Many
semiconductors, e.g., ZnO, SnO2, and ZnS, are tested for suitability in the photocatalytic
process. However, titanium (IV) oxide is the most frequently described because of its high
stability, availability, and non-toxicity [1]. It is obtained primarily from naturally occurring
anatase (TiO2), rutile (TiO2), and ilmenite (FeTiO3).

In a photocatalytic reaction, a photocatalyst (semiconductor such as titanium dioxide)
is irradiated. Due to energy introduction, electrons (e−) from the semiconductor shift from
the valence band (vb) to the conduction band (cb), leading to the formation of electron
holes h+ (Equation (1)). The resulting pairs of charges initiate a reduction–oxidation
process (Figure 1). As this reaction mainly occurs in the air environment, in the presence of
adsorbed oxygen and water (strong oxidants), it is possible to decompose a wide range
of air pollutants due to the formation of hydroxyl radicals (OH.) and superoxide radicals
(O.−

2 ) (Equations (2) and (3)) [5].

TiO2
hv→ TiO2 + h+vb + e−cb (1)

(H2O)ads + h+ → H+ + OH• (2)

(O2)ads + e− → O•−2 (3)
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Figure 1. General mechanism of photocatalytic reaction.

Cementitious composites can be characterized by various properties, depending on
the components used for their production [10,11]. Using photocatalysts in cementitious
materials presents a new approach to improving air quality in urban areas. Most surfaces
in cities are made with different cementitious materials (mainly concretes and mortars),
and most pollutants are produced in their direct proximity due to human activity [12].
The placement of a passive system purifying the surrounding air built into those surfaces
presents a solution worth considering. Photocatalytic mortars, or more widely, photocat-
alytic cementitious materials, represent a group of building materials that contribute to
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improving air quality in urban areas. Sustainability can be understood in several ways,
one of them being the counteraction to the negative influence of human activity on the
environment. The composites in question have two functions—to act as a construction
material (for roads, pavements, etc.) and, while doing so, to passively purify the air from
harmful pollutants. Any research that covers methods or materials that contribute to a
lesser impact of human activity on the surroundings could and should be considered a part
of sustainable development.

The efficiency of photocatalytic reactions in cementitious materials depends on several
variables, which can be divided into internal and external [13]. Toxic oxides are present
in the air surrounding photocatalytic material, so parameters describing air’s properties
significantly impact the efficiency of photocatalytic reaction (mainly temperature, humidity,
and air velocity). The internal factors, namely the properties of any given photocatalytic
material—its chemical composition and morphology—and the interaction between titanium
dioxide and other components of cementitious material also influence the intensity of the
considered reactions [14].

In this paper, the authors decided to investigate the influence of the composition of a
cementitious photocatalytic mortar on the intensity of photocatalytic reactions. As is well
known, mortars consist of several different components—water, binder, and aggregate. In
regular cementitious materials, changing the mass ratios between them results in a change
in both mechanical properties and the overall durability of the material [15,16]. Titanium
dioxide interacts with other components of the mix upon its addition to the material [17].
It has been observed that due to its grain size, when added in high concentrations, TiO2
has an influence on the compressive strength of the hardened material [18]. It has also
been observed that the efficiency of purifying the air from the aforementioned pollutants
differs significantly in the case of TiO2 powder and cementitious materials containing it—
titanium oxide both agglomerates in the cement matrix and acts as nuclei for the products
of cement hydration, reducing its exposure to sun radiation, and in consequence, on the
surface of which photocatalytic reaction can occur [19]. Therefore, the composition of
any cementitious mortar considered to be a TiO2 carrier has an impact on its properties
regarding photocatalytic reactions.

In the performed experiments, the influence of seven material variables on the me-
chanical and photocatalytic properties of cementitious mortars was investigated. The
Plackett-Burman method (a screening design of an experiment, where an influence of sev-
eral variables can be determined using a limited number of experiments; in the conducted
study, the impact of seven variables was investigated with just 11 series of samples) was
used, and the seven variables were defined –TiO2 total mass, the mass ratio between two
different photocatalysts (VLA, Visible Light Active and UV-A only, UV Light Active), the
mass ratio between binder to aggregate, the mass ratio between water to cement, nanopar-
ticulate silica mass content, replacement of cement with quartz powder, and the mass ratio
between two aggregates of different granulation. In total, 11 cementitious mortar series
were prepared and tested for consistency, mechanical properties including tensile and
compressive strength, efficiency in purifying the air from NOx pollutants, and efficiency
in self-cleaning measured via two different tests (degradation of rhodamine under UVA
radiation and the reduction in contact angle after exposure to UVA radiation).

2. Materials and Methods

A Plackett-Burman experimental design was prepared to investigate the influence of
several material variables on selected properties of cementitious mortars. It is a screening
design used to efficiently screen the impact of numerous variables on the chosen properties
of any material. The prepared design considered seven variables on three levels (low,
high, and average) and is presented in Table 1. A mass ratio of binder (cement and quartz
powder—b) to sand (s) aggregate was considered in the range of 0.5 to 0.8 (b/s ratio in
Table 1). A water-to-cement ratio was adopted from 0.35 to 0.43 (w/c ratio in Table 1).
Nanoparticulate silica content was designed in a range from 10 to 40 kg/m3. Quartz
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powder content was described as a mass percentage of cement being replaced within the
range of 5 to 15%. The influence of aggregate granulation was also included via the mass
ratio between two aggregates of different granulation—0.5/1.2 and 0.1/0.5—within the
range of 0.25 and 1. The influence of TiO2 on selected properties was included via two last
variables, the total mass content of titanium dioxide in the composite (5–20 kg/m3) and the
mass proportion between two types of photocatalyst being used in this study—TiO2 (A)
and TiO2 (B)—within the range of 0.25 to 1.

Table 1. Values of designed independent variables in the experimental design.

