Numerical Study of the Internal Fluid Dynamics of Draft Tube in Seawater Pumped Storage Hydropower Plant
Abstract
:1. Introduction
2. Simulation Configuration
2.1. Model Parameters and Computing Domain
2.2. Grid Division
2.3. Turbulence Model and Boundary Conditions
2.4. Selection of Working Conditions at Calculation Points
3. Validation of Simulation Method
4. Results and Discussion
4.1. Pressure and Velocity Distribution in Draft Tube
4.2. The Peak Value of Pressure Pulsation
4.3. Characteristics of Draft Tube Pressure Pulsation
4.4. Classification of Major Frequencies
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
Cp | Coefficient of pressure fluctuation |
CD | DES turbulence model constant |
D1 | Inlet diameter of runner (m) |
D2 | Outlet diameter of runner (m) |
f | Frequency (Hz) |
fn | Rotation frequency (Hz) |
g | Acceleration of gravity (m/s2) |
H | Head (m) |
K | Production term of turbulent kinetic energy |
Kz | Pressure sensitivity coefficient |
lp | Prototype length (m) |
lm | Model length (m) |
n | Rotational speed (r/min) |
n11 | Specific speed (r/min) |
p | Static pressure (Pa) |
Q11 | Specific flow rate (m3/s) |
S | Generalized source term of momentum equation |
Si | Invariant measure of the strain rate |
Z | Elevation of the free surface (m) |
α0 | Guide vane opening (degree) |
σk | Constant of the turbulence model |
ρ | Density (kg/m3) |
μ | Dynamic viscosity (Pa s) |
φ | Velocity potential |
Γ | Fluid parameters |
Ω | Vorticity tensor |
η | Efficiency (%) |
λ | Eigenvalue of the characteristic equation |
λk | Scale length of wave model |
λp | Scale of wave pressure |
λf | Scale of wave frequency |
ΔH | Peak value of pressure pulsation (m) |
ΔH′ | Relative pressure pulsation amplitude (%) |
CFD | Computational fluid dynamics |
DES | Detached eddy simulation |
FFT | Fast Fourier transform |
LES | Large eddy simulation |
RANS | Reynolds-averaged Navier–Stokes |
SST | Shear stress transport |
SIMPLEC | Semi-Implicit Method for Pressure-Linked Equations-Consistent |
References
- 2017/68; Resource Census Results of Seawater Pumped Storage Hydropower Plant. National Energy Administration: Beijing, China, 2017.
- Zhang, X.; Zhang, P.; Chen, X. Development and application of seawater pumped storage hydropower plant. Mech. Electr. Tech. Hydropower Plant 2019, 42, 66–70. [Google Scholar] [CrossRef]
- He, R.F.; Wang, F.; Zhang, H. Technical route and key parameters selection of seawater variable speed pumped storage units. Water Res. Hydro. Eng. 2020, 51, 184–189. [Google Scholar] [CrossRef]
- Timoshevskiy, M.V.; Churkin, S.A.; Kravtsova, A.Y.; Pervunin, S.K.; Dmitriy, M.M. Cavitating flow around a scaled-down model of guide vanes of a high-pressure turbine. Int. J. Multiphase Flow 2016, 78, 75–87. [Google Scholar] [CrossRef]
- Shi, W.H.; Cha, H.; Luo, H.; Wang, K.Y. Preliminary study on development of seawater pumped storage hydropower plant in China. China Energy 2015, 37, 36–40. [Google Scholar]
- Ramos, H.M.; Amaral, M.P.; Covas, D.I.C. Pumped-Storage Solution towards Energy Efficiency and Sustainability: Portugal Contribution and Real Case Studies. J. Water Resour. Prot. 2014, 06, 1099–1111. [Google Scholar] [CrossRef]
- Fujihara, T.; Imano, H.; Oshima, K. Development of Pump Turbine for seawater Pumped-storage hydropower Plant. J. Am. Soc. Civ. Eng. 1998, 47, 199–202. [Google Scholar]
- Wang, X.; Liu, D.; Liu, X.; Wen, T.; Lianchen, X. Analysis on flow structures and pressure pulsation in vaneless space of reversible pump turbine. J. Hydrol. Eng. 2021, 40, 59–72. [Google Scholar] [CrossRef]
- Goyal, R.; Trivedi, C.; Kumar Gandhi, B.; Cervantes, M.J. Numerical simulation and validation of a high head model Francis turbine at part load operating condition. J. Inst. Eng. 2018, 99, 557–570. [Google Scholar] [CrossRef]
