Systematic Search Using the Proknow-C Method for the Characterization of Atmospheric Particulate Matter Using the Materials Science Techniques XRD, FTIR, XRF, and Raman Spectroscopy
Abstract
:1. Introduction
2. Search Methodology
3. Results and Discussion
3.1. X-ray Diffraction (XRD)
3.1.1. PM Collection Parameters for XRD Analysis
3.1.2. Minerals Present in Particulate Matte
N° | Mineral | Preferential Diffraction Angle (2ϴ) | References |
---|---|---|---|
1 | Kaolinite | 12.3°, 17.80° | [2,27] |
2 | Wollastonite | 12.5°, 8.5°, 21.6° | [27] |
3 | Wustite | 15.4°, 10.1° | [27] |
4 | Dorrite | 18.2° | [27] |
5 | Magnetite | 18.2°, 37.0° | [27] |
6 | Quartz | 20.9°, 26.70°, 40.36° | [2,27,47] |
7 | Koktaite | 7.8°, 21.7° | [27,47] |
8 | Gypsum | 23.7°, 24.01°, 27.5° | [27] |
9 | Feldspar | 13.7° | [27] |
10 | Calcite | 31.5°, 36.06°, 39.50° | [1,2,3,4] |
11 | Vermiculite | 21.8°, 23.5° | [27] |
12 | Dolomite | 16.9°, 31°, 41.2° | [1,2,4] |
13 | Halite | 31.5° | [27] |
14 | Muscovite | 20.6° | [2] |
15 | Hematite | 19.91°, 22°, 24.3° | [2,4] |
16 | Montmorillonite | 19.8°, 27.2°, 35.03° | [2] |
17 | Illite | 17.8°, 23.7°, 26.3° | [2,4] |
18 | Vaterite | 20.7°, 25.2°, 27.5° | [2,4] |
19 | Chrysolite | 19.7°, 24.3° | [2] |
20 | Mascagnite | 20.5°, 22.8° | [3] |
3.2. X-ray Fluorescence (XRF)
3.2.1. PM Collection Parameters for XRF Analysis
3.2.2. Elemental Composition of PM
3.3. Fourier Transform Infrared Spectroscopy (FTIR)
3.3.1. PM Collection Parameters for FTIR Analysis
3.3.2. Organic and Inorganic Components Present in PM
3.4. Raman Spectroscopy
3.4.1. PM Collection Parameters for Raman Analysis
3.4.2. Compounds Identified with Raman Spectroscopy
4. Discussion
4.1. Advantages and Limitations of X-ray Diffraction (XRD)
4.2. Advantages and Limitations of X-ray Fluorescence (XRF)
4.3. Advantages and Limitations of Fourier-Transform Infrared Spectroscopy (FTIR)
4.4. Advantages and Limitations of Raman Spectroscopy (RS)
5. Conclusions
6. Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Morantes, G.; González, J.C.; Rincón, G. Characterisation of particulate matter and identification of emission sources in Greater Caracas, Venezuela. Air Qual. Atmos. Health 2021, 14, 1989–2014. [Google Scholar] [CrossRef]
- Neupane, B.B.; Sharma, A.; Giri, B.; Joshi, M.K. Characterization of airborne dust samples collected from core areas of Kathmandu Valley. Heliyon 2020, 6, e03791. [Google Scholar] [CrossRef] [PubMed]
- Choung, S.; Oh, J.; Han, W.S.; Chon, C.-M.; Kwon, Y.; Kim, D.Y.; Shin, W. Comparison of physicochemical properties between fine (PM2.5) and coarse airborne particles at cold season in Korea. Sci. Total Environ. 2016, 541, 1132–1138. [Google Scholar] [CrossRef] [PubMed]
- Roy, D.; Singh, G.; Gosai, N. Identification of possible sources of atmospheric PM10 using particle size, SEM-EDS and XRD analysis, Jharia Coalfield Dhanbad, India. Environ. Monit. Assess. 2015, 187, 680. [Google Scholar] [CrossRef]
- Valido, I.H.; Padoan, E.; Moreno, T.; Querol, X.; Font, O.; Amato, F. Physico-chemical characterization of playground sand dust, inhalable and bioaccessible fractions. Chemosphere 2018, 190, 454–462. [Google Scholar] [CrossRef]
- Raysoni, A.U.; Armijos, R.X.; Margaret Weigel, M.; Echanique, P.; Racines, M.; Pingitore, N.E.; Li, W.-W. Evaluation of sources and patterns of elemental composition of PM2.5 at three low-income neighborhood schools and residences in Quito, Ecuador. Int. J. Environ. Res. Public Health 2017, 14, 674. [Google Scholar] [CrossRef] [PubMed]
- Javed, W.; Guo, B. Chemical characterization and source apportionment of fine and coarse atmospheric particulate matter in Doha, Qatar. Atmos. Pollut. Res. 2021, 12, 122–136. [Google Scholar] [CrossRef]
- Ramírez, O.; Sánchez de la Campa, A.M.; Amato, F.; Catacolí, R.A.; Rojas, N.Y.; de la Rosa, J. Chemical composition and source apportionment of PM10 at an urban background site in a high–altitude Latin American megacity (Bogota, Colombia). Environ. Pollut. 2018, 233, 142–155. [Google Scholar] [CrossRef]
- Cazorla, M.; Herrera, E. Air quality in the Galapagos Islands: A baseline view from remote sensing and In Situ measurements. Meteorol. Appl. 2020, 27, e1878. [Google Scholar] [CrossRef]
- Grigorov, I.V.; Kolarov, G.V.; Gurdev, L.L.; Cherkezova-Zheleva, Z.P.; Slavov, L.S.; Ghelev, C.G.; Ilieva, R.V.; Iliev, M.V.; Groudeva, V.I.; Stoyanov, D.V.; et al. Characterization of in-situ-sampled particulate matter in air pollution localized by lidar monitoring. Bulg. Chem. Commun. 2018, 50, 205–210. [Google Scholar]
- Song, X.; Shao, L.; Zheng, Q.; Yang, S. Characterization of crystalline secondary particles and elemental composition in PM10 of North China. Environ. Earth Sci. 2015, 74, 5717–5727. [Google Scholar] [CrossRef]
- Martinello, K.; Oliveira, M.L.S.; Molossi, F.A.; Ramos, C.G.; Teixeira, E.C.; Kautzmann, R.M.; Silva, L.F.O. Direct identification of hazardous elements in ultra-fine and nanominerals from coal fly ash produced during diesel co-firing. Sci. Total Environ. 2014, 470–471, 444–452. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.; Luan, Q.; Jiao, Z.; Wu, M.; Li, Z.; Shao, L.; Wang, F. Mineralogy of inhalable particulate matter (PM10) in the atmosphere of Beijing, China. Water. Air. Soil Pollut. 2007, 186, 129–137. [Google Scholar] [CrossRef]