Series ID

1 2 3 4 5 6 7 8 9–11
Variable Unit Range of

Variability

(b/s) [-] 0.50–0.80 0.80 0.80 0.80 0.80 0.50 0.50 0.50 0.50 0.65
(w/c) [-] 0.35–0.43 0.43 0.43 0.35 0.35 0.43 0.43 0.35 0.35 0.39

TiO2 (A)/TiO2 (B) [-] 0.25–1.00 1.00 0.25 1.00 0.25 1.00 0.25 1.00 0.25 0.625
Nanoparticulatesilica [kg/m3] 10–40 40 40 10 10 10 10 40 40 25

Quartz powder [%] 5–15 15 5 15 5 5 15 5 15 10
TiO2 [kg/m3] 5–20 20 5 5 20 20 5 5 20 12.5

Sand 0.5–1.2/0.1–0.5 [-] 0.25–1.00 1.00 0.25 0.25 1.00 0.25 1.00 1.00 0.25 0.625

2.1. Materials

The cement used in this study, CEM II/A-S 52.5R (Ożarów, Poland), met the require-
ments of EN 197-1 [20]. Its specific surface area was measured via the BET method and was
2.59 m2/g, with its adsorption isotherm as specified in Figure 2.
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Figure 2. Adsorption isotherm of the CEM II A-S 52.5R.

The chemical composition of cement was investigated via the XRF method. The
samples were dried to dryness at 105 ◦C. Then, they were poured into previously assembled
special measuring cups. Samples prepared this way were placed in the XRF apparatus and
measured. Losses on ignition (LOI) were determined. Material samples were dried to a
constant weight and then subjected to the calcination process at 975 ◦C for 15 min. After
cooling to room temperature, the samples were weighed. The percentage loss of the initial
mass was the loss of ignition, which was included in the chemical composition results and
is presented in Table 2.

Table 2. Summary of the results of the XRF analysis of cement (%), LOI—loss on ignition.

MgO Al2O3 SiO2 P2O5 SO3 Cl K2O CaO TiO2 MnO Fe2O3 CuO ZnO SrO LOI
1.883 3.227 18.989 0.257 3.765 0.042 0.894 65.336 0.277 0.078 2.832 0.019 0.032 0.067 0.011
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The phase composition of cement was investigated via the XRD method. Cement
samples, as in the case of XRF analysis, were dried. Then, they were placed in special steel
holders and properly smoothed (a prerequisite for proper XRD measurement). The sample
prepared in this way was placed in the measuring magazine and then in the diffractometer.
The measurement was carried out in the range of 5–65◦ 2θ, with a single step of 0.02◦ 2θ
lasting 5 s (Figure 3).
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G—gypsum).

The granulation of cement was measured via the laser diffraction technique and is
presented in Figure 4. The particle size distribution (PSD) measurements were performed
by the laser scattering method using the laser analyzer Horiba LA-300. The test involved
passing laser beams through an isopropyl alcohol containing cement particles dispersed by
ultrasounds and determining the particle size (in the range of 0.01–600 µm).
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Figure 4. Relative (q) and cumulative (Q) granulation of CEM II/A-S 52,5R.

The nanoparticulate silica used in the study (Łaziska, Poland) met the requirements
of EN 13263-1 [21]. Its specific surface area was measured via the BET method and was
23.86 m2/g, with its adsorption isotherm as shown in Figure 5.
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Figure 5. Adsorption isotherm of nanoparticulate silica.

The chemical composition of nanoparticulate silica was investigated via the XRF
method, with the same test procedure as for the cement. The results are presented in
Table 3.

Table 3. Summary of the results of the XRF analysis of nano-silica (%), LOI—loss on ignition.

MgO Al2O3 SiO2 P2O5 SO3 Cl K2O CaO TiO2 MnO Fe2O3 CuO ZnO SrO LOI
0.84 - 94.64 - 0.30 0.21 1.16 0.08 - 0.07 0.50 - 0.04 - 2.16

The analysis of the nanoparticulate silica activity index was carried out as per EN 13263-
1 [21]. The results of the 28-day average compressive strength of the modified cementitious
mortar (90% cement and 10% silica) and the results of the reference cementitious mortar
are presented in Table 4.

Table 4. Strength tests of the 28-day mortar modified with nanoparticulate silica and the standard
cementitious mortar CEM I 42.5R. The standard deviation is shown in parentheses.

Material
Compressive
Strength after
28 Days (MPa)

Tensile Strength after
28 Days (MPa)

Activity Index after
28 Days (%)

Cementitious mortar modified
with nanoparticulate silica 63.4 (±2.6) 11.5 (±0.3) 123

Reference cementitious mortar 51.5 (±1.5) 8.7 (±0.7) -

The phase composition of nanoparticulate silica was investigated via the XRD method
with the same test procedure as in the case of cement. The results are presented in Figure 6.
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Figure 6. The quantitative phase composition of nanoparticulate silica.

The granulation of nanoparticulate silica was measured via the laser diffraction tech-
nique and presented in Figure 7, using the same test procedures as for the cement.
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Figure 7. Relative (q) and cumulative (Q) granulation of nanoparticulate silica.

The quartz powder used in this study met the requirements of ISO/DIS 3262-13 [22].
Its granulation was measured via the laser diffraction technique and is presented in Figure 8,
using the same test procedures as for the cement.
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The study used two types of fire-dried quartz sand aggregates of different granulations:
0.1/0.5 and 0.5/1.2 (Corrado, Poland), which met the requirements of EN 13139 [23]. Table 5
lists their properties.

Table 5. Properties and composition of fire-dried quartz sand aggregates.

Property Value

Granulation 0.5/1.2 0.1/0.5
Dust content 0.1% 0.1%

Water absorption 0.1% 0.1%
SiO2 content 99.4% 99.6%

Fe2O3 content 0.01% 0.01%
Al2O3 content 0.05% 0.06%

Solubility in water 0.0% 0.0%
Softening point 1582 ◦C 1506 ◦C
Sulfur content <1% <1%

Sand equivalent 99.17 99.06

This study used two types of titanium dioxide: TiO2 (A)—K7000 (Leverkusen, Ger-
many) and TiO2 (B)—P25 (Shanghai, PRC), with properties in the powder state as described
in [5]. The content of individual crystalline phases, the size of crystallites in tested samples,
and the specific surface area of used materials are presented in Table 6.

Table 6. The content of individual crystalline phases and the size of crystallites in the tested samples
were measured via XRD, and the specific surface area was measured via BET.