- Guo, T.; Xu, L.H.; Luo, Z.M. Influence of Upstream Disturbance on Vortex Rope Evolution and Pressure Fluctuation in Draft Tube. J. Trans. Chin. Soc. Agric. Mach. 2022, 53, 192–570. [Google Scholar]
- Wang, T.T.; Zhang, C.B.; Xie, T.T.; Cao, W.Z. Analysis on vortex ropes and pressure pulsations in draft tube of variable-speed Francis turbine. J. Hydrol. Eng. 2021, 40, 95–101. [Google Scholar] [CrossRef]
- Zhang, Y.N.; Liu, K.H.; Li, J.W.; Xian, H.Z.; Du, X.Z. Analysis of the vortices in the inner flow of reversible pump turbine with the new omega vortex identification method. J. Hydro. 2018, 30, 463–469. [Google Scholar] [CrossRef]
- Zhou, L.J.; Wang, Z.W.; Huang, Y.F. Draft tube surge and runner outlet flow patterns. J. Tsinghua Univ. Sci. Technol. 2002, 42, 1670–1673. [Google Scholar] [CrossRef]
- Ji, J.T.; Zheng, X.B.; Luo, X.Q. Analysis of pressure fluctuation in draft tube based on simulation of unsteady flow in whole passage of axial flow turbine. J. Hydrol. Eng. 2009, 28, 147–151. [Google Scholar]
- Gao, X. Study of flow characteristics of draft tube of tidal power station. Eng. J. Wuhan Univ. 2019, 52, 594–599. [Google Scholar] [CrossRef]
- Ji, L.; Xu, L.; Peng, Y.; Zhao, X.; Li, Z.; Tang, W.; Liu, D.; Liu, X. Experimental and Numerical Simulation Study on the Flow Characteristics of the Draft Tube in Francis Turbine. Machines 2022, 10, 230. [Google Scholar] [CrossRef]
- Wang, Z.; Zhu, B.; Wang, X.; Qin, D. Pressure Fluctuations in the S-Shaped Region of a Reversible Pump-Turbine. Energies 2017, 10, 96. [Google Scholar] [CrossRef]
- Cavazzini, G.; Covi, A.; Pavesi, G.; Ardizzon, G. Analysis of the unstable behavior of a pump-turbine in turbine mode: Fluid-dynamical and spectral characterization of the S-shape characteristic. J. Fluids Eng. 2016, 138, 021105. [Google Scholar] [CrossRef]
- Yang, J.; Lv, Y.; Liu, D.; Wang, Z. Pressure Analysis in the Draft Tube of a Pump-Turbine under Steady and Transient Conditions. Energies 2021, 14, 4732. [Google Scholar] [CrossRef]
- Guo, T.; Xu, L.; Wang, W. Influence of Upstream Disturbances on the Vortex Structure of Francis Turbine Based on the Criteria of Identification of Various Vortexes. Energies 2021, 14, 7626. [Google Scholar] [CrossRef]
- Chen, T.; Zheng, X.H.; Zhang, Y.N.; Li, S.C. Influence of upstream disturbance on the draft-tube flow of Francis turbine under part-load conditions. J. Hydrodyn. 2018, 30, 131–139. [Google Scholar] [CrossRef]
- Dewan, Y.; Custer, C.; Ivashchenko, A. Simulation of the Francis-99 Hydro Turbine During Steady and Transient Operation. J. Phys. Confer. Ser. 2017, 782, 12003. [Google Scholar] [CrossRef]
- Nam, M.C.; Dechun, B.; Yue, X.G.; Jin, M.R. Design optimization of hydraulic turbine draft tube based on CFD and DOE method. Earth. Environ. Sci. 2018, 136, 012019. [Google Scholar] [CrossRef]
- Zheng, Y.; Jiang, W.Q.; Chen, Y.J.; Sun, O.R. Investigation on low frequency pulsating and draft tube vortex of tubular turbine. J. Trans. Chin. Soc. Agric. Mach. 2018, 49, 165–171. [Google Scholar] [CrossRef]
- Peng, S.Y.; Li, Z.G.; Li, X.R.; Chai, X.; Liu, D.Y.; Zhao, Y.Z.; Liu, X.B.; Wang, W.J. Flow analysis of tubular turbine draft tube based on vortex analysis. Eng. J. Wuhan Univ. 2020, 53, 679–685. [Google Scholar] [CrossRef]
- Yu, J.M.; Ji, Q.Y.; Zheng, H.; Yang, L.Y.; Wang, R.Q.; Chen, C.J. The investigation of wave energy in Zhoushan coastal area based on SWAN model. Mar. Fore. 2020, 37, 38–49. [Google Scholar] [CrossRef]
- Huang, D.B. Fundamentals of Water Wave Theory; National Defense Industry Press: Beijing, China, 2011; ISBN 978-71-1807-651-6. [Google Scholar]
- JTJ/T 234-2001; Wave Model Test Regulation. Nanjing Hydraulic Research Institute: Nanjing, China, 2002.