- Galvão, E.S.; Santos, J.M.; Lima, A.T.; Reis, N.C.; Stuetz, R.M.; Orlando, M.T.D. Resonant Synchrotron X-ray Diffraction determines markers for iron-rich atmospheric particulate matter in urban region. Chemosphere 2018, 212, 418–428. [Google Scholar] [CrossRef]
- Bartz, W.; Górka, M.; Rybak, J.; Rutkowski, R.; Stojanowska, A. The assessment of effectiveness of SEM- EDX and ICP-MS methods in the process of determining the mineralogical and geochemical composition of particulate matter deposited on spider webs. Chemosphere 2021, 278, 130454. [Google Scholar] [CrossRef] [PubMed]
- Perrino, C.; Canepari, S.; Catrambone, M.; Dalla Torre, S.; Rantica, E.; Sargolini, T. Influence of natural events on the concentration and composition of atmospheric particulate matter. Atmos. Environ. 2009, 43, 4766–4779. [Google Scholar] [CrossRef]
- Arrais, A.; Diana, E.; Boccaleri, E. A study on the carbon soot derived from the wood combustion and on the relative alkali-extractable fraction. J. Mater. Sci. 2006, 41, 6035–6045. [Google Scholar] [CrossRef]
- Güney, B.; Aladağ, A. Microstructure and chemical analysis of particulate matter from diesel-fuelled vehicle emissions | Dizel yakıtlı taşıtlardan salınan partikül maddelerin mikroyapı ve kimyasal karakterizasyonu. El-Cezeri 2021, 8, 287–298. [Google Scholar] [CrossRef]
- Ahmady-Birgani, H.; Mirnejad, H.; Feiznia, S.; McQueen, K.G. Mineralogy and geochemistry of atmospheric particulates in western Iran. Atmos. Environ. 2015, 119, 262–272. [Google Scholar] [CrossRef]
- Aguiar-Gil, D.; Gómez-Peláez, L.M.; Álvarez-Jaramillo, T.; Correa-Ochoa, M.A.; Saldarriaga-Molina, J.C. Evaluating the impact of PM2.5 atmospheric pollution on population mortality in an urbanized valley in the American tropics. Atmos. Environ. 2020, 224, 117343. [Google Scholar] [CrossRef]
- De Carvalho, G.D.G.; Sokulski, C.C.; Da Silva, W.V.; De Carvalho, H.G.; De Moura, R.V.; De Francisco, A.C.; Da Veiga, C.P. Bibliometrics and systematic reviews: A comparison between the Proknow-C and the Methodi Ordinatio. J. Informetr. 2020, 14, 101043. [Google Scholar] [CrossRef]
- González, L.T.; Longoria-Rodríguez, F.E.; Sánchez-Domínguez, M.; Leyva-Porras, C.; Acuña-Askar, K.; Kharissov, B.I.; Arizpe-Zapata, A.; Alfaro-Barbosa, J.M. Seasonal variation and chemical composition of particulate matter: A study by XPS, ICP-AES and sequential microanalysis using Raman with SEM/EDS. J. Environ. Sci. 2018, 74, 32–49. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, J.; Sartim, R.; Suringar, M.E.; Richards, J. Positive bias in particulate matter emissions data due to sulfur dioxide adsorption and oxidation on glass fiber filters. J. Air Waste Manag. Assoc. 2021, 71, 1076–1084. [Google Scholar] [CrossRef] [PubMed]
- Saikia, J.; Narzary, B.; Roy, S.; Bordoloi, M.; Saikia, P.; Saikia, B.K. Nanominerals, fullerene aggregates, and hazardous elements in coal and coal combustion-generated aerosols: An environmental and toxicological assessment. Chemosphere 2016, 164, 84–91. [Google Scholar] [CrossRef]
- Davis, B.L.; Johnson, L. On the use of various filter substrates for quantitative particulate analysis by X-ray diffraction. Atmos. Environ. 1982, 16, 273–282. [Google Scholar] [CrossRef]
- Santacatalina, M.; Reche, C.; Minguillón, M.C.; Escrig, A.; Sanfelix, V.; Carratalá, A.; Nicolás, J.F.; Yubero, E.; Crespo, J.; Alastuey, A.; et al. Impact of fugitive emissions in ambient PM levels and composition. A case study in Southeast Spain. Sci. Total Environ. 2010, 408, 4999–5009. [Google Scholar] [CrossRef]
- Satsangi, P.G.; Yadav, S. Characterization of PM2.5 by X-ray diffraction and scanning electron microscopy-energy dispersive spectrometer: Its relation with different pollution sources. Int. J. Environ. Sci. Technol. 2014, 11, 217–232. [Google Scholar] [CrossRef]
- Skoog, D.A.; Holler, F.J.; Nieman, T.A. Principios de Análisis Instrumental, 5th ed.; McGrawHill: New York, NY, USA, 2001; pp. 1–856. [Google Scholar]
- González, L.T.; Rodríguez, F.E.L.; Sánchez-Domínguez, M.; Leyva-Porras, C.; Silva-Vidaurri, L.G.; Acuna-Askar, K.; Kharisov, B.I.; Villarreal Chiu, J.F.; Alfaro Barbosa, J.M. Chemical and morphological characterization of TSP and PM2.5 by SEM-EDS, XPS and XRD collected in the metropolitan area of Monterrey, Mexico. Atmos. Environ. 2016, 143, 249–260. [Google Scholar] [CrossRef]
- Nowak, S.; Lafon, S.; Caquineau, S.; Journet, E.; Laurent, B. Quantitative study of the mineralogical composition of mineral dust aerosols by X-ray diffraction. Talanta 2018, 186, 133–139. [Google Scholar] [CrossRef]
- Sturges, W.T.; Harrison, R.M. Semi-quantitative X-ray diffraction analysis of size fractionated atmospheric particles. Atmos. Environ. 1989, 23, 1083–1098. [Google Scholar] [CrossRef]