Photocatalyst
Phase (%) Size of Crystallites (nm) Specific Surface

Area (m2/g)Rutile Anatase Rutile Anatase

TiO2 (A) - 100 - 10 246.8 ± 2.9
TiO2 (B) 13 87 54 33 53.8 ± 0.2

The chemical composition of titanium dioxides was investigated via the XRF method,
with the same test procedure as for the cement. The results are presented in Table 7. The
morphology of grains of both TiO2 (A) and (B) is shown on SEM images in Figures 9 and 10.
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Table 7. Summary of the results of the XRF analysis of titanium dioxides (%).

Na2O SiO2 P2O5 SO3 Cl TiO2 Nb2O3

TiO2 (A) 0.096 0.236 0.059 0.399 - 99.2 0.023
TiO2 (B) - 0.738 - - 0.144 99.1 -
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The selected photocatalytic materials were introduced into the cementitious mortar as
a dispersion made of a portion of mixing water and a PCE superplasticizer (polycarboxylate
ether-based superplasticizer, referred to as SP), with of an electrostatic and steric mechanism
of action and maximum suggested by the manufactured mass content at 3%m.c (Myślenice,
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Poland). As titanium dioxide agglomerates in dry conditions, it was decided to use a
sonicator to reduce the average TiO2 grain size. Using a cavitation head, approx. 25 kJ
of energy was introduced into every 250 mL of dispersion during a seven-minute cycle,
consisting of 10 s steps (7 s of sonication followed by 3 s of pause).

The water used in this study met the requirements of EN 1008 [24]. An additional
mass of superplasticizer was added to cementitious mortars to modify their rheological
properties. It met the EN 934-2 standard [25] requirement and was characterized by
electrostatic and steric mechanisms of action. In each prepared cementitious mortar, the
total mass of the superplasticizer was set to 1% of the cement mass.

All described components were used to prepare cementitious mortars for the designed
experiment plan. The composition of each of the prepared cementitious mortars is presented
in Table 8.

Table 8. The composition of prepared cementitious mortars in the research plan.

Series ID
1 2 3 4 5 6 7 8 9–11

Component Unit

CEM II/A-S 52,5R

kg/m3

711 773 768 833 632 582 659 600 704
Water 306 332 269 292 272 250 231 210 275

Nanoparticulate silica 40 40 10 10 10 10 40 40 25
Quartz powder 125 41 136 44 33 103 35 106 78

Sand 0.1/0.5 523 813 904 548 1065 685 694 1130 741
Sand 0.5/1.2 523 203 226 548 266 685 694 283 463

TiO2 (A) 10 1 2.5 4 10 1 2.5 4 4.8
TiO2 (B) 10 4 2.5 16 10 4 2.5 16 7.7

Superplasticizer (SP) 7.1 7.7 7.7 8.3 6.3 5.8 6.6 6.0 7.0

2.2. Methods

Designed cementitious mortars were prepared according to the mixing procedure
described in EN 196-1 [26]. Before molding, the consistency of cementitious mortars was
tested following the modified procedure based on EN 1015-3 [27]. A cone filled with fresh
cementitious mortar was placed on the moistened plate, then removed to measure the flow
diameter after one minute. The time for the fresh mortar to flow to the limit of 20 cm was
also measured during the test to determine its viscosity. The VSI (Visual Stability Index)
criteria according to ACI 237R-07 [28] were used to assess the degree of segregation.

After examining the consistency, samples were molded and stored for 24 h in a curing
chamber (temperature 20 ± 2 ◦C, relative humidity RH ≥ 95%). After 24 h samples were
demolded and cured in the curing chamber until further testing.

Tensile and compressive strength after seven days was tested according to the EN
196-1 [26] standard using three prism-shaped specimens with dimensions of 40 mm ×
40 mm × 160 mm (with the latter halves of those prisms remaining after the three-point
bending test).

The contact angle test was performed based on the BS ISO 27448 [29] standard on
specimens with dimensions of 40 mm × 140 mm × 160 mm after 28 days of curing to
investigate the self-cleaning properties of photocatalytic cementitious mortars. Before the
test, samples were pretreated by dipping the tested surface in an n-heptane solution and
drying at 70 ◦C for 15 min afterward. Samples were then set aside for 30 min to cool to
room temperature. Next, the initial contact angle of distilled water was measured five
times in different locations on a tested surface via a goniometer. Afterward, samples were
placed in an irradiation chamber, where they were irradiated with UVA radiation (Philips
BLB 8W fluorescent lamps) with an irradiation of 10 W/m2 (Figure 11).
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The contact angle was then measured after 72, 74, and 76 h of sample exposure to
UV-A radiation in five different locations on the tested surface. The test result was a per-
centage difference in the average initial contact angle and the average value of consecutive
measurements after exposing the tested surface to UV-A radiation.

The self-cleaning properties of photocatalytic cementitious mortars were also tested
via a rhodamine test based on UNI 11259 [30]. The test monitored the colorimetric changes
of rhodamine drops on photocatalytic material subjected to UV radiation. On the tested
surface, four spots were marked with a solution of rhodamine with water at a concentration
of 0.1 g/1000 g. Each drop had a volume of 0.5 milliliters, following the UNI 11259
standard [30], and was measured with a single-channel automatic pipette. The samples
were stored in the dark for 24 h until the drops were absorbed. After the drops were
absorbed, an initial measurement was made using a spectrophotometer of the NS 810 series
(Figure 12). Spectrophotometry is a technique to measure light absorption. It uses a light
beam that passes through the sample, which absorbs or transmits light over a specific
wavelength depending on its color. Data from the test can be used to determine sample
color using various color spaces—in the case of the conducted research, the CIE Lab color
scale.
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using a spectrophotometer.

