A Soil Screening Study to Evaluate Soil Health for Urban Garden Applications in Hartford, CT
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Locations and Sampling Methodology
2.2. Sample Preparation
2.3. Analytical Methods
2.4. Statistical Analyses
3. Results and Discussion
3.1. Comparison of Testing Methodologies
3.2. Moisture Content Effect on pXRF Analysis
3.3. C and N Content
3.4. Implications for Soil Health
- 400 ppm: Eight samples exceed it for ICP-MS and in situ pXRF versus 9 for pellet pXRF, indicating that pXRF is equivalent or more conservative than ICP-MS at this threshold.
- 120 ppm: 21 samples exceed it for ICP-MS versus 23 for both pellet and in situ pXRF, also showing that pXRF is more conservative than ICP-MS at this threshold.
- The Pb dataset as a whole indicates that pXRF is likely to be more conservative compared to ICP-MS when evaluating soil samples, regardless of the threshold level, which agrees with the statistical analysis that shows pXRF yields higher concentrations compared to ICP-MS (10% higher on average for the in situ pXRF dataset).
- 400 ppm: Seven samples exceed it in the wet dataset compared to eleven samples in the dry dataset.
- 120-ppm: 28 samples exceed it in both datasets.
4. Conclusions and Recommendations
- Moisture exceeding 5% introduced a dilution effect that may be accounted for with a correction factor of 1.2–1.3 regardless of the moisture content.
- pXRF is reliable as a screening tool when used to evaluate exceedances for regulatory thresholds that exceed 100 ppm. For lower thresholds, wet laboratory analyses are recommended.
- For thresholds exceeding 100 ppm, it is recommended that samples analyzed by pXRF that yield values within 30% of the threshold are also analyzed by wet chemistry.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brown, K.H.; Jameton, A.L. Public Health Implications of Urban Agriculture. J. Public Health Policy 2000, 21, 20. [Google Scholar] [CrossRef] [PubMed]
- Relf, P. The Role of Horticulture in Human Well-Being and Social Development: A National Symposium; Timber Press: Portland, OR, USA, 1990; Volume 10, p. 14. [Google Scholar]
- Sommers, P.; Smit, J. Promoting Urban Agriculture: A Strategy Framework for Planners in North America, Europe, and Asia; IDRC Report 9; The Urban Agricultural Network: Washington, DC, USA, 1994; pp. 1–8. [Google Scholar]
- Heimlich, R.E.; Barnard, C.H. Agricultural Adaptation to Urbanization: Farm Types in Northeast Metropolitan Areas. Northeast. J. Agric. Resour. Econ. 1992, 21, 50–60. [Google Scholar] [CrossRef]
- Viswanathan, B. Effect of Pervious and Impervious Pavement on the Rhizosphere of American Sweetgum (Liquidambar styracifllua). Master’s Thesis, Texas A&M University, College Station, TX, USA, May 2010. [Google Scholar]
- Niemelä, J.; Saarela, S.-R.; Söderman, T.; Kopperoinen, L.; Yli-Pelkonen, V.; Väre, S.; Kotze, D.J. Using the ecosystem services approach for better planning and conservation of urban green spaces: A Finland case study. Biodivers. Conserv. 2010, 19, 3225–3243. [Google Scholar] [CrossRef]
- Lin, B.B.; Philpott, S.M.; Jha, S. The future of urban agriculture and biodiversity-ecosystem services: Challenges and next steps. Basic Appl. Ecol. 2015, 16, 189–201. [Google Scholar] [CrossRef]