- Jiang, J.-G.; Xu, X.; Wang, J.; Yang, S.-J.; Zhang, Y. Investigation of basic properties of fly ash from urban waste incinerators in China. J. Environ. Sci. 2007, 19, 458–463. [Google Scholar] [CrossRef] [PubMed]
- Duan, Q.; Jiang, T.; Xue, C.; Liu, H.; Liu, F.; Alee, M.; Ali, A.; Chen, L.; Yu, L. Preparation and characterization of starch/enteromorpha/nano-clay hybrid composites. Int. J. Biol. Macromol. 2020, 150, 16–22. [Google Scholar] [CrossRef]
- Erol, M.; Küçükbayrak, S.; Ersoy-Meriçboyu, A. Comparison of the properties of glass, glass-ceramic and ceramic materials produced from coal fly ash. J. Hazard. Mater. 2008, 153, 418–425. [Google Scholar] [CrossRef] [PubMed]
- Judy, J.D.; Harris, W.; Hettiarachchi, G.M.; Buchanan, A.C.; Reddy, K.R. Mineralogy of particulate inputs and P-speciation and mineralogy of recently accreted soils within Everglades stormwater treatment wetlands. Sci. Total Environ. 2021, 781, 146740. [Google Scholar] [CrossRef]
- Oo, H.M.; Karin, P.; Chollacoop, N.; Hanamura, K. Physicochemical characterization of forest and sugarcane leaf combustion’s particulate matters using electron microscopy, EDS, XRD and TGA. J. Environ. Sci. 2021, 99, 296–310. [Google Scholar] [CrossRef] [PubMed]
- Senthil Kumar, R.; Rajkumar, P. Characterization of minerals in air dust particles in the state of Tamilnadu, India through FTIR, XRD and SEM analyses. Infrared Phys. Technol. 2014, 67, 30–41. [Google Scholar] [CrossRef]
- Batonneau, Y.; Bremard, C.; Gengembre, L.; Laureyns, J.; Le Maguer, A.; Le Maguer, D.; Perdrix, E.; Sobanska, S. Speciation of PM10 sources of airborne nonferrous metals within the 3-km zone of lead/zinc smelters. Environ. Sci. Technol. 2004, 38, 5281–5289. [Google Scholar] [CrossRef]
- Oproiu, C.-L.; Voicu, G.; Bădănoiu, A.; Nicoară, A.-I. The solidification/stabilization of wastewater (From a landfill leachate) in specially designed binders based on coal ash. Materials 2021, 14, 5610. [Google Scholar] [CrossRef]
- Cano, M.; Vega, F.; Navarrete, B.; Plumed, A.; Camino, J.A. Characterization of Emissions of Condensable Particulate Matter in Clinker Kilns Using a Dilution Sampling System. Energy Fuels 2017, 31, 7831–7838. [Google Scholar] [CrossRef]
- Shao, L.Y.; Li, W.J.; Yang, S.S.; Shi, Z.B.; Lü, S.L. Mineralogical characteristics of airborne particles collected in Beijing during a severe Asian dust storm period in spring 2002. Sci. China Ser. D Earth Sci. 2007, 50, 953–959. [Google Scholar] [CrossRef]
- Bora, J.; Deka, P.; Bhuyan, P.; Sarma, K.P.; Hoque, R.R. Morphology and mineralogy of ambient particulate matter over mid-Brahmaputra Valley: Application of SEM–EDX, XRD, and FTIR techniques. SN Appl. Sci. 2021, 3, 137. [Google Scholar] [CrossRef]
- Hamdan, N.M.; Alawadhi, H. X-ray diffraction as a major tool for the analysis of PM2.5 and PM10 aerosols. Powder Diffr. 2020, 35, 98–103. [Google Scholar] [CrossRef]
- Farahat, A.; Al Otaibi, M.; Tawabini, B.; Amao, A.O. Characteristics of PM10 at industrial cities using integrated analytical techniques: Al-Jubail and Ras Tanura case study. Int. J. Environ. Sci. Technol. 2021, 19, 705–716. [Google Scholar] [CrossRef]
- Lee, K.S.; Jung, J.H.; Keel, S.I.; Yun, J.H.; Min, T.J.; Kim, S.S. Characterization of calcium carbonate sorbent particle in furnace environment. Sci. Total Environ. 2012, 429, 266–271. [Google Scholar] [CrossRef] [PubMed]
- Díaz-Hernández, J.L.; Martín-Ramos, J.D.; López-Galindo, A. Quantitative analysis of mineral phases in atmospheric dust deposited in the south-eastern Iberian Peninsula. Atmos. Environ. 2011, 45, 3015–3024. [Google Scholar] [CrossRef]
- Hamdan, N.M.; Alawadhi, H.; Shameer, M. Characterization of PM2.5 at a traffic site using several integrated analytical techniques. X-Ray Spectrom. 2021, 50, 106–120. [Google Scholar] [CrossRef]
- Galvão, E.S.; Santos, J.M.; Lima, A.T.; Reis, N.C.; Orlando, M.T.D.A.; Stuetz, R.M. Trends in analytical techniques applied to particulate matter characterization: A critical review of fundaments and applications. Chemosphere 2018, 199, 546–568. [Google Scholar] [CrossRef] [PubMed]
- Potts, P.J.; Potts, P.J. X-ray fluorescence analysis: Principles and practice of wavelength dispersive spectrometry. In A Handbook of Silicate Rock Analysis; Springer: Dordrecht, The Netherlands, 1987; pp. 226–285. [Google Scholar]
- Kunecki, P.; Franus, W.; Wdowin, M. Statistical study and physicochemical characterization of particulate matter in the context of Kraków, Poland. Atmos. Pollut. Res. 2020, 11, 520–530. [Google Scholar] [CrossRef]
- Li, D.; Du, Q.; Dong, H.; Gao, J.; Cui, Z.; Yu, J.; Liu, Y. Field measurements on the generation and emission characteristics of PM2.5 from industrial fluidized bed boilers. Energy Sources Part A Recover. Util. Environ. Eff. 2020, 42, 773–784. [Google Scholar] [CrossRef]
- Lima, F.D.M.; Pérez-Martínez, P.J.; de Fatima Andrade, M.; Kumar, P.; de Miranda, R.M. Characterization of particles emitted by pizzerias burning wood and briquettes: A case study at Sao Paulo, Brazil. Environ. Sci. Pollut. Res. 2020, 27, 35875–35888. [Google Scholar] [CrossRef]