Two readings were taken for each droplet, i.e., for each surface, a total of 8 readings
per sample. The factor tested was the change in the a* parameter, i.e., a component of the
CIE L*a*b* color model: L* for lightness and a* and b* for the color opponents green-red
and blue-yellow, respectively. The values of these three variables are usually absolute, with
the L* value representing the darkest black at L* = 0 and the brightest white at L* = 100. On
the other hand, the a* value represents red and green opponents at positive and negative
values, respectively, and the b* value represents yellow and blue opponents at positive
and negative values, respectively. The a* parameter indicates the intensity of the red color
imparted to the samples by rhodamine staining. Its value is expected to decrease with time
of exposure of photocatalytic material to UV-A radiation. After the initial measurement,
samples were exposed to four hours of UV-A irradiation (Philips BLB 8 W fluorescent
lamps) of 4 W/m2 following UNI 11259 [30]. The same irradiation chamber was used as
in the case of the contact angle test. However, the distance between UV-A lamps and the
tested samples’ upper surface was changed to acquire the required irradiation.

To determine the self-cleaning properties of photocatalytic cementitious mortars, it
was investigated whether the measurement results followed the assumptions of UNI 11259
(Equations (4) and (5)) [30]. To characterize any surface with self-cleaning properties, the
change in a* parameter after 4 h under UV-A radiation should be greater than 20% (R4) and
greater than 50% after 24 h (R24). The a*(x) describes the reading on a* parameter with a
spectrophotometer after irradiating samples for x hours in an irradiation chamber.

R4 =
a∗(0)− a∗(4)

a∗(0)
·100% (4)

R24 =
a∗(0)− a∗(24)

a∗(0)
·100% (5)

The effectiveness of air purification from gaseous pollutants—nitrogen oxides—was
carried out following the procedure developed as part of the project “Technology for the
production of innovative self-cleaning prefabricated facade and surface elements that im-
prove air quality”, TECHMATSTRATEG-III/0013/2019. The test subject was photocatalytic
cementitious mortar samples with dimensions of 40 mm × 140 mm × 160 mm. After
demolding, the samples were cured for 28 days in a curing chamber. Before the test, the
tested surface was cleaned of contamination. In the first step, the surface of the test sample
was sprinkled with distilled water and scrubbed. Then, the sample was dried at 60 ◦C for
two hours and placed in the irradiation chamber for 16 h with the test surface facing the
light source, where the surface organic impurities were burned in UV-A radiation with
an irradiance of 10 W/m2. In the last step, the tested surface of the sample was cleaned



Sustainability 2023, 15, 853 13 of 27

again with distilled water to remove impurities burnt out in the previous step and dried
again at 60 ◦C for 2 h. The effectiveness of cleaning the air from gas pollutants was tested
at the earliest two hours after the last drying cycle of the sample. Cleaned of impurities, the
sample was placed in the glass reaction chamber, with the tested surface facing the light
source. The glass reaction chamber was tightly closed and sealed (Figure 13). UV-A LED
strips (360 ± 5 nm, 14.4 W/m) were used as a UV-A light source, and Sun-Like™ TRI-R™
LED strips (5000 K) were used as a visible light source. The UV-A and UV-B irradiation of
the visible light source on the sample’s surface was 0.0 W/m2, and the global irradiation
was 150 W/m2. The UV-B irradiation of the UV-A light source on the sample’s surface was
0.0 W/m2, and the global irradiation was 1.2 W/m2. UV-A and UV-B irradiations were
measured using Delta Ohm pyranometers: UV-A (315–400 nm) and UV-B (280–315 nm).
The global irradiation was measured using a Lambrecht METEO pyranometer in the range
of 285–3000 nm. The temperature in the glass reaction chamber during the experiment was
kept at a value of 25 ± 3 ◦C, and relative humidity at a value of 40 ± 5%. The gas flow was
kept at a constant value of 2 L/min.
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enclosed with shields impenetrable to UV-A and TRI-R radiation.

The quantification of the results (the concentration of NO and NOx) was conducted
using the Teledyne API T200 chemiluminescence detection analyzer (San Diego, CA, USA).
The analyzer was characterized by a lower detectable limit of 0.2 ppb (maximal 20,000 ppb),
with the precision of analysis listed as 0.5% of reading value, and the zero noise below
0.1 ppb, with expanded relative uncertainty of 9% (taking into consideration all elements
of analytical setup).

The study consisted of several stages (Figure 14), i.e.,

1. Filling the reaction chamber with nitrogen oxides to achieve its concentration of 100
+/− 5 ppb;

2. Irradiation of the sample with UV-A light with an irradiance of 0.2 W/m2 and mea-
surement of the concentration of nitrogen oxides while maintaining the gas flow from
the first step;

3. Measurement of the concentration of nitrogen oxides after switching off the light
source, while maintaining the gas flow from step one;

4. Emptying the reaction chamber of nitrogen oxides;
5. Filling the reaction chamber with nitrogen oxides to achieve its concentration of 100

+/− 5 ppb;
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6. Irradiation of the sample with visible light with an irradiance of 150 W/m2 and
measurement of the concentration of nitrogen oxides, while maintaining the gas flow
from the first step;

7. Measurement of the concentration of nitrogen oxides after switching off the light
source, while maintaining the gas flow from step one;

8. Emptying the chamber of nitrogen oxides;
9. Filling the reaction chamber with nitrogen oxides to achieve its concentration of 100

+/− 5 ppb;
10. Irradiation of the sample with UV-A light with an irradiance of 0.2 W/m2 and visible

light with an irradiance of 150 W/m2 and measurement of the concentration of
nitrogen oxides, while maintaining the gas flow from the first step;

11. Measurement of the concentration of nitrogen oxides after switching off the light
source, while maintaining the gas flow from step one;

12. Emptying the chamber of nitrogen oxides.
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Figure 14. A schematic for the performed test procedure of air purifying test for cementitious
mortar 4.

The nitrogen oxide concentration was approximately 100 ppb to model the actual NOx
concentration in the urban environment. UV-A and visible light irradiance were chosen
as 0.2 and 150 W/m2 to model the actual summer solar radiation conditions in the Polish
territory (UV index of 8–9 and visible light irradiation of 1000 W/m2–150 W/m2 were the
maximal settings of the testing apparatus).