- Drescher, A.W.; Holmer, R.J.; Iaquinta, D.L. Urban homegardens and allotment gardens for sustainable livelihoods: Management strategies and institutional environments. In Tropical Homegardens: A Time-Tested Example of Sustainable Agroforestry; Kumar, B.M., Nair, P.K.R., Eds.; Springer: Dordrecht, The Netherlands, 2006; pp. 317–338. [Google Scholar] [CrossRef]
- Whitford, V.; Ennos, A.R.; Handley, J.F. “City form and natural process”—Indicators for the ecological performance of urban areas and their application to Merseyside, UK. Landsc. Urban Plan. 2001, 57, 91–103. [Google Scholar] [CrossRef]
- Nogeire-McRae, T.; Ryan, E.P.; Jablonski, B.; Carolan, M.; Arathi, H.S.; Brown, C.S.; Saki, H.H.; McKeen, S.; Lapansky, E.; Schipanski, M.E. The Role of Urban Agriculture in a Secure, Healthy, and Sustainable Food System. Bioscience 2018, 68, 748–759. [Google Scholar] [CrossRef]
- Scanlon, B.R.; Jolly, I.; Sophocleous, M.; Zhang, L. Global impacts of conversions from natural to agricultural ecosystems on water resources: Quantity versus quality. Water Resour. Res. 2007, 43, 1–17. [Google Scholar] [CrossRef]
- Rashmi, I.; Roy, T.; Kartika, K.S.; Pal, R.; Coumar, V.; Kala, S.; Shinoji, K.C. Organic and inorganic fertilizer contaminants in agriculture: Impact on soil and water resources. In Contaminants in Agriculture: Sources, Impacts and Management; Naeem, M., Ansari, A., Gill, S., Eds.; Springer: Cham, Swtizerland, 2020; pp. 3–41. [Google Scholar]
- Doran, J.W.; Zeiss, M.R. Soil health and sustainability: Managing the biotic component of soil quality. Appl. Soil Ecol. 2000, 15, 3–11. [Google Scholar] [CrossRef]
- Lehmann, J.; Bossio, D.A.; Kögel-Knabner, I.; Rillig, M.C. The concept and future prospects of soil health. Nat. Rev. Earth Environ. 2020, 1, 544–553. [Google Scholar] [CrossRef]
- Cardoso, E.J.B.N.; Vasconcellos, R.L.F.; Bini, D.; Miyauchi, M.Y.H.; dos Santos, C.A.; Alves, P.R.L.; de Paula, A.M.; Nakatani, A.S.; Pereira, J.D.M.; Nogueira, M.A. Soil health: Looking for suitable indicators. What should be considered to assess the effects of use and management on soil health? Sci. Agric. 2013, 70, 274–289. [Google Scholar] [CrossRef]
- Le Guillou, F.; Wetterlind, W.; Rossel, R.V.; Hicks, W.S.; Grundy, M.; Tuomi, S. How does grinding affect the mid-infrared spectra of soil and their multivariate calibrations to texture and organic carbon? Soil Res. 2015, 53, 913–921. [Google Scholar] [CrossRef]
- Hallett, S.; Hoagland, L.; Toner, E. Urban Agriculture: Environmental, Economic and Social Perspectives. In Horticulture Reviews; Janick, J., Ed.; John Wiley & Sons: Hoboken, NJ, USA, 2016; Volume 44, pp. 75–94. [Google Scholar] [CrossRef]
- Lupolt, S.N.; Agnew, J.; Burke, T.A.; Kennedy, R.D.; Nachman, K.E. Key considerations for assessing soil ingestion exposures among agricultural workers. J. Expo. Sci. Environ. Epidemiol. 2021, 32, 481–492. [Google Scholar] [CrossRef]
- Balogh, A. Comparison of Risk Assessment Parameters for Homegrown Produce in Various Models. U.S. EPA Report. Available online: https://semspub.epa.gov/work/HQ/100002896.pdf (accessed on 21 December 2022).