- Senlin, L.; Longyi, S.; Minghong, W.; Zheng, J.; Xiaohui, C. Chemical elements and their source apportionment of PM10 in Beijing urban atmosphere. Environ. Monit. Assess. 2007, 133, 79–85. [Google Scholar] [CrossRef]
- Popovicheva, O.; Kireeva, E.; Persiantseva, N.; Timofeev, M.; Bladt, H.; Ivleva, N.P.; Niessner, R.; Moldanová, J. Microscopic characterization of individual particles from multicomponent ship exhaust. J. Environ. Monit. 2012, 14, 3101–3110. [Google Scholar] [CrossRef] [PubMed]
- Tshehla, C.; Wright, C.Y. Spatial variability of PM10, PM2.5 and PM chemical components in an industrialised rural area within a mountainous terrain. S. Afr. J. Sci. 2019, 115. [Google Scholar] [CrossRef] [PubMed]
- Marcazzan, G.M.; Vaccaro, S.; Valli, G.; Vecchi, R. Characterisation of PM10 and PM2.5 particulate matter in the ambient air of Milan (Italy). Atmos. Environ. 2001, 35, 4639–4650. [Google Scholar] [CrossRef]
- Marguí, E.; Queralt, I.; de Almeida, E. X-ray fluorescence spectrometry for environmental analysis: Basic principles, instrumentation, applications and recent trends. Chemosphere 2022, 303, 135006. [Google Scholar] [CrossRef] [PubMed]
- Xue, H.; Liu, G.; Zhang, H.; Hu, R.; Wang, X. Similarities and differences in PM10 and PM2.5 concentrations, chemical compositions and sources in Hefei City, China. Chemosphere 2019, 220, 760–765. [Google Scholar] [CrossRef]
- Niu, J.; Rasmussen, P.E.; Wheeler, A.; Williams, R.; Chénier, M. Evaluation of airborne particulate matter and metals data in personal, indoor and outdoor environments using ED-XRF and ICP-MS and co-located duplicate samples. Atmos. Environ. 2010, 44, 235–245. [Google Scholar] [CrossRef]
- Almeida, S.M.; Manousakas, M.; Diapouli, E.; Kertesz, Z.; Samek, L.; Hristova, E.; Šega, K.; Alvarez, R.P.; Belis, C.A.; Eleftheriadis, K.; et al. Ambient particulate matter source apportionment using receptor modelling in European and Central Asia urban areas. Environ. Pollut. 2020, 266, 115199. [Google Scholar] [CrossRef]
- Borgese, L.; Bilo, F.; Zacco, A.; Federici, S.; Mutahi, A.W.; Bontempi, E.; Trzepla, K.; Hyslop, N.; Yatkin, S.; Wobrauschek, P.; et al. The assessment of a method for measurements and lead quantification in air particulate matter using total reflection X-ray fluorescence spectrometers. Spectrochim. Acta Part B At. Spectrosc. 2020, 167, 105840. [Google Scholar] [CrossRef]
- Longo, A.F.; Vine, D.J.; King, L.E.; Oakes, M.; Weber, R.J.; Huey, L.G.; Russell, A.G.; Ingall, E.D. Composition and oxidation state of sulfur in atmospheric particulate matter. Atmos. Chem. Phys. 2016, 16, 13389–13398. [Google Scholar] [CrossRef]
- Bilo, F.; Borgese, L.; Wambui, A.; Assi, A.; Zacco, A.; Federici, S.; Eichert, D.M.; Tsuji, K.; Lucchini, R.G.; Placidi, D.; et al. Comparison of multiple X-ray fluorescence techniques for elemental analysis of particulate matter collected on air filters. J. Aerosol Sci. 2018, 122, 1–10. [Google Scholar] [CrossRef]
- Sofowote, U.M.; Di Federico, L.M.; Healy, R.M.; Debosz, J.; Su, Y.; Wang, J.; Munoz, A. Heavy metals in the near-road environment: Results of semi-continuous monitoring of ambient particulate matter in the greater Toronto and Hamilton area. Atmos. Environ. X 2019, 1, 100005. [Google Scholar] [CrossRef]
- Day, D.A.; Takahama, S.; Gilardoni, S.; Russell, L.M. Organic composition of single and submicron particles in different regions of western North America and the eastern Pacific during INTEX-B 2006. Atmos. Chem. Phys. 2009, 9, 5433–5446. [Google Scholar] [CrossRef]
- Cuccia, E.; Piazzalunga, A.; Bernardoni, V.; Brambilla, L.; Fermo, P.; Massabò, D.; Molteni, U.; Prati, P.; Valli, G.; Vecchi, R. Carbonate measurements in PM10 near the marble quarries of Carrara (Italy) by infrared spectroscopy (FT-IR) and source apportionment by positive matrix factorization (PMF). Atmos. Environ. 2011, 45, 6481–6487. [Google Scholar] [CrossRef]
- Fakinle, B.S.; Uzodinma, O.B.; Odekanle, E.L.; Sonibare, J.A. Impact of elemental composition of particulate matter in the airshed of a University Farm on the local air quality. Heliyon 2020, 6, e03216. [Google Scholar] [CrossRef] [PubMed]
- Ariola, V.; D’Alessandro, A.; Lucarelli, F.; Marcazzan, G.; Mazzei, F.; Nava, S.; Garcia-Orellana, I.; Prati, P.; Valli, G.; Vecchi, R.; et al. Elemental characterization of PM10, PM2.5 and PM1 in the town of Genoa (Italy). Chemosphere 2006, 62, 226–232. [Google Scholar] [CrossRef]
- Veleva, B.; Hristova, E.; Nikolova, E.; Kolarova, M.; Valcheva, R. Statistical evaluation of elemental composition data of PM10 air particulate in Sofia. Int. J. Environ. Pollut. 2015, 57, 175–188. [Google Scholar] [CrossRef]
- Tsai, M.Y.; Hoek, G.; Eeftens, M.; de Hoogh, K.; Beelen, R.; Beregszászi, T.; Cesaroni, G.; Cirach, M.; Cyrys, J.; De Nazelle, A.; et al. Spatial variation of PM elemental composition between and within 20 European study areas—Results of the ESCAPE project. Environ. Int. 2015, 84, 181–192. [Google Scholar] [CrossRef]