3. Results

The results of the consistency tests of prepared photocatalytic cementitious mortars are
presented in Table 9. It was found that prepared cementitious mortars differed in rheological
properties in a selected range of variables. Depending on the mortar composition, its
free flow varied significantly, within the range of 160 to 375 mm (the mass amount of
superplasticizer was the same in all prepared series). In only two prepared series, visual
signs of segregation were observed. The time required for the sample to flow to 200 mm
was comparable between most prepared cementitious mortars, except for mortar 8, which
was characterized by too high viscosity to reach the flow of 200 mm.
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Table 9. VSI segregation, t2o, and consistency of tested cementitious mortars.

Series ID VSI t20 (s) Flow Diameter (mm)

1 0 1.0 310
2 2 1.0 375
3 1 1.0 355
4 0 1.0 330
5 0 2.0 275
6 0 2.0 300
7 0 2.5 305
8 0 - 160
9 0 1.5 300
10 0 2.0 280
11 0 2.0 290

Mechanical strength tests after seven days of curing also showed significant differences
(Figure 15). The tensile strength for all series was in the range of 6.19 MPa (mortar 11)
to 8.15 MPa (mortar 4). For compressive strength, the difference between different series
was more significant—the mortar with the lowest compressive strength was mortar 11
(55.77 MPa), and the highest was mortar 3 (77.7 MPa).
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Figure 15. Tensile (left) and compressive (right) strength of photocatalytic cementitious mortars after
seven days of curing.

The results of the self-cleaning tests via the rhodamine test are presented in Figure 16.
For the surface of the material to be described as self-cleaning, the reduction in parameter a
should be at least 20% after four hours of irradiating in UV-A light of a given irradiation
and at least 50% after 24 h. In the case of the prepared photocatalytic cementitious mortars,
the R4 value varied significantly, ranging from−1.49% for mortar 7 to−30.88% for mortar 1.
Out of the 11 prepared series, only six were characterized with an R4 parameter greater
than −20%. The R24 value also varied significantly, ranging from −7.31% for mortar 7
to −58.23% for mortar 9. Out of the 11 prepared mortars, only three were characterized
with an R24 parameter greater than 50%. Based on the experiment, out of the 11 prepared
mortars, only three surfaces could be described as self-cleaning ones.
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Figure 16. Results of self-cleaning test for photocatalytic mortars via rhodamine test.

The results of self-cleaning tests via the contact angle test are presented in Figure 17.
The limit value for this test is not specified in BS ISO 27448 [28]. In the case of the prepared
photocatalytic cementitious mortars, the change in contact angle caused by UV-A irradiation
varied significantly, ranging from −17.7% for mortar 10 to −35.0% for mortar 1. Out of the
11 prepared mortars, only seven were characterized by a reduction in contact angle greater
than 25%. Figure 18 presents the actual data that was analyzed to calculate the contact
angle in any test measurement.

The test results of the effectiveness of air purification from gaseous pollutants—
nitrogen oxides—are presented in Figure 19. The result of any given test regarding air
purification efficiency was a relative reduction in the concentration of both NO and NOx
under different irradiation conditions compared to its initial concentration with UV-A or
visible light lamps turned off.
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Figure 17. Results of self-cleaning test for photocatalytic cementitious mortars via contact angle test.
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Figure 18. The contact angle between the self-cleaning surface and the drop of distilled water. The
photograph to the left shows the initial contact angle and to the right after 72 h of UV-A radiation for
the photocatalytic mortar 4.
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Figure 19. Reduction in the concentration of NO or NOx pollutants in different types of radiation.

In the case of the prepared photocatalytic cementitious mortars, the reduction in
concentrations of both NO and NOx varied significantly between different series and in
various types of radiation present (UV-A, Visible, or both). The lowest reduction in all
irradiation environments was observed for mortar 7—for UVA reductions were 3.1% and
2.7% for NO and NOx respectively, for TRI-R reductions in pollutant concentrations were
0.9% and 0.4% for NO and NOx respectively, and for combined UVA and visible light
reductions were 3.4% and 3.0% for NO and NOx, respectively. The highest reductions in
nitrogen oxides were observed for mortar 4—for UVA reductions were 52.4% and 52.1% for
NO and NOx, respectively, for TRI-R reductions in pollutants concentrations were 18.3%
and 18.2% for NO and NOx, respectively, and for combined UVA and TRI-R reductions
were 51.6% and 50.1% for NO and NOx, respectively.

4. Discussion

The prepared research plan aimed to investigate the influence of selected material
variables on the properties of photocatalytic cementitious mortars. Several variables were



Sustainability 2023, 15, 853 18 of 27

considered, representing the components of regular mortars and photocatalytic additives.
It was found that each of the assumed variables, in the assumed range of variability,
significantly influenced at least one of the tested properties of photocatalytic materials
(Table 10). The analysis of obtained test results was conducted via screening design using
the Plackett–Burman method, a bivalent elimination plan with a triply repeated central
point, where each of the considered variables has an average value from an assumed range
of variability. In this type of statistical plan, statistically significant variables for tested
properties can be identified with a reduced number of required samples. In the conducted
research, seven different variables were considered. A photocatalyst must be included in
its composition to obtain a cementitious material with photocatalytic properties [31]. As it
represents an additional component of the mix, it is proper to assume it will also influence
other material properties [32].

Table 10. Summary of statistically significant variables on studied properties of photocatalytic
cementitious mortars based on Pareto charts with the assumption of p = 0.05 (gray color indicates the
non-significant influence of selected variables on tested property).

