Life Cycle Thinking for a Circular Bioeconomy: Current Development, Challenges, and Future Perspectives
Abstract
:1. Introduction
2. Materials and Methods
2.1. Database Selection and Search Strategy
2.2. Document Screening and Inclusion Criteria
2.3. Systematic Review of the Final Portfolio
2.4. Data Synthesis and Presentation
3. Current Development of Life Cycle Thinking for a Circular Bioeconomy
3.1. Temporal Evolution of Studies
3.2. Geographical Distribution of Studies
3.3. Source Analysis
3.4. Type of Biomass/Biowaste, CBE Sectors and Processes Assessed
3.5. Sustainability Dimensions Covered
3.5.1. Environmental Dimension
3.5.2. Economic and Social Dimensions
4. Challenges of Life Cycle Thinking for a Circular Bioeconomy
4.1. Expansion of System Boundaries in LCA Studies
4.2. The Consideration of More Endpoints in LCA Studies
- Human health: Expressed in disability-adjusted life years (DALY), this is a single measure that “combines the mortality and morbidity […] to estimate global disease burden and the effectiveness of health interventions” [79] (p. 10);
- Ecosystem quality: Expressed in potentially disappeared fraction (PDF) by m2/year (Impact 2002+) or simply species by year (ReCiPe 2016), it is the condition of an ecosystem compared to a reference state which can be from the past, present, or future (in a potential situation/condition) [80];
- Resource scarcity: Also known as resources (in Impact 2002+), it is expressed in megajoules (MJ), and refers to the consumption of non-renewable energy and minerals [78].
4.3. The Creation and Use of Regional Databases
4.4. Development of Policies to Encourage a CBE
4.5. Inclusion of Economic and Social Issues
5. Future Perspectives of Life Cycle Thinking for a Circular Bioeconomy
- Microalgae: The development of bio-based products from microalgae has been increasing in recent years [56]. Especially in developing and the least-developed countries, the biorefinery of microalgae to produce protein and energy can address hunger and energy demands [61]. Future works on CBE using algal biomass focus on achieving large-scale operations [56], ways for adding more value to algal-based products [39], as well as addressing the analysis to surpass the uncertainty of prices and demand for these products [27,47] and the inclusion of social and economic issues in related assessments [61];
- Wastewater: The treatment of wastewater represents an opportunity for CBE. Wastewater (from industries or domestic sewage) is a continuous feedstock whose treatment usually occurs through anaerobic digestion, allowing the recuperation of biogas and biofertilizers [11,43]. However, further studies are required in order to search for other alternatives for wastewater treatment [86], alternative feedstocks to be treated with wastewater [44], the management of risks [31], and the creation of more value-added products from wastewater, such as single-cell proteins [31,41];
- Animals: Using animal wastes in a CBE is strategic because it causes severe environmental damages; for example, dairy manure emits high quantities of methane [87]. For this reason, a trend in CBE is the use of animal manure and wastes for developing high added value products, especially biofuels such as biodiesel [55] or biogas [66], as well as the conversion of biomass in animal feed [25,64];
- Bioproducts: In a bioeconomy, a bioproduct encompasses every product made from biomass [88]. A CBE seeks the creation of high-value-added bioproducts [5], such as bio-chemicals [39,46,49,51], bio-based proteins [31,62], or biopolymers [35,36,57]. Trends in this topic are going toward ways of extracting more high-value products [40] that are technical, economical, and environmentally feasible [58];
- Bioenergy: Biowastes have a great potential to serve as a valuable source for bioenergy production [11]. Hence, some biorefinery processes are applied to recover bioenergy from biowastes (waste-to-energy), e.g., combustion for direct heating and electricity production [24,59,60], transesterification for producing biodiesel [42,45,46,55], and, especially, anaerobic digestion for producing biogas for heat and electricity purposes [10]. As for bioproducts, researchers are also seeking optimal ways to add more value to biofuels and more environmentally friendly processes [28];
- Circularity: A CBE inherently involves circularity at its core. CBE closed the loop between the bioeconomy and the circular economy [32]. In this sense, research trends are going towards new ways of reusing materials and energy in integrated models [33,89], the improvement of technology and processes for feedback loops [44], alternative recycling models in agriculture [25], the analysis of the difference in disposal impacts between recycled and market-substituted products [36], and the optimization of use efficiency in product cascading [24];
- Costs: As seen in Section 4.5, including economic aspects is crucial for the LCT for a CBE. In this regard, further studies must focus on the addition of economic features to ensure the feasibility of CBE projects [46], the reduction of economic uncertainties of producing bio-based products at a larger scale [37], the way to attract more capital investments in alternative value-chains [54], the inclusion of carbon trade schemes [32], and the monetization of the profit for all of the stakeholders of a CBE [44];
- Sustainable development: For thinking of a CBE that contributes to sustainable development, it is essential to consider (in addition to economic aspects) the social issues [41,53,89]. Hence, LCT for a CBE must consider the application of LCSA, which considers the three lifecycle tools (LCA, LCC, and SLCA) [7]. Research areas with regard to this topic focus on methods to consider more stakeholders in LCT studies and promote their engagement [44], the calculation of direct and indirect job positions, the quality of working life [23], and the creation and quantification of the social-economic value of bio-based products [41] that entails a contribution to the sustainability of a bioeconomy and a CBE.