- Zheng, Y.; Chen, D.X. Hydraulic Turbine; China Water and Power Press: Beijing, China, 2011; ISBN 978-75-0848-368-9. [Google Scholar]
- Xu, L.C.; Peng, Y.J.; Tang, W.; Liu, D.M.; Liu, X.B. Flow characteristics and pressure pulsation in the S characteristic area of model pump turbine. Chin. J. Hydro. 2022, 37, 213–225. [Google Scholar] [CrossRef]
- Lu, J.; Qian, Z.; Lee, Y.H. Numerical investigation of unsteady characteristics of a pump turbine under runaway condition. Renew. Energy 2021, 169, 905–924. [Google Scholar] [CrossRef]
- Yu, A.; Wang, Y.; Tang, Q.; Lv, R.; Yang, Z. Investigation of the vortex evolution and hydraulic excitation in a pump-turbine operating at different conditions. Renew. Energy 2021, 171, 462–478. [Google Scholar] [CrossRef]
Parameters | Initial Settings |
---|---|
Runner inlet diameter D1 | 552.2 mm |
Runner outlet diameter D2 | 250 mm |
Number of runner blades | 7 |
Number of stay vanes | 20 |
Number of guide vanes | 20 |
Rated head | 32 m |
Rated speed | 1000/min |
Working Condition | Relative Opening of Guide Vane is α0 (Degrees) | Unit Speed n11 (r/min) | Unit Flow Q11 (m3/s) | Outlet Pressure, Pout (Pa), of Draft Tube |
---|---|---|---|---|
Hydraulic turbine operating condition (Without wave disturbance) | 6 | 40 | 0.19542 | 0 |
12 | 40 | 0.41603 | 0 | |
24 | 40 | 0.65730 | 0 | |
Hydraulic turbine operating condition (wave disturbance) | 6 | 40 | 0.19542 | |
12 | 40 | 0.41603 | ||
24 | 40 | 0.65730 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, J.; Wang, Q.; Meng, Z.; Song, H.; Chen, B.; Shen, H. Numerical Study of the Internal Fluid Dynamics of Draft Tube in Seawater Pumped Storage Hydropower Plant. Sustainability 2023, 15, 8327. https://doi.org/10.3390/su15108327
Hu J, Wang Q, Meng Z, Song H, Chen B, Shen H. Numerical Study of the Internal Fluid Dynamics of Draft Tube in Seawater Pumped Storage Hydropower Plant. Sustainability. 2023; 15(10):8327. https://doi.org/10.3390/su15108327
Chicago/Turabian StyleHu, Jianyong, Qingbo Wang, Zhenzhu Meng, Hongge Song, Bowen Chen, and Hui Shen. 2023. "Numerical Study of the Internal Fluid Dynamics of Draft Tube in Seawater Pumped Storage Hydropower Plant" Sustainability 15, no. 10: 8327. https://doi.org/10.3390/su15108327
APA StyleHu, J., Wang, Q., Meng, Z., Song, H., Chen, B., & Shen, H. (2023). Numerical Study of the Internal Fluid Dynamics of Draft Tube in Seawater Pumped Storage Hydropower Plant. Sustainability, 15(10), 8327. https://doi.org/10.3390/su15108327