- Gupta, S.; Soni, P.; Gupta, A.K. Optimization of WD-XRF analytical technique to measure elemental abundance in PM2.5 dust collected on quartz-fibre filter. Atmos. Pollut. Res. 2021, 12, 345–351. [Google Scholar] [CrossRef]
- Canepari, S.; Perrino, C.; Astolfi, M.L.; Catrambone, M.; Perret, D. Determination of soluble ions and elements in ambient air suspended particulate matter: Inter-technique comparison of XRF, IC and ICP for sample-by-sample quality control. Talanta 2009, 77, 1821–1829. [Google Scholar] [CrossRef]
- Gramsch, E.; Oyola, P.; Reyes, F.; Rojas, F.; Henríquez, A.; Kang, C.-M. Trends in particle matter and its elemental composition in Santiago de Chile, 2011–2018. J. Air Waste Manag. Assoc. 2021, 71, 721–736. [Google Scholar] [CrossRef] [PubMed]
- Alonso, C.D.; Martins, M.H.R.B.; Romano, J.; Godinho, R. São paulo aerosol characterization study. J. Air Waste Manag. Assoc. 1997, 47, 1297–1300. [Google Scholar] [CrossRef]
- Mpanza, M.; Adam, E.; Moolla, R. Dust deposition impacts at a liquidated gold mine village: Gauteng province in South Africa. Int. J. Environ. Res. Public Health 2020, 17, 4929. [Google Scholar] [CrossRef]
- El Haddar, A.; Gharibi, E.; Azdimousa, A.; Fagel, N.; El Amrani El Hassani, I.-E.; El Ouahabi, M. Characterization of halloysite (North East Rif, Morocco): Evaluation of its suitability for the ceramics industry. Clay Miner. 2018, 53, 65–78. [Google Scholar] [CrossRef]
- Temuujin, J.; Minjigmaa, A.; Davaabal, B.; Ochirbat, Z. Characterisation of fly ashes from 4th Thermal Power Station of Ulaanbaatar city and its applicability for a zeolite synthesis. Mong. J. Chem. 2014, 12, 16–19. [Google Scholar] [CrossRef]
- Rajamma, R.; Ball, R.J.; Tarelho, L.A.C.; Allen, G.C.; Labrincha, J.A.; Ferreira, V.M. Characterisation and use of biomass fly ash in cement-based materials. J. Hazard. Mater. 2009, 172, 1049–1060. [Google Scholar] [CrossRef] [PubMed]
- Cuccia, E.; Bernardoni, V.; Massabò, D.; Prati, P.; Valli, G.; Vecchi, R. An alternative way to determine the size distribution of airborne particulate matter. Atmos. Environ. 2010, 44, 3304–3313. [Google Scholar] [CrossRef]
- Barthel, M.; Pedan, V.; Hahn, O.; Rothhardt, M.; Bresch, H.; Jann, O.; Seeger, S. XRF-analysis of fine and ultrafine particles emitted from laser printing devices. Environ. Sci. Technol. 2011, 45, 7819–7825. [Google Scholar] [CrossRef]
- Castanheiro, A.; Hofman, J.; Nuyts, G.; Joosen, S.; Spassov, S.; Blust, R.; Lenaerts, S.; De Wael, K.; Samson, R. Leaf accumulation of atmospheric dust: Biomagnetic, morphological and elemental evaluation using SEM, ED-XRF and HR-ICP-MS. Atmos. Environ. 2020, 221, 117082. [Google Scholar] [CrossRef]
- Fang, T.; Guo, H.; Verma, V.; Peltier, R.E.; Weber, R.J. PM2.5 water-soluble elements in the southeastern United States: Automated analytical method development, spatiotemporal distributions, source apportionment, and implications for heath studies. Atmos. Chem. Phys. Discuss. 2015, 15, 17189–17227. [Google Scholar] [CrossRef]
- Dourado, T.A.; Gemeiner, H.; Gomes, A.C.F.; Almeida, E.; da Silva, A.C.; Valadão, N.; Menegário, A.A.; Govone, J.S.; Gastmans, D. Elemental Composition of Particulate Matter in the Southeastern Brazilian Ceramic Pole by Synchrotron Radiation X-ray Fluorescence Technique (SR-XRF). J. Braz. Chem. Soc. 2020, 31, 1203–1215. [Google Scholar] [CrossRef]
- Indresand, H.; White, W.H.; Trzepla, K.; Dillner, A.M. Preparation of sulfur reference materials that reproduce atmospheric particulate matter sample characteristics for XRF calibration. X-Ray Spectrom. 2013, 42, 359–367. [Google Scholar] [CrossRef]
- Morillas, H.; Gredilla, A.; Gallego-Cartagena, E.; Upasen, S.; Maguregui, M.; Madariaga, J.M. PM10 spatial distribution and metals speciation study in the Bilbao metropolitan area during the 2017–2018 period. Chemosphere 2020, 259, 127482. [Google Scholar] [CrossRef]
- Eze, C.P.; Nyale, S.M.; Akinyeye, R.O.; Gitari, W.M.; Akinyemi, S.A.; Fatoba, O.O.; Petrik, L.F. Chemical, mineralogical and morphological changes in weathered coal fly ash: A case study of a brine impacted wet ash dump. J. Environ. Manage. 2013, 129, 479–492. [Google Scholar] [CrossRef] [PubMed]
- Rani, N.; Rani, S.; Bansal, K.; Singh, S.; Singh, G. Characterization of fly ash using different techniques: A review. AIP Conf. Proc. 2021, 2352, 030014. [Google Scholar]
- Gan, M.; Ji, Z.; Fan, X.; Chen, X.; Li, Q.; Yin, L.; He, X.; Zhou, Y.; Jiang, T. Emission behavior and physicochemical properties of aerosol Particulate Matter (PM10/2.5) from Iron Ore Sintering Process. ISIJ Int. 2015, 55, 2582–2588. [Google Scholar] [CrossRef]
- Hamdan, N.M.; Alawadhi, H.; Jisrawi, N.; Shameer, M. Characterization of fine particulate matter in Sharjah, United Arab Emirates using complementary experimental techniques. Sustainability 2018, 10, 1088. [Google Scholar] [CrossRef]
- Gautam, S.P.; Bundela, P.S.; Murumkar, M. Paint sludge waste co-processing at the ACC Wadi Cement Works in Karnataka, India. WIT Trans. Ecol. Environ. 2010, 140, 57–66. [Google Scholar]