6. Implications for the Stakeholders
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Deng, L.; Ngo, H.H.; Guo, W.; Chang, S.W.; Nguyen, D.D.; Pandey, A.; Varjani, S.; Hoang, N.B. Recent advances in circular bioeconomy based clean technologies for sustainable environment. J. Water Process. Eng. 2022, 46, 102534. [Google Scholar] [CrossRef]
- Mustalahti, I. The responsive bioeconomy: The need for inclusion of citizens and environmental capability in the forest based bioeconomy. J. Clean. Prod. 2018, 172, 3781–3790. [Google Scholar] [CrossRef]
- Liobikiene, G.; Balezentis, T.; Streimikiene, D.; Chen, X. Evaluation of bioeconomy in the context of strong sustainability. Sustain. Dev. 2019, 27, 955–964. [Google Scholar] [CrossRef]
- Lewandowski, I.; Gaudet, N.; Lask, J.; Maier, J.; Tchouga, B.; Vargas-Carpintero, R. Context. In Bioeconomy: Shaping the Transition to a Sustainable, Biobased Economy, 1st ed.; Lewandowski, I., Ed.; Springer: Cham, Switzerland, 2018; pp. 5–16. [Google Scholar] [CrossRef]
- Salvador, R.; Barros, M.V.; Donner, M.; Brito, P.; Halog, A.; De Francisco, A.C. How to advance regional circular bioeconomy systems? Identifying barriers, challenges, drivers, and opportunities. Sustain. Prod. Consum. 2022, 32, 248–269. [Google Scholar] [CrossRef]
- Gatto, F.; Re, I. Circular Bioeconomy Business Models to Overcome the Valley of Death. A Systematic Statistical Analysis of Studies and Projects in Emerging Bio-Based Technologies and Trends Linked to the SME Instrument Support. Sustainability 2021, 13, 1899. [Google Scholar] [CrossRef]
- United Nations Environment Programme. Towards a Life Cycle Sustainability Assessment: Making Informed Choices on Proucts. Available online: https://wedocs.unep.org/20.500.11822/8001 (accessed on 12 February 2023).