- Whitzling, L.; Wander, M.; Phillips, E. Testing and educating on urban soil lead: A case of Chicago community gardens. J. Agric. Food Syst. Community Dev. 2010, 1, 167–185. [Google Scholar] [CrossRef]
- Prasad, L.; Nazareth, B. Contamination of allotment soil with lead: Managing potential risks to health. J. Public Health 2000, 22, 525–530. [Google Scholar] [CrossRef] [PubMed]
- Clark, H.F.; Hausladen, D.M.; Brabander, D.J. Urban gardens: Lead exposure, recontamination mechanisms, and implications for remediation design. Environ. Res. 2008, 107, 312–319. [Google Scholar] [CrossRef] [PubMed]
- Hynes, H.P.; Maxfield, R.; Carroll, P.; Hillger, R. Dorchester lead-safe yard project: A pilot program to demonstrate low-cost, on-site techniques to reduce exposure to lead-contaminated soil. J. Urban Health 2001, 78, 199–211. [Google Scholar] [CrossRef]
- Binns, H.J.; Gray, K.A.; Chen, T.; Finster, M.E.; Peneff, N.; Schaefer, P.; Ovsey, V.; Fernandes, J.; Brown, M.; Dunlap, B. Evaluation of landscape coverings to reduce soil lead hazards in urban residential yards: The Safer Yards Project. Environ. Res. 2004, 96, 127–138. [Google Scholar] [CrossRef]
- Blaylock, M.J.; Salt, D.E.; Dushenkov, S.; Zakharova, O.; Gussman, C.; Kapulnik, Y.; Ensley, B.D.; Raskin, I. Enhanced Accumulation of Pb in Indian Mustard by Soil-Applied Chelating Agents. Environ. Sci. Technol. 1997, 31, 860–865. [Google Scholar] [CrossRef]
- Bowers, C. Matrix Effect Corrections in X-ray Fluorescence Spectrometry. J. Chem. Educ. 2019, 96, 2597–2599. [Google Scholar] [CrossRef]
- Parsons, C.; Grabulosa, E.M.; Pili, E.; Floor, G.H.; Roman-Ross, G.; Charlet, L. Quantification of trace arsenic in soils by field-portable X-ray fluorescence spectrometry: Considerations for sample preparation and measurement conditions. J. Hazard. Mater. 2013, 262, 1213–1222. [Google Scholar] [CrossRef]
- Croffie, M.E.T.; Williams, P.N.; Fenton, O.; Fenelon, A.; Metzger, K.; Daly, K. Optimising Sample Preparation and Calibrations in EDXRF for Quantitative Soil Analysis. Agronomy 2020, 10, 1309. [Google Scholar] [CrossRef]
- Tavares, T.R.; Nunes, L.C.; Alves, E.E.N.; de Almeida, E.; Maldaner, L.F.; Krug, F.J.; de Carvalho, H.W.P.; Molin, J.P. Simplifying Sample Preparation for Soil Fertility Analysis by X-ray Fluorescence Spectrometry. Sensors 2019, 19, 5066. [Google Scholar] [CrossRef] [PubMed]
- Weindorf, D.C.; Zhu, Y.; Chakraborty, S.; Bakr, N.; Huang, B. Use of portable X-ray fluorescence spectrometry for environmental quality assessment of peri-urban agriculture. Environ. Monit. Assess. 2011, 184, 217–227. [Google Scholar] [CrossRef] [PubMed]
- U.S. EPA 600/R-96/084 Guidance for Data Quality Assessment: Practical Methods for Data Analysis EPA QA/G-9, QA00 Version. 2000. Available online: https://semspub.epa.gov/work/06/217322.pdf (accessed on 21 December 2022).
- Gallhofer, D.; Lottermoser, B.G. The Influence of Spectral Interferences on Critical Element Determination with Portable X-ray Fluorescence (pXRF). Minerals 2018, 8, 320. [Google Scholar] [CrossRef]
- Goff, K.; Schaetzl, R.J.; Chakraborty, S.; Weindorf, D.C.; Kasmerchak, C.; Bettis, E.A. Impact of sample preparation methods for characterizing the geochemistry of soils and sediments by portable X-ray fluorescence. Soil Sci. Soc. Am. J. 2019, 84, 131–143. [Google Scholar] [CrossRef]
- Bellon-Maurel, V.; McBratney, A. Near-infrared (NIR) and mid-infrared (MIR) spectroscopic techniques for assessing the amount of carbon stock in soils—Critical review and research perspectives. Soil Biol. Biochem. 2011, 43, 1398–1410. [Google Scholar] [CrossRef]
- Metzger, K.; Zhang, C.; Daly, K. From benchtop to handheld MIR for soil analysis: Predicting lime requirement and organic matter in agricultural soils. Biosyst. Eng. 2021, 204, 257–269. [Google Scholar] [CrossRef]
- Foxx, H.A. Using the Spatial Variability of Lead in Urban Soils and Demographic Variables to Predict Exposure Risks: An Environmental Justice Analysis in Terre Haute, Indiana. Master’s Thesis, Indiana State University, Terre Haute, Indiana, August 2014. [Google Scholar]
- Czimczik, C.I.; Masiello, C. Controls on black carbon storage in soils. Glob. Biogeochem. Cycles 2007, 21. [Google Scholar] [CrossRef]
- Esiana, B.O.I.; Berns, A.E.; Adderley, W.P.; Bol, R. Organic Carbon Speciation in Urban Anthrosols—The Legacy of Historical Waste Management. Soil Syst. 2022, 6, 53. [Google Scholar] [CrossRef]
- Gilliam, F.S. Response of the herbaceous layer of forest ecosystems to excess nitrogen deposition. J. Ecol. 2006, 94, 1176–1191. [Google Scholar] [CrossRef]
- Girmay, G.; Singh, B.R.; Mitiku, H.; Borresen, T.; Lal, R. Carbon stocks in Ethiopian soils in relation to land use and soil management. Land Degrad. Dev. 2008, 19, 351–367. [Google Scholar] [CrossRef]
- Lorenz, K.; Lal, R. Biogeochemical C and N cycles in urban soils. Environ. Int. 2009, 35, 1–8. [Google Scholar] [CrossRef] [PubMed]
- U.S. EPA. Guidance for Developing Ecological Soil Screening Levels (as Revised in 2005). Available online: https://www.epa.gov/sites/default/files/2015-09/documents/ecossl_guidance_chapters.pdf (accessed on 15 January 2023).