- Ismail; Ashraf, A.; van de Voort, F.R.; Sedman, J. Fourier transform infrared spectroscopy: Principles and applications. In Techniques and Instrumentation in Analytical Chemistry; Elsevier: Amsterdam, The Netherlands, 1997; Volume 18, pp. 93–139. [Google Scholar]
- Yu, X.; Song, W.; Yu, Q.; Li, S.; Zhu, M.; Zhang, Y.; Deng, W.; Yang, W.; Huang, Z.; Bi, X.; et al. Fast screening compositions of PM2.5 by ATR-FTIR: Comparison with results from IC andOC/EC analyzers. J. Environ. Sci. 2018, 71, 76–88. [Google Scholar] [CrossRef]
- Karthikeyan, S.; Balasubramanian, R.; See, S.W. Optimization and validation of a low temperature microwave-assisted extraction method for analysis of polycyclic aromatic hydrocarbons in airborne particulate matter. Talanta 2006, 69, 79–86. [Google Scholar] [CrossRef] [PubMed]
- Coury, C.; Dillner, A.M. A method to quantify organic functional groups and inorganic compounds in ambient aerosols using attenuated total reflectance FTIR spectroscopy and multivariate chemometric techniques. Atmos. Environ. 2008, 42, 5923–5932. [Google Scholar] [CrossRef]
- Zapata-Hernandez, C.; Durango-Giraldo, G.; Tobón, C.; Buitrago-Sierra, R. Physicochemical Characterization of Airborne Particulate Matter in Medellín, Colombia, and its Use in an In Silico Study of Ventricular Action Potential. Water. Air. Soil Pollut. 2020, 231, 508. [Google Scholar] [CrossRef]
- Son, S.C.; Yu, G.H.; Park, S.; Lee, S. Comprehensive characterization of PM2.5 using chemical, optical, and spectroscopic methods during pollution episodes at an urban site in Gwangju, Korea. Atmos. Pollut. Res. 2021, 12, 101199. [Google Scholar] [CrossRef]
- Cano, M.; Reina, T.R.; Portillo, E.; Gallego Fernández, L.M.; Navarrete, B. Characterization of emissions of condensable particulate matter under real operation conditions in cement clinker kilns using complementary experimental techniques. Sci. Total Environ. 2021, 786, 147472. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.; Gui, H.; Liu, J.; Zhang, J.; Schwab, J.; Gao, M. Aerosol pollution characterization before chinese new year in Zhengzhou in 2014. Aerosol Air Qual. Res. 2019, 19, 1294–1306. [Google Scholar] [CrossRef]
- Romanías, M.N.; Ourrad, H.; Thévenet, F.; Riffault, V. Investigating the Heterogeneous Interaction of VOCs with Natural Atmospheric Particles: Adsorption of Limonene and Toluene on Saharan Mineral Dusts. J. Phys. Chem. A 2016, 120, 1197–1212. [Google Scholar] [CrossRef]
- Varrica, D.; Tamburo, E.; Vultaggio, M.; Di Carlo, I. ATR–FTIR spectral analysis and soluble components of PM10 and PM2.5 particulate matter over the urban area of palermo (Italy) during normal days and saharan events. Int. J. Environ. Res. Public Health 2019, 16, 2507. [Google Scholar] [CrossRef]
- Grassi, P.; Drumm, F.C.; da Silveira Salla, J.; Silvestri, S.; da Boit Martinello, K.; Dotto, G.L.; Foletto, E.L.; Jahn, S.L. Investigation of the reaction pathway for degradation of emerging contaminant in water by photo-Fenton oxidation using fly ash as low-cost raw catalyst. Int. J. Environ. Res. 2020, 14, 427–438. [Google Scholar] [CrossRef]
- Wibawa, P.J.; Nur, M.; Asy’ari, M.; Nur, H. SEM, XRD and FTIR analyses of both ultrasonic and heat generated activated carbon black microstructures. Heliyon 2020, 6, e03546. [Google Scholar] [CrossRef]
- Akinyemi, S.A.; Bohórquez, F.; Islam, N.; Saikia, B.K.; Sampaio, C.H.; Crissien, T.J.; Silva, L.F.O. Petrography and geochemistry of exported Colombian coals: Implications from correlation and regression analyses. Energy Geosci. 2021, 2, 201–210. [Google Scholar] [CrossRef]
- Comelli, N.A.; Ruiz, M.L.; Merino, N.A.; Lick, I.D.; Rodríguez-Castellón, E.; Jiménez-López, A.; Ponzi, M.I. Preparation and characterisation of calcined Mg/Al hydrotalcites impregnated with alkaline nitrate and their activities in the combustion of particulate matter. Appl. Clay Sci. 2013, 80–81, 426–432. [Google Scholar] [CrossRef]
- Škvára, F.; Kopecký, L.; Šmilauer, V.; Bittnar, Z. Material and structural characterization of alkali activated low-calcium brown coal fly ash. J. Hazard. Mater. 2009, 168, 711–720. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, A.P.S.; Chawla, K. Comparative studies on Graphite and Carbon Black powders, and their dispersions. J. Mol. Liq. 2016, 221, 292–297. [Google Scholar] [CrossRef]
- Dominic, M.; Joseph, R.; Sabura Begum, P.M.; Kanoth, B.P.; Chandra, J.; Thomas, S. Green tire technology: Effect of rice husk derived nanocellulose (RHNC) in replacing carbon black (CB) in natural rubber (NR) compounding. Carbohydr. Polym. 2020, 230, 115620. [Google Scholar] [CrossRef] [PubMed]
- Mishra, A.; Prasad, R. Catalysis and kinetics of diesel soot oxidation over nano-size perovskite catalyst. Clean Technol. Environ. Policy 2017, 19, 2405–2416. [Google Scholar] [CrossRef]
- Mateus, A.; Torres, J.; Marimon-Bolivar, W.; Pulgarín, L. Implementation of magnetic bentonite in food industry wastewater treatment for reuse in agricultural irrigation. Water Resour. Ind. 2021, 26, 100154. [Google Scholar] [CrossRef]