- D’Amato, D.; Gaio, M.; Semenzin, E. A review of LCA assessments of forest-based bioeconomy products and processes under an ecosystem services perspective. Sci. Total Environ. 2020, 706, 135859. [Google Scholar] [CrossRef]
- Vance, C.; Sweeney, J.; Murphy, F. Space, time, and sustainability: The status and future of life cycle assessment frameworks for novel biorefinery systems. Renew. Sustain. Energy Rev. 2022, 159, 112259. [Google Scholar] [CrossRef]
- Tsapekos, P.; Khoshnevisan, B.; Alvarado-Morales, M.; Zhu, X.; Pan, J.; Tian, H.; Angelidaki, I. Upcycling the anaerobic digestion streams in a bioeconomy approach: A review. Renew. Sustain. Energy Rev. 2021, 151, 111635. [Google Scholar] [CrossRef]
- Saravanan, A.; Karishma, S.; Kumar, P.S.; Rangasamy, G. A review on regeneration of biowaste into bio-products and bioenergy: Life cycle assessment and circular economy. Fuel 2023, 338, 127221. [Google Scholar] [CrossRef]
- Lu, T.; Halog, A. Towards better life cycle assessment and circular economy: On recent studies on interrelationships among environmental sustainability, food systems and diet. Int. J. Sustain. Dev. World Ecol. 2020, 27, 515–523. [Google Scholar] [CrossRef]
- Sridhar, A.; Kapoor, A.; Kumar, P.S.; Ponnuchamy, M.; Balasubramanian, S.; Prabhakar, S. Conversion of food waste to energy: A focus on sustainability and life cycle assessment. Fuel 2021, 302, 121069. [Google Scholar] [CrossRef]
- Sevigné-Itoiz, E.; Mwabonje, O.; Panoutsou, C.; Woods, J. Life cycle assessment (LCA): Informing the development of a sustainable circular bioeconomy? Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 2021, 379, 20200352. [Google Scholar] [CrossRef]
- Cerca, M.; Sosa, A.; Gusciute, E.; Murphy, F. Strategic planning of bio-based supply chains: Unlocking bottlenecks and incorporating social sustainability into biorefinery systems. Sustain. Prod. Consum. 2022, 34, 219–232. [Google Scholar] [CrossRef]
- D’adamo, I.; Gastaldi, M.; Morone, P.; Rosa, P.; Sassanelli, C.; Settembre-Blundo, D.; Shen, Y. Bioeconomy of Sustainability: Drivers, Opportunities and Policy Implications. Sustainability 2022, 14, 200. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Syst. Rev. 2021, 89, 105906. [Google Scholar]
- Haddaway, N.R.; Macura, B.; Whaley, P.; Pullin, A. ROSES RepOrting standards for Systematic Evidence Syntheses: Pro forma, flow-diagram and descriptive summary of the plan and conduct of environmental systematic reviews and systematic maps. Environ. Evid. 2018, 7, 7. [Google Scholar] [CrossRef]
- Mongeon, P.; Paul-Hus, A. The journal coverage of Web of Science and Scopus: A comparative analysis. Scientometrics 2016, 106, 213–228. [Google Scholar] [CrossRef]
- Araújo, C.K.D.C.; Ferreira, M.B.; Salvador, R.; Araújo, C.K.C.d.C.; Camargo, B.S.; Camargo, S.K.D.C.A.; de Campos, C.I.; Piekarski, C.M. Life cycle assessment as a guide for designing circular business models in the wood panel industry: A critical review. J. Clean. Prod. 2022, 355, 131729. [Google Scholar] [CrossRef]
- Talwar, N.; Holden, N.M. The limitations of bioeconomy LCA studies for understanding the transition to sustainable bioeconomy. Int. J. Life Cycle Assess. 2022, 27, 680–703. [Google Scholar] [CrossRef]
- Van Eck, N.J.; Waltman, L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 2010, 84, 523–538. [Google Scholar] [CrossRef]
- Farzad, S.; Mandegari, M.A.; Guo, M.; Haigh, K.F.; Shah, N.; Görgens, J.F. Multi-product biorefineries from lignocelluloses: A pathway to revitalisation of the sugar industry? Biotechnol. Biofuels 2017, 10, 87. [Google Scholar] [CrossRef] [PubMed]
- Bais-Moleman, A.L.; Sikkema, R.; Vis, M.; Reumerman, P.; Theurl, M.C.; Erb, K.-H. Assessing wood use efficiency and greenhouse gas emissions of wood product cascading in the European Union. J. Clean. Prod. 2018, 172, 3942–3954. [Google Scholar] [CrossRef]
- Chen, W.; Oldfield, T.L.; Katsantonis, D.; Kadoglidou, K.; Wood, R.; Holden, N.M. The socio-economic impacts of introducing circular economy into Mediterranean rice production. J. Clean. Prod. 2019, 218, 273–283. [Google Scholar] [CrossRef]
- Rai, P.K.; Sonne, C.; Song, H.; Kim, K.-H. Plastic wastes in the time of COVID-19: Their environmental hazards and implications for sustainable energy resilience and circular bio-economies. Sci. Total Environ. 2023, 858, 159880. [Google Scholar] [CrossRef] [PubMed]
- Ubando, A.T.; Ng, E.A.S.; Chen, W.-H.; Culaba, A.B.; Kwon, E.E. Life cycle assessment of microalgal biorefinery: A state-of-the-art review. Bioresour. Technol. 2022, 360, 127615. [Google Scholar] [CrossRef] [PubMed]
- Sarangi, P.K.; Subudhi, S.; Bhatia, L.; Saha, K.; Mudgil, D.; Shadangi, K.P.; Srivastava, R.K.; Pattnaik, B.; Arya, R.K. Utilization of agricultural waste biomass and recycling toward circular bioeconomy. Environ. Sci. Pollut. Res. 2023, 30, 8526–8539. [Google Scholar] [CrossRef]
- European Commission. Directorate-General for Research and Innovation, Bioeconomy: The European way to use our natural resources: Action Plan 2018, Publications Office. 2019. Available online: https://data.europa.eu/doi/10.2777/79401 (accessed on 13 February 2023).