Property

Statistically Significant Variables

b/s w/c TiO2
(A)/TiO2 (B)

Nanoparticulate
Silica

Quartz
Powder TiO2 Mass Sand

Ratio
Consistency (mm) + - -

t20 (s) - - - + + + -
VSI (-) + - -

Tensile strength (MPa) - +
Compressive strength (Mpa) + -

Rhodamine—4 h—reduction in “a”
parameter (%) + + +

Rhodamine—24 h—reduction in “a”
parameter (%) + + +

Reduction of contact angle (%) + + - + +
NO—UVA light (%) + - +

NO—visible light (%) + - +
NO—UVA+visible light (%) + - +

NOX—UVA light (%) + - +
NOX—visible light (%) + - +

NOX—UVA+visible light (%) + - +

Although the total mass of titanium dioxides in the performed study was 5 to 20 kg/m3,
even such a small content compared to the mass content of other components had a thicken-
ing effect on the consistency of fresh mortar (Figure 20). It was found that consistency-wise,
the increase in the ratio between the binder (cement+quartz powder to sands) had a fluidiz-
ing effect on fresh mortar. This observation is logical, as the superplasticizer (SP) content
depended on the mass of cement in the mix—with an increase in the b/s ratio, the mass of
cement increased and, therefore, the SP mass amount. On the other hand, by increasing
the b/s ratio, the amount of cement paste within the mortar increases, and the amount
of sand aggregate decreases; this dependence also contributes to an increase in mortar
fluidity. Additionally, with an increase of quartz powder replacing cement, the thickening
effect on mortar’s consistency was observed, linked with an increased water demand of
fine aggregate. The observation regarding titanium dioxide content regarding rheological
properties of cementitious materials was compliant with the scientific literature on the
subject [33]. TiO2 is characterized by fine granulation, depending on the efficiency of the
breakdown of agglomerates with, for example, ultrasounds—in extreme conditions, its
granulation could be reduced to crystallite size (10–100 nm). By introducing such a fine
component into the mix, its rheology is going to be impacted.
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Figure 20. Marginal mean charts for statistically significant variables for consistency of prepared
cementitious mortars in order of significance from the left—b/s ratio, TiO2 mass content, and the
replacement percentage of cement with quartz powder.

The segregation of individual components of fresh mortar is closely linked with its
rheological properties [34]. If the yield stress of fresh mortar is high, it is characterized by
low consistency. In addition, as its plastic viscosity increases, the time required to reach a
specific flow increases. In the conducted study, the time required for the fresh mortar to
flow to a diameter of 200 mm was measured—an indirect study on the influence of selected
variables on the viscosity of fresh mortars. All assumed variables in the assumed range of
variability had a statistically significant effect on the rheological properties of fresh mortars
(Figure 21). In this graph, the effect ratings obtained by the ANOVA procedure are ordered
from the highest absolute value to the lowest. The value of each effect is represented by a
bar and a line that indicates how large the effect should be to be statistically significant (in
the conducted research, the p-value was chosen at a standard value of 0.05).
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Figure 21. Pareto chart of the absolute value of standardized effect estimate of variables considered
in the study on the t20 parameter.

An increase in TiO2, nanoparticulate silica, and quartz powder content caused an
increase in the viscosity of fresh mortars. On the other hand, an increase in b/s, w/c, and
sand ratio had the opposite effect. The thickening effect was due to an increase in fine grains
in the mortar, regardless of their material origin [35]. In the case of variables contributing to
an increase in fluidity, the change was caused by either the increase in cement paste content
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of low viscosity (due to its modification with SP), an increase in water content (fluid of low
viscosity), or an increase in the content of coarser-grained sand aggregate (0.5/1.2). The
VSI (Visual Stability Index) value for all prepared mortars was investigated as part of the
research. This method assumes grading the visual quality of a fresh mortar on a scale of 0
to 3, where 0 is no segregation and 3 is extreme segregation of fresh mortar. It was found
that three out of seven considered variables influenced this property (Figure 22). However,
out of the 11 prepared mortars, only two were characterized with a VSI higher than 0.

Sustainability 2023, 15, x FOR PEER REVIEW 20 of 28 
 

 
Figure 21. Pareto chart of the absolute value of standardized effect estimate of variables considered 
in the study on the t20 parameter. 

An increase in TiO2, nanoparticulate silica, and quartz powder content caused an 
increase in the viscosity of fresh mortars. On the other hand, an increase in b/s, w/c, and 
sand ratio had the opposite effect. The thickening effect was due to an increase in fine 
grains in the mortar, regardless of their material origin [35]. In the case of variables 
contributing to an increase in fluidity, the change was caused by either the increase in 
cement paste content of low viscosity (due to its modification with SP), an increase in 
water content (fluid of low viscosity), or an increase in the content of coarser-grained sand 
aggregate (0.5/1.2). The VSI (Visual Stability Index) value for all prepared mortars was 
investigated as part of the research. This method assumes grading the visual quality of a 
fresh mortar on a scale of 0 to 3, where 0 is no segregation and 3 is extreme segregation of 
fresh mortar. It was found that three out of seven considered variables influenced this 
property (Figure 22). However, out of the 11 prepared mortars, only two were 
characterized with a VSI higher than 0. 

   

Figure 22. Marginal mean charts for statistically significant variables for VSI of prepared mortars in 
order of significance from the left—b/s ratio, the ratio between sands 0.5/1.2 and 0.1/0.5, and TiO2 
mass content. 

In the assumed range of variability, TiO2 mass content did not influence the 
mechanical properties of hardened mortars after seven days of curing. The significant 

3,322167

-3,32217

-3,32217

3,322167

3,325498

-3,3255

-3,33882

p=,05

Absolute value of standardized effect estimate

(6)TiO2 mass [kg/m3]

(3)TiO2 (A)/ TiO2 (B)

(7)sand 0.5/1.2 to 0.1/0.5 ratio [-]

(5)quartz  powder [%]

(4)nanoparticulate silica [kg/m3]

(2)w/c [-]

(1)b/s  [-]

,5 ,8

b/s [-]

-1,0

-0,5

0,0

0,5

1,0

1,5

VS
I

,25 1,

sand 0.5/1.2 to 0.1/0.5 ratio [-]

-1,0

-0,5

0,0

0,5

1,0

1,5

VS
I

5, 20,

TiO2 mass [kg/m3]

-1,0

-0,5

0,0

0,5

1,0

1,5

VS
I

Figure 22. Marginal mean charts for statistically significant variables for VSI of prepared mortars in
order of significance from the left—b/s ratio, the ratio between sands 0.5/1.2 and 0.1/0.5, and TiO2

mass content.

In the assumed range of variability, TiO2 mass content did not influence the mechanical
properties of hardened mortars after seven days of curing. The significant variables in
the case of compressive strength were the water-to-cement ratio and binder-to-sand ratio,
and in the case of tensile strength, the water-to-cement ratio and ratio between two used
sands (Figure 23). For compressive strength, an increase in the b/s ratio also increased the
strength of the material. For tensile strength, an increase in the content of coarser sand
aggregate contributed to an increase in strength.