- Allen, D.T.; Palen, E.J.; Haimov, M.I.; Hering, S.V.; Young, J.R. Inorganic Absorbances Observed in Spectra of Ambient Aerosol. Aerosol Sci. Technol. 1994, 21, 325–342. [Google Scholar] [CrossRef]
- Sreejith, M.V.; Thomas, J.R.; Aravindakumar, C.T.; Aravind, U.K. Characterisation of atmospheric particulate matter over a site in southern Kerala, India-Using ATR-FTIR and confocal micro-raman spectroscopy. Mater. Today Proc. 2019, 33, 1410–1414. [Google Scholar] [CrossRef]
- Feng, Y.; Liu, L.; Yang, Y.; Deng, Y.; Li, K.; Cheng, H.; Dong, X.; Li, W.; Zhang, L. The application of Raman spectroscopy combined with multivariable analysis on source apportionment of atmospheric black carbon aerosols. Sci. Total Environ. 2019, 685, 189–196. [Google Scholar] [CrossRef]
- Jentzsch, P.V.; Kampe, B.; Ciobotǎ, V.; Rösch, P.; Popp, J. Inorganic salts in atmospheric particulate matter: Raman spectroscopy as an analytical tool. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2013, 115, 697–708. [Google Scholar] [CrossRef]
- Stacey, P.; Mader, K.T.; Sammon, C. Feasibility of the quantification of respirable crystalline silica by mass on aerosol sampling filters using raman microscopy. J. Raman Spectrosc. 2017, 48, 720–725. [Google Scholar] [CrossRef]
- Stacey, P.; Hall, S.; Stagg, S.; Clegg, F.; Sammon, C. Raman spectroscopy and X-ray diffraction responses when measuring health-related micrometre and nanometre particle size fractions of crystalline quartz and the measurement of quartz in dust samples from the cutting and polishing of natural and artificial. J. Raman Spectrosc. 2021, 52, 1095–1107. [Google Scholar] [CrossRef]
- Marina-Montes, C.; Pérez-Arribas, L.V.; Anzano, J.; de Vallejuelo, S.F.O.; Aramendia, J.; Gómez-Nubla, L.; de Diego, A.; Manuel Madariaga, J.; Cáceres, J.O. Characterization of atmospheric aerosols in the Antarctic region using Raman Spectroscopy and Scanning Electron Microscopy. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2022, 266, 120452. [Google Scholar] [CrossRef]
- Ghosal, S.; Wall, S. Identifying regional soil as the potential source of PM2.5 particulate matter on air filters collected in Imperial Valley, California—A Raman micro-spectroscopy study. Environ. Pollut. 2019, 253, 181–189. [Google Scholar] [CrossRef]
- Grey, I.E. Diffraction methods in the characterization of new mineral species. J. Solid State Chem. 2022, 312, 123239. [Google Scholar] [CrossRef]
- Clegg, W. X-ray and Neutron Diffraction; Elsevier Inc.: Amsterdam, The Netherlands, 2021; Volume 1, ISBN 9780081026885. [Google Scholar]
- Gunchin, G.; Osan, J.; Migliori, A.; Shagjjamba, D.; Streli, C. Chromium and zinc speciation in airborne particulate matter collected in ulaanbaatar, mongolia, by X-ray absorption near-edge structure spectroscopy. Aerosol Air Qual. Res. 2021, 21, 210018. [Google Scholar] [CrossRef]
- Buczyńska, A.J.; Krata, A.; Van Grieken, R.; Brown, A.; Polezer, G.; De Wael, K.; Potgieter-Vermaak, S. Composition of PM2.5 and PM1 on high and low pollution event days and its relation to indoor air quality in a home for the elderly. Sci. Total Environ. 2014, 490, 134–143. [Google Scholar] [CrossRef]
- Cornelius, M.-L.U.; Ameh, A.E.; Eze, C.P.; Fatoba, O.; Sartbaeva, A.; Petrik, L.F. The behaviour of rare earth elements from south african coal fly ash during enrichment processes: Wet, magnetic separation and zeolitisation. Minerals 2021, 11, 950. [Google Scholar] [CrossRef]
- Agnihotri, R.; Mishra, S.K.; Yadav, P.; Singh, S.; Rashmi; Prasad, M.V.S.N.; Sharma, C.; Arya, B.C. Bulk level to individual particle level chemical composition of atmospheric dust aerosols (PM5) over a semi-arid urban zone of western india (rajasthan). Aerosol Air Qual. Res. 2015, 15, 58–71. [Google Scholar] [CrossRef]
- Flanagan, J.B.; Jayanty, R.K.M.; Rickman, E.E.; Peterson, M.R. PM2.5 speciation trends network: Evaluation of whole-system uncertainties using data from sites with collocated samplers). J. Air Waste Manag. Assoc. 2006, 56, 492–499. [Google Scholar] [CrossRef] [PubMed]
- Jakšić, M.; Paszti, F.; Kotai, A.; Fazinic, S. Instrumentation for PIXE and RBS. Iaea-Tecdoc 2000, 1190, 1–71. [Google Scholar]
- Chiari, M.; Yubero, E.; Calzolai, G.; Lucarelli, F.; Crespo, J.; Galindo, N.; Nicolás, J.F.; Giannoni, M.; Nava, S. Comparison of PIXE and XRF analysis of airborne particulate matter samples collected on Teflon and quartz fibre filters. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2018, 417, 128–132. [Google Scholar] [CrossRef]
- Sottili, L.; Giuntini, L.; Mazzinghi, A.; Massi, M.; Carraresi, L.; Castelli, L.; Czelusniak, C.; Giambi, F.; Mandò, P.A.; Manetti, M.; et al. The Role of PIXE and XRF in Heritage Science: The INFN-CHNet LABEC Experience. Appl. Sci. 2022, 12, 6585. [Google Scholar] [CrossRef]
- Liang, Z.; Chu, Y.; Gen, M.; Chan, C.K. Single-particle Raman spectroscopy for studying physical and chemical processes of atmospheric particles. Atmos. Chem. Phys. 2022, 22, 3017–3044. [Google Scholar] [CrossRef]