- Danish Energy Agency. Denmark’s Energy and Climate Outlook. 2019. Available online: https://ens.dk/sites/ens.dk/files/Analyser/deco19.pdf (accessed on 13 February 2023).
- Marami, H.; He, L.; Rafiee, S.; Khoshnevisan, B.; Tsapekos, P.; Mobli, H.; Elyasi, S.N.; Liu, H.; Angelidaki, I. Bridging to circular bioeconomy through a novel biorefinery platform on a wastewater treatment plant. Renew. Sustain. Energy Rev. 2022, 154, 111895. [Google Scholar] [CrossRef]
- Khoshnevisan, B.; Tabatabaei, M.; Tsapekos, P.; Rafiee, S.; Aghbashlo, M.; Lindeneg, S.; Angelidaki, I. Environmental life cycle assessment of different biorefinery platforms valorizing municipal solid waste to bioenergy, microbial protein, lactic and succinic acid. Renew. Sustain. Energy Rev. 2020, 117, 109493. [Google Scholar] [CrossRef]
- Jukka, L.; Miika, M.; Lauri, L.; Mirja, M.; Ville, U.; Lassi, L. A financial and environmental sustainability of circular bioeconomy: A case study of short rotation coppice, biochar and greenhouse production in southern Finland. Biomass Bioenergy 2022, 163, 106524. [Google Scholar] [CrossRef]
- Meisel, K.; Röver, L.; Majer, S.; Herklotz, B.; Thrän, D. A Comparison of Functional Fillers—Greenhouse Gas Emissions and Air Pollutants from Lignin-Based Filler, Carbon Black and Silica. Sustainability 2022, 14, 5393. [Google Scholar] [CrossRef]
- Hildebrandt, J.; Thrän, D.; Bezama, A. The circularity of potential bio-textile production routes: Comparing life cycle impacts of bio-based materials used within the manufacturing of selected leather substitutes. J. Clean. Prod. 2021, 287, 125470. [Google Scholar] [CrossRef]
- Tonini, D.; Schrijvers, D.; Nessi, S.; Garcia-Gutierrez, P.; Giuntoli, J. Carbon footprint of plastic from biomass and recycled feedstock: Methodological insights. Int. J. Life Cycle Assess. 2021, 26, 221–237. [Google Scholar] [CrossRef]
- Micó-Vicent, B.; Ramos, M.; Viqueira, V.; Luzi, F.; Dominici, F.; Terenzi, A.; Maron, E.; Hamzaoui, M.; Kohnen, S.; Torre, L.; et al. Anthocyanin Hybrid Nanopigments from Pomegranate Waste: Colour, Thermomechanical Stability and Environmental Impact of Polyester-Based Bionanocomposites. Polymers 2021, 13, 1966. [Google Scholar] [CrossRef] [PubMed]
- Arashiro, L.T.; Josa, I.; Ferrer, I.; Van Hulle, S.W.; Rousseau, D.P.; Garfí, M. Life cycle assessment of microalgae systems for wastewater treatment and bioproducts recovery: Natural pigments, biofertilizer and biogas. Sci. Total Environ. 2022, 847, 157615. [Google Scholar] [CrossRef]
- Benítez, J.J.; Ramírez-Pozo, M.C.; Durán-Barrantes, M.M.; Heredia, A.; Tedeschi, G.; Ceseracciu, L.; Guzman-Puyol, S.; Marrero-López, D.; Becci, A.; Amato, A.; et al. Bio-based lacquers from industrially processed tomato pomace for sustainable metal food packaging. J. Clean. Prod. 2023, 386, 135836. [Google Scholar] [CrossRef]
- Pahmeyer, M.J.; Siddiqui, S.A.; Pleissner, D.; Gołaszewski, J.; Heinz, V.; Smetana, S. An automated, modular system for organic waste utilization using heterotrophic alga Galdieria sulphuraria: Design considerations and sustainability. Bioresour. Technol. 2022, 348, 126800. [Google Scholar] [CrossRef]
- Chen, W.; Oldfield, T.L.; Patsios, S.I.; Holden, N.M. Hybrid life cycle assessment of agro-industrial wastewater valorisation. Water Res. 2020, 170, 115275. [Google Scholar] [CrossRef]