- U.S. EPA. Interim Ecological Soil Screening Level Documents. Available online: https://www.epa.gov/chemical-research/interim-ecological-soil-screening-level-documents (accessed on 11 November 2022).
- U.S. EPA. Regional Screening Levels (RSLs)—Generic Tables Resident Soil (as Revised in 2022). Available online: https://semspub.epa.gov/work/HQ/403632.pdf (accessed on 21 December 2022).
- CT Gen Stat §22a-133k-2 (as Revised in 2021). Available online: https://portal.ct.gov/-/media/DEEP/site_clean_up/remediation_regulations/RSR_2-16-21-with-indents.pdf (accessed on 21 December 2022).
Statistical Test | Pb | Cr | As | |
---|---|---|---|---|
In situ pXRF vs. AD/ICP-MS | t-test p-value | 0.8365 | 1.810 × 10−19 | 2.390 × 10−4 |
F-test p-value | 0.6326 | 0 | 4.440 × 10−4 | |
Avg. % difference 1 | 9.941 | 106.3 | 66.16 | |
Pellet pXRF vs. AD/ICP-MS | t-test p-value | 0.4901 | 1.800 × 10−16 | n.a. * |
F-test p-value | 0.01063 | 0 | n.a. * | |
Avg. % difference 1 | 21.15 | 104.0 | n.a. * |
Element | F-Test for Dataset Comparison p-Value | Avg. % Difference 1 |
---|---|---|
Pb | 0.08123 | −11.22 |
Ni | 2.472 × 10−8 | 29.47 |
Cu | 0.01342 | 4.415 |
Zn | 4.554 × 10-4 | 8.116 |
Element | EPA Eco-SSL (Plants) a | EPA RSL Residential Soil b | CT Residential DEC c |
---|---|---|---|
As | 18 | 35 | 10 |
Cr (III) | n.a. | 120,000 | 3900 |
Cr (VI) | n.a. | 230 | 100 |
Cu | 70 | 3100 | 2500 |
Pb | 120 | 400 | 400 |
Ni | 38 | 1500 | 1400 |
Se | 0.52 | 390 | 340 |
Zn | 160 | 23,000 | 20,000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Clos, H.; Chrysochoou, M.; Bompoti, N.; Isleib, J. A Soil Screening Study to Evaluate Soil Health for Urban Garden Applications in Hartford, CT. Sustainability 2023, 15, 7924. https://doi.org/10.3390/su15107924
Clos H, Chrysochoou M, Bompoti N, Isleib J. A Soil Screening Study to Evaluate Soil Health for Urban Garden Applications in Hartford, CT. Sustainability. 2023; 15(10):7924. https://doi.org/10.3390/su15107924
Chicago/Turabian StyleClos, Hayley, Marisa Chrysochoou, Nefeli Bompoti, and Jacob Isleib. 2023. "A Soil Screening Study to Evaluate Soil Health for Urban Garden Applications in Hartford, CT" Sustainability 15, no. 10: 7924. https://doi.org/10.3390/su15107924
APA StyleClos, H., Chrysochoou, M., Bompoti, N., & Isleib, J. (2023). A Soil Screening Study to Evaluate Soil Health for Urban Garden Applications in Hartford, CT. Sustainability, 15(10), 7924. https://doi.org/10.3390/su15107924