Sustainability 2023, 15, x FOR PEER REVIEW 21 of 28 
 

variables in the case of compressive strength were the water-to-cement ratio and binder-
to-sand ratio, and in the case of tensile strength, the water-to-cement ratio and ratio 
between two used sands (Figure 23). For compressive strength, an increase in the b/s ratio 
also increased the strength of the material. For tensile strength, an increase in the content 
of coarser sand aggregate contributed to an increase in strength. 

   

   

Figure 23. Marginal mean charts for statistically significant variables for compressive and tensile 
strength of hardened mortars after seven days of curing in order of significance from the left—w/c 
ratio and b/s ratio for compressive strength and w/c ratio and ratio between sands for tensile 
strength. The last graph for both compressive strength and tensile strength shows an influence of 
one of non-significant variables—TiO2 mass content. 

Overall, TiO2 addition influenced the properties of fresh mortar; however, it did not 
significantly contribute to any changes regarding the mechanical properties of the 
composite. In scientific literature, it is reported that a higher mass amount of TiO2 in the 
cementitious composite can act as an ultra-fine aggregate, increasing the material’s 
mechanical properties [18,36]. 

The most critical information from the conducted research was that TiO2 mass is not 
the only and not the most statistically significant variable concerning the air purification 
from nitrogen oxides and the self-cleaning properties of tested cementitious materials. 
TiO2 content was the second or third most significant variable in the considered range of 
variability, depending on the tested property. In each case, the increase in its mass content 
was equivalent to a rise in photocatalytic efficiency, either measured by air purification 
tests or self-cleaning ones. 

For all air purification tests, regardless of the type of nitrogen oxide content being 
measured (NO or NOx), three variables proved to be statistically significant. Binder-to-
sand ratio proved to be the most significant, contributing in each test to an increase in the 
efficiency of air purification (Figures 24 and 25). 

,35 ,43

w/c [-]

50

55

60

65

70

75

80

C
om

pr
es

si
ve

 s
tre

ng
th

 a
fte

r
7 

da
ys

,5 ,8

b/s [-]

60

62

64

66

68

70

72

C
om

pr
es

si
ve

 s
tre

ng
th

 a
fte

r
7 

da
ys

5, 20,

TiO2 mass [kg/m3]

63

64

65

66

67

68

69

70

C
om

pr
es

si
ve

 s
tre

ng
th

 a
fte

r
7 

da
ys

,35 ,43

w/c [-]

6,0

6,5

7,0

7,5

8,0

8,5

9,0

Te
ns

ile
 s

tre
ng

th
 [M

Pa
]

,25 1,

sand 0.5/1.2 to 0.1/0.5 ratio [-]

6,4
6,6
6,8
7,0
7,2
7,4
7,6
7,8
8,0
8,2
8,4

Te
ns

ile
 s

tre
ng

th
 [M

Pa
]

5, 20,

TiO2 mass [kg/m3]

6,8

7,0

7,2

7,4

7,6

7,8

8,0

8,2

Te
ns

ile
 s

tre
ng

th
 [M

Pa
]

Figure 23. Marginal mean charts for statistically significant variables for compressive and tensile
strength of hardened mortars after seven days of curing in order of significance from the left—w/c ratio
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and b/s ratio for compressive strength and w/c ratio and ratio between sands for tensile strength.
The last graph for both compressive strength and tensile strength shows an influence of one of
non-significant variables—TiO2 mass content.

Overall, TiO2 addition influenced the properties of fresh mortar; however, it did
not significantly contribute to any changes regarding the mechanical properties of the
composite. In scientific literature, it is reported that a higher mass amount of TiO2 in
the cementitious composite can act as an ultra-fine aggregate, increasing the material’s
mechanical properties [18,36].

The most critical information from the conducted research was that TiO2 mass is not
the only and not the most statistically significant variable concerning the air purification
from nitrogen oxides and the self-cleaning properties of tested cementitious materials.
TiO2 content was the second or third most significant variable in the considered range of
variability, depending on the tested property. In each case, the increase in its mass content
was equivalent to a rise in photocatalytic efficiency, either measured by air purification
tests or self-cleaning ones.

For all air purification tests, regardless of the type of nitrogen oxide content being
measured (NO or NOx), three variables proved to be statistically significant. Binder-to-
sand ratio proved to be the most significant, contributing in each test to an increase in the
efficiency of air purification (Figures 24 and 25).
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Figure 24. Marginal mean charts for statistically significant variables for efficiency in air purification
from NO under different light sources (UVA light, visible light (TRI), UVA + visible light) in order of
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significance from the left—b/s ratio, nanoparticulate silica mass content, and TiO2 mass content for
UVA light and b/s ratio, TiO2 mass content, and nanoparticulate silica mass content for both visible
light and UVA + visible light.
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Figure 25. Marginal mean charts for statistically significant variables for efficiency in air purification
from NOx under different light sources (UVA light, visible light (TRI), UVA + visible light) in order of
significance from the left—b/s ratio, nanoparticulate silica mass content and TiO2 mass content for
visible light and UVA + visible light, b/s ratio, TiO2 mass content, and nanoparticulate silica mass
content for UVA light.

It is well-established that incorporating photocatalytic materials in the composi-
tion of cementitious materials is the sole reason for the material to gain photocatalytic
properties [8,19,30]. However, the remaining components of the mix impact the distribution
of TiO2 within the cement matrix. From the conducted research, a conclusion can be drawn
that in the selected range of variability of mass content of titanium dioxide in the mortar,
the composition of mortar significantly impacts the properties regarding air purification.
With an increase in the binder-to-cement ratio of the material, the volume in which TiO2
has distributed increases, reducing its chance to agglomerate and increasing the surface on
which photocatalytic reactions can occur (Figure 26). In addition, TiO2 particles can act as
crystallization nuclei for hydration products. With an increase in the b/s ratio of the mortar,
the phenomenon of self-drying of the cement matrix is intensified, limiting its hydration
degree and the number of TiO2 particles being wholly covered with hydration products.
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Figure 26. Agglomeration phenomenon of TiO2 grains—SEM (SE) micrographs of the surface of
prepared mortars with EDS mapping of qualitative imaging of TiO2 presence: (a) SEM (SE) of mortar
of b/s = 0.8; (b) SEM (SE) with EDS mapping of TiO2 (white grains) of mortar of b/s = 0.8; (c) SEM
(SE) of mortar of b/s = 0.5; (d) SEM (SE) with EDS mapping of TiO2 (white grains—agglomerates)
mortar of b/s = 0.5.