- Al-Mawali, K.S.; Osman, A.I.; Al-Muhtaseb, A.H.; Mehta, N.; Jamil, F.; Mjalli, F.; Vakili-Nezhaad, G.R.; Rooney, D.W. Life cycle assessment of biodiesel production utilising waste date seed oil and a novel magnetic catalyst: A circular bioeconomy approach. Renew. Energy 2021, 170, 832–846. [Google Scholar] [CrossRef]
- Mainardis, M.; Magnolo, F.; Ferrara, C.; Vance, C.; Misson, G.; De Feo, G.; Speelman, S.; Murphy, F.; Goi, D. Alternative seagrass wrack management practices in the circular bioeconomy framework: A life cycle assessment approach. Sci. Total Environ. 2021, 798, 149283. [Google Scholar] [CrossRef]
- Vance, C.; Mainardis, M.; Magnolo, F.; Sweeney, J.; Murphy, F. Modeling the effects of ecosystem changes on seagrass wrack valorization: Merging system dynamics with life cycle assessment. J. Clean. Prod. 2022, 370, 133454. [Google Scholar] [CrossRef]
- Hosseinzadeh-Bandbafha, H.; Nizami, A.-S.; Kalogirou, S.A.; Gupta, V.K.; Park, Y.-K.; Fallahi, A.; Sulaiman, A.; Ranjbari, M.; Rahnama, H.; Aghbashlo, M.; et al. Environmental life cycle assessment of biodiesel production from waste cooking oil: A systematic review. Renew. Sustain. Energy Rev. 2022, 161, 112411. [Google Scholar] [CrossRef]
- Khounani, Z.; Hosseinzadeh-Bandbafha, H.; Moustakas, K.; Talebi, A.F.; Goli, S.A.H.; Rajaeifar, M.A.; Khoshnevisan, B.; Jouzani, G.S.; Peng, W.; Kim, K.-H.; et al. Environmental life cycle assessment of different biorefinery platforms valorizing olive wastes to biofuel, phosphate salts, natural antioxidant, and an oxygenated fuel additive (triacetin). J. Clean. Prod. 2021, 278, 123916. [Google Scholar] [CrossRef]
- Solis, C.M.A.; Juan, J.L.G.S.; Mayol, A.P.; Sy, C.L.; Ubando, A.T.; Culaba, A.B. A Multi-Objective Life Cycle Optimization Model of an Integrated Algal Biorefinery toward a Sustainable Circular Bioeconomy Considering Resource Recirculation. Energies 2021, 14, 1416. [Google Scholar] [CrossRef]
- Duan, N.; Zhang, D.; Khoshnevisan, B.; Kougias, P.G.; Treu, L.; Liu, Z.; Lin, C.; Liu, H.; Zhang, Y.; Angelidaki, I. Human waste anaerobic digestion as a promising low-carbon strategy: Operating performance, microbial dynamics and environmental footprint. J. Clean. Prod. 2020, 256, 120414. [Google Scholar] [CrossRef]
- Khounani, Z.; Hosseinzadeh-Bandbafha, H.; Nizami, A.-S.; Sulaiman, A.; Goli, S.A.H.; Tavassoli-Kafrani, E.; Ghaffari, A.; Rajaeifar, M.A.; Kim, K.-H.; Talebi, A.F.; et al. Data on environmental analysis of natural antioxidant production from walnut husk by a solar photovoltaic-driven system as a replacement for potentially carcinogenic synthetic antioxidants. Data Brief 2020, 28, 104933. [Google Scholar] [CrossRef] [PubMed]
- Dahiya, S.; Lakshminarayanan, S.; Mohan, S.V. Steering acidogenesis towards selective propionic acid production using co-factors and evaluating environmental sustainability. Chem. Eng. J. 2020, 379, 122135. [Google Scholar] [CrossRef]
- Shaji, A.; Shastri, Y.; Kumar, V.; Ranade, V.V.; Hindle, N. Sugarcane bagasse valorization to xylitol: Techno-economic and life cycle assessment. Biofuels Bioprod. Biorefin. 2022, 16, 1214–1226. [Google Scholar] [CrossRef]
- Mendieta, O.; Castro, L.; Escalante, H.; Garfí, M. Low-cost anaerobic digester to promote the circular bioeconomy in the non-centrifugal cane sugar sector: A life cycle assessment. Bioresour. Technol. 2021, 326, 124783. [Google Scholar] [CrossRef] [PubMed]
- Acevedo-García, B.; Santibañez-Aguilar, J.E.; Alvarez, A.J. Integrated multiproduct biorefinery from Ricinus communis in Mexico: Conceptual design, evaluation, and optimization, based on environmental and economic aspects. Bioresour. Technol. Rep. 2022, 19, 101201. [Google Scholar] [CrossRef]
- Calicioglu, O.; Femeena, P.V.; Mutel, C.L.; Sills, D.L.; Richard, T.L.; Brennan, R.A. Techno-economic Analysis and Life Cycle Assessment of an Integrated Wastewater-Derived Duckweed Biorefinery. ACS Sustain. Chem. Eng. 2021, 9, 9395–9408. [Google Scholar] [CrossRef]
- Kiehbadroudinezhad, M.; Merabet, A.; Hosseinzadeh-Bandbafha, H. A life cycle assessment perspective on biodiesel production from fish wastes for green microgrids in a circular bioeconomy. Bioresour. Technol. Rep. 2023, 21, 101303. [Google Scholar] [CrossRef]
- Medeiros, D.L.; Moreira, T.A. Microalgae biomass production from cultivation in availability and limitation of nutrients: The technical, environmental and economic performance. J. Clean. Prod. 2022, 370, 133538. [Google Scholar] [CrossRef]
- Yeboah, W.O.; Kwofie, E.M.; Wang, D. Circular bioeconomy potential of rice husk as a bioplastic resource: Techno-environmental assessment. Bioresour. Technol. Rep. 2022, 20, 101248. [Google Scholar] [CrossRef]
- Rocha, J.H.A.; de Siqueira, A.A.; de Oliveira, M.A.B.; Castro, L.D.S.; Caldas, L.R.; Monteiro, N.B.R.; Filho, R.D.T. Circular Bioeconomy in the Amazon Rainforest: Evaluation of Açaí Seed Ash as a Regional Solution for Partial Cement Replacement. Sustainability 2022, 14, 14436. [Google Scholar] [CrossRef]
- Carvalho, R.L.; Yadav, P.; García-López, N.; Lindgren, R.; Nyberg, G.; Diaz-Chavez, R.; Upadhyayula, V.K.K.; Boman, C.; Athanassiadis, D. Environmental Sustainability of Bioenergy Strategies in Western Kenya to Address Household Air Pollution. Energies 2020, 13, 719. [Google Scholar] [CrossRef]
- Ncube, A.; Sadondo, P.; Makhanda, R.; Mabika, C.; Beinisch, N.; Cocker, J.; Gwenzi, W.; Ulgiati, S. Circular bioeconomy potential and challenges within an African context: From theory to practice. J. Clean. Prod. 2022, 367, 133068. [Google Scholar] [CrossRef]
- Karan, H.; Roles, J.; Ross, I.L.; Ebrahimi, M.; Rackemann, D.; Rainey, T.; Hankamer, B. Solar biorefinery concept for sustainable co-production of microalgae-based protein and renewable fuel. J. Clean. Prod. 2022, 368, 132981. [Google Scholar] [CrossRef]
- Bartek, L.; Sundin, N.; Strid, I.; Andersson, M.; Hansson, P.-A.; Eriksson, M. Environmental benefits of circular food systems: The case of upcycled protein recovered using genome edited potato. J. Clean. Prod. 2022, 380, 134887. [Google Scholar] [CrossRef]
- Hosseinzadeh-Bandbafha, H.; Nazemi, F.; Khounani, Z.; Ghanavati, H.; Shafiei, M.; Karimi, K.; Lam, S.S.; Aghbashlo, M.; Tabatabaei, M. Safflower-based biorefinery producing a broad spectrum of biofuels and biochemicals: A life cycle assessment perspective. Sci. Total Environ. 2021, 802, 149842. [Google Scholar] [CrossRef]
- Teigiserova, D.A.; Hamelin, L.; Tiruta-Barna, L.; Ahmadi, A.; Thomsen, M. Circular bioeconomy: Life cycle assessment of scaled-up cascading production from orange peel waste under current and future electricity mixes. Sci. Total Environ. 2022, 812, 152574. [Google Scholar] [CrossRef]
- Krzyżaniak, M.; Stolarski, M.J.; Warmiński, K. Life Cycle Assessment of Giant Miscanthus: Production on Marginal Soil with Various Fertilisation Treatments. Energies 2020, 13, 1931. [Google Scholar] [CrossRef]
- Venslauskas, K.; Navickas, K.; Rubežius, M.; Tilvikienė, V.; Supronienė, S.; Doyeni, M.O.; Barčauskaitė, K.; Bakšinskaitė, A.; Bunevičienė, K. Environmental Impact Assessment of Sustainable Pig Farm via Management of Nutrient and Co-Product Flows in the Farm. Agronomy 2022, 12, 760. [Google Scholar] [CrossRef]
- Jensen, P.A.; Maslesa, E.; Berg, J.B. Sustainable Building Renovation: Proposals for a Research Agenda. Sustainability 2018, 10, 4677. [Google Scholar] [CrossRef]
- Hutchins, M.J.; Richter, J.S.; Henry, M.L.; Sutherland, J.W. Development of indicators for the social dimension of sustainability in a U.S. business context. J. Clean. Prod. 2019, 212, 687–697. [Google Scholar] [CrossRef]
- Huarachi, D.A.R.; Piekarski, C.M.; Puglieri, F.N.; de Francisco, A.C. Past and future of Social Life Cycle Assessment: Historical evolution and research trends. J. Clean. Prod. 2020, 264, 121506. [Google Scholar] [CrossRef]
- Hoehn, D.; Laso, J.; Margallo, M.; Ruiz-Salmón, I.; Amo-Setién, F.J.; Abajas-Bustillo, R.; Sarabia, C.; Quiñones, A.; Vázquez-Rowe, I.; Bala, A.; et al. Introducing a Degrowth Approach to the Circular Economy Policies of Food Production, and Food Loss and Waste Management: Towards a Circular Bioeconomy. Sustainability 2021, 13, 3379. [Google Scholar] [CrossRef]
- OpenLCA. Information. Available online: https://www.openlca.org/ (accessed on 20 February 2023).
- Mutel, C. Brightway: An open source framework for Life Cycle Assessment. J. Open Source Softw. 2017, 2, 236. [Google Scholar] [CrossRef]
- Huijbregts, M.A.J.; Steinmann, Z.J.N.; Elshout, P.M.F.; Stam, G.; Verones, F.; Vieira, M.; Zijp, M.; Hollander, A.; van Zelm, R. ReCiPe2016: A harmonised life cycle impact assessment method at midpoint and endpoint level. Int. J. Life Cycle Assess. 2017, 22, 138–147. [Google Scholar] [CrossRef]
- Jolliet, O.; Margni, M.; Charles, R.; Humbert, S.; Payet, J.; Rebitzer, G.; Rosenbaum, R. IMPACT 2002+: A new life cycle impact assessment methodology. Int. J. Life Cycle Assess. 2003, 8, 324–330. [Google Scholar] [CrossRef]
- Yang, Y.; Heijungs, R.; Brandão, M. Hybrid life cycle assessment (LCA) does not necessarily yield more accurate results than process-based LCA. J. Clean. Prod. 2017, 150, 237–242. [Google Scholar] [CrossRef]
- Finnveden, G.; Potting, J. Life Cycle Assessment. In Encyclopedia of Toxicology, 3rd ed.; Wexler, P., Ed.; Elsevier: Bethesda, MA, USA, 2014; pp. 74–77. [Google Scholar] [CrossRef]
- Payraudeau, S.; van der Werf, H.M. Environmental impact assessment for a farming region: A review of methods. Agric. Ecosyst. Environ. 2005, 107, 1–19. [Google Scholar] [CrossRef]
- Humbert, S.; de Schryver, A.; Bengoa, X.; Margni, M.; Jolliet, O. Impact 2002+: User Guide. 2012. Quantis. Available online: https://quantis.com/pdf/IMPACT2002_UserGuide_for_vQ2.21.pdf (accessed on 20 February 2023).
- Chen, A.; Jacobsen, K.H.; Deshmukh, A.A.; Cantor, S.B. The evolution of the disability-adjusted life year (DALY). Socio-Economic Plan. Sci. 2015, 49, 10–15. [Google Scholar] [CrossRef]
- Woods, J.S.; Damiani, M.; Fantke, P.; Henderson, A.D.; Johnston, J.M.; Bare, J.; Sala, S.; de Souza, D.M.; Pfister, S.; Posthuma, L.; et al. Ecosystem quality in LCIA: Status quo, harmonization, and suggestions for the way forward. Int. J. Life Cycle Assess. 2018, 23, 1995–2006. [Google Scholar] [CrossRef] [PubMed]
- Weidema, B. Ecoinvent database version 3—The practical implications of the choice of system model. In Proceedings of the Life Cycle Management conference, Berlin, Germany, 28–31 August 2011; Available online: https://lca-net.com/files/Bo_Weidema_191.pdf (accessed on 13 April 2023).
- Ecoinvent Database. Available online: https://ecoinvent.org/the-ecoinvent-database/ (accessed on 24 February 2023).
- Frischknecht, R. Notions on the Design and Use of an Ideal Regional or Global LCA Database. Int. J. Life Cycle Assess. 2006, 11, 40–48. [Google Scholar] [CrossRef]
- Ciroth, A.; Di Noi, C.; Burhan, S.S.; Srocka, M. LCA database creation: Current challenges and the way forward. Indonesian J. Life Cycle Assess. Sustain. 2019, 3, 41–51. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations. The Future of Food and Agriculture: Trends and Challenges, 1st ed.; Food and Agriculture Organization of the United Nations: Rome, Italy, 2017; p. 11. Available online: https://www.fao.org/3/i6583e/i6583e.pdf (accessed on 10 April 2023).
- Chowdhury, S.D.; Bhunia, P.; Surampalli, R.Y. Sustainability assessment of vermifiltration technology for treating domestic sewage: A review. J. Water Process. Eng. 2022, 50, 103266. [Google Scholar] [CrossRef]
- Cárdenas, A.; Ammon, C.; Schumacher, B.; Stinner, W.; Herrmann, C.; Schneider, M.; Weinrich, S.; Fischer, P.; Amon, T.; Amon, B. Methane emissions from the storage of liquid dairy manure: Influences of season, temperature and storage duration. Waste Manag. 2021, 121, 393–402. [Google Scholar] [CrossRef]
- Sparovek, G.; Antoniazzi, L.B.; Barretto, A.; Barros, A.C.; Benevides, M.; Berndes, G.; Braga, E.D.P.; Calmon, M.; Groke, P.H.; Marques, F.N.D.A.; et al. Sustainable bioproducts in Brazil: Disputes and agreements on a common ground agenda for agriculture and nature protection. Biofuels Bioprod. Biorefin. 2016, 10, 204–221. [Google Scholar] [CrossRef]
- Briassoulis, D.; Pikasi, A.; Hiskakis, M. Organic recycling of post-consumer /industrial bio-based plastics through industrial aerobic composting and anaerobic digestion—Techno-economic sustainability criteria and indicators. Polym. Degrad. Stab. 2021, 190, 109642. [Google Scholar] [CrossRef]
- United Nations Environment Programme. Guidelines for Social Life Cycle Assessment of Products. Available online: https://www.unep.org/resources/report/guidelines-social-life-cycle-assessment-products (accessed on 13 February 2023).
Feature | Description |
---|---|
Search string | (“Circular bioeconomy” OR “Circular bio-economy”) AND (“Life cycle thinking” OR “Life cycle perspective” OR “Life cycle approach” OR “Life cycle management” OR “Life cycle engineering” OR “Life cycle sustainability assessment” OR “Life cycle sustainability analysis” OR “LCSA” OR “Life cycle assessment” OR “Life cycle analysis” OR “LCA” OR “Life cycle cost*” OR “LCC” OR “Social LCA” OR “SLCA” OR “S-LCA”) |
Databases | Scopus, Web-of-