- Correa, M.A.; Franco, S.A.; Gómez, L.M.; Aguiar, D.; Colorado, H.A. Characterization Methods of Ions and Metals in Particulate Matter Pollutants on PM2.5 and PM10 Samples from Several Emission Sources. Sustain. 2023, 15, 4402. [Google Scholar] [CrossRef]
- Villegas, J.E.; Gutiérrez, J.; Colorado, H. Active materials for adaptive building envelopes: A review. J. Mater. Environ. Sci 2020, 2020, 988–1009. [Google Scholar]
- Colorado, H.A.; Mendoza, D.E.; Lin, H.T.; Gutierrez-Velasquez, E. Additive manufacturing against the COVID-19 pandemic: A technological model for the adaptability and networking. J. Mater. Res. Technol. 2022, 16, 1150–1164. [Google Scholar] [CrossRef]
- Castañeda, M.; Gutiérrez-Velásquez, E.I.; Aguilar, C.E.; Monteiro, S.N.; Amell, A.A.; Colorado, H.A. Sustainability and Circular Economy Perspectives of Materials for Thermoelectric Modules. Sustainability 2022, 14, 5987. [Google Scholar] [CrossRef]
Type | Search Command |
---|---|
1 | “XRD” and (PM2.5 OR PM10) and “Clay minerals” |
2 | “XRD” and (PM2.5 OR PM10) and “Aluminosilicates” |
3 | “XRD” and “Particulate matter” and “Atmospheric” |
4 | “Chemical analysis” and “XRF” and “Particulate matter” |
5 | “Elemental compositions” and “XRF” and “Particulate matter” |
6 | “X-ray fluorescence” and (PM2.5 OR PM10) |
7 | “Particulate matter” and “Atmospheric” and “FTIR” |
8 | “FTIR” and (PM2.5 OR PM10) and (organics OR inorganics) |
9 | “Particulate matter” and “Atmospheric” and “Raman” |
10 | “Raman spectroscopy” and (PM2.5 or PM10) and “Black carbon” |
Functional Group | MDL (ng m−3) |
---|---|
Methyl CH3 | 1.67 |
Methylene CH2 | 91.39 |
Aliphatic CH | 7.69 |
Alkene C=C | 1.06 |
Aromatic CH | 16.55 |
Aldehydes/Ketones -(O)R | 14.77 |
Esters/lactones -C(O)O- | 24 |
Amines NH2 | 4.84 |
Calcium silicate CaSiO3 | 4.14 |
Carbohydrate ether -C-O-C | 4.61 |
Functional Groups | Frequency from Literature (cm−1) | References | |
---|---|---|---|
Inorganics | |||
CaSO4 | calcium sulfate | 671 | [39] |
CaCO3 | calcium carbonate | 877, 1433 | [40] |
CaSO4·2H2O | gypsum | 3404, 3535 | [39] |
SO32− | sulfite ion | 671, 694 | [39] |
SO42− | sulfate ion | 599–617 | [39] |
NH4+ | ammonium ions | 1414, 3045, 3215 | [36,37,39] |
SiO2 | silicon oxide | 730, 109 | [40] |
NO3− | nitrate ions | 825, 1320, 1356 | [36,37,39] |
NaNO3 | sodium nitrate | 1768 | [40] |
HSO4− | bisulfate ions | 867, 1029, 1180 | [40] |
Organics | |||
C=O | carbonyl carbons | 1640–1850 | [36] |
C-H | aliphatic carbons | 1452, 2800–3000 | [40] |
COH | alcohols | 3500–3750 | [40] |
CH2 | methylene | 2924, 2854 | [36] |
CH3 | methyl | 1375 | [36] |
Technique | Information Provided by Each Technique |
---|---|
X-ray Diffraction (XRD) | Identification of crystalline material, identification of various polymorphic forms (fingerprints), differentiation between amorphous and crystalline material, and quantification of the percentage of crystallinity of samples. |
X-ray Fluorescence (XRF) | Detection and measurement of most of the elements of periodic table, from uranium (U), the heaviest element, to the lightest elements, such as magnesium (Mg) and beryllium (Be). |
Fourier Transform Infrared Spectroscopy (FTIR) | Determination of functional groups present in organic and inorganic compounds; measurement of energy required to initiate molecular vibrations in a sample. |
Raman spectroscopy | It provides complementary information to that obtained by IR spectroscopy; it allows the analysis of chemical composition and molecular structure; it identifies one of the atmospheric pollutants: black carbon (BC) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Correa-Ochoa, M.A.; Rojas, J.; Gómez, L.M.; Aguiar, D.; Palacio-Tobón, C.A.; Colorado, H.A. Systematic Search Using the Proknow-C Method for the Characterization of Atmospheric Particulate Matter Using the Materials Science Techniques XRD, FTIR, XRF, and Raman Spectroscopy. Sustainability 2023, 15, 8504. https://doi.org/10.3390/su15118504
Correa-Ochoa MA, Rojas J, Gómez LM, Aguiar D, Palacio-Tobón CA, Colorado HA. Systematic Search Using the Proknow-C Method for the Characterization of Atmospheric Particulate Matter Using the Materials Science Techniques XRD, FTIR, XRF, and Raman Spectroscopy. Sustainability. 2023; 15(11):8504. https://doi.org/10.3390/su15118504
Chicago/Turabian StyleCorrea-Ochoa, Mauricio A., Juliana Rojas, Luisa M. Gómez, David Aguiar, Carlos A. Palacio-Tobón, and Henry A. Colorado. 2023. "Systematic Search Using the Proknow-C Method for the Characterization of Atmospheric Particulate Matter Using the Materials Science Techniques XRD, FTIR, XRF, and Raman Spectroscopy" Sustainability 15, no. 11: 8504. https://doi.org/10.3390/su15118504
APA StyleCorrea-Ochoa, M. A., Rojas, J., Gómez, L. M., Aguiar, D., Palacio-Tobón, C. A., & Colorado, H. A. (2023). Systematic Search Using the Proknow-C Method for the Characterization of Atmospheric Particulate Matter Using the Materials Science Techniques XRD, FTIR, XRF, and Raman Spectroscopy. Sustainability, 15(11), 8504. https://doi.org/10.3390/su15118504