The effect of nanoparticulate silica was opposite to that of the b/s ratio, as it is a
component of the mix added to increase the tightness of the material and acts as an
ultra-fine filling material, reducing the exposure of titanium dioxide to sun radiation.
Interestingly, changes in the water-to-cement ratio did not contribute to the difference in
the efficiency in purifying the air from NO and NOx, suggesting that either its variability
was chosen in too narrow a scope or that the porosity of the cement matrix has a negligible
effect on the intensity of photocatalytic reactions.

The rhodamine test also singled out three variables having a significant influence on
the self-cleaning properties of the material (Figure 27). The total mass content of titanium
dioxide was the most statistically significant, followed by the binder-to-sand ratio and
the water-to-cement ratio. Contrary to air purification tests, an increase in the porosity of
the cement matrix caused by an increase in the water-to-cement ratio led to an increase in
the self-cleaning properties of prepared mortars. A drop of rhodamine solution or water
is placed directly on the tested surface in both the rhodamine test and the contact angle
test. Properties of that surface influence the initial size of the contact plane between the
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object whose properties are tested (contact angle for the drop of water, change in color
for rhodamine). In the case of air purification tests, the influence of surface properties is
slimmer and comes down to the surface covered in TiO2, as gaseous pollutants need to be
in contact with the photocatalyst physically.
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Figure 27. Marginal mean charts for statistically significant variables for self-cleaning via rhodamine
test after 4 and 24 h of radiating samples with UVA light in order of significance from the left—TiO2

mass content, b/s ratio, and w/c ratio.

The binder-to-sand ratio also influenced the material’s ability to self-clean tested via
the rhodamine test. As shown before, an increase in its value contributes to an increase in
the composite’s ability to purify the air from pollutants. It is safe to assume that due to
better dispersion of titanium dioxide within the cement matrix in the case of increasing b/s
ratio value, better exposure of TiO2 grains to the radiation source was obtained, increasing
materials’ self-cleaning properties.

Finally, the final self-cleaning test concerning the change in the contact angle between
a drop of distilled water and the tested surface showed a statistically significant influence
of five assumed variables (Figure 28). The most significant of them was the binder-to-
sand ratio, followed by TiO2 content and nanoparticulate silica mass content. All of the
significant variables influenced the contact angle reduction after exposure to UVA radiation,
except the ratio between the two photocatalysts used in the study. As in the rhodamine
test, the properties of the tested surface, except the TiO2 content, influenced the course of
the test.

Out of the seven included variables, three did not influence the air purification and
self-cleaning properties of photocatalytic mortars—the replacement level of cement with
quartz sand, the sand ratio, and the mass ratio between two photocatalysts. In the case of
quartz powder, the range of variability was probably too narrow. Even if that was the case,
the information that part of cement can be replaced with a material with a significantly
lower carbon footprint without compromising its photocatalytic properties presents a vital
conclusion from the performed research. The assumed variability of mass ratio between
two sands of different granulations was wide; however, it did not affect the photocatalytic
properties of prepared mortars. This phenomenon could be related to the amount of cement
paste in the prepared mortars, represented by the binder-to-sand ratio. The ratio between
cement and fine aggregate in regular cement mortars is usually 0.33 to 0.5. In that case, the
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aggregate can impact the properties of the surface of the material, for example, its roughness.
In the conducted study, the cement paste volume proved to be high enough compared to
the volume of aggregate to mitigate its influence on surface properties completely.
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a drop of distilled water and the tested surface showed a statistically significant influence 
of five assumed variables (Figure 28). The most significant of them was the binder-to-sand 
ratio, followed by TiO2 content and nanoparticulate silica mass content. All of the significant 
variables influenced the contact angle reduction after exposure to UVA radiation, except 
the ratio between the two photocatalysts used in the study. As in the rhodamine test, the 
properties of the tested surface, except the TiO2 content, influenced the course of the test. 
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Figure 28. Marginal mean charts for statistically significant variables for self-cleaning via contact
angle test in order of significance from the top left—b/s mass ratio, TiO2 mass content, nanoparticulate
silica content, w/c ratio, and the ratio between two types of titanium dioxide.

The lack of influence of the type of photocatalyst on the properties of photocatalytic
mortars, despite the differences in their properties (mainly specific surface and crystallite
size), was probably caused by the susceptibility of a TiO2 of a higher specific surface
area to agglomerate (TiO2 (A)). Usually, the higher the surface area, the higher the risk
of agglomeration of any material [36,37]. In the performed research, it is probable that
TiO2 (A), a photocatalyst of a higher potential in air purification, had reduced to a level
comparable with TiO2 (B). It could be argued that using photocatalysts of high specific
surfaces could prove ineffective in cementitious composites; however, such a claim requires
further studies on the subject.

5. Conclusions

Based on performed research, for the considered variables within the assumed scope
of variability, several conclusions can be made:

• TiO2 mass content and other components of cementitious materials have a statistically
significant influence on both air purification from NO and NOx and the self-cleaning
properties of the material.

• Increasing the binder-to-sand ratio of the cementitious material instead of the mass
content of titanium dioxide has a positive effect on the photocatalytic properties of the
material.

• Nanoparticulate silica addition to the cementitious material has a negative effect on
the air purification performance of the photocatalytic material.

• TiO2 addition has a thickening effect on the rheological properties of cementitious
materials and therefore limits the segregation of different components from the mix.

• Self-cleaning properties of photocatalytic materials, except for the mass content of
titanium dioxide, depend on the binder-to-sand ratio and water-to-cement ratio.
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• TiO2 mass content does not influence the mechanical properties of photocatalytic
mortars after seven days if added up to 20 kg/m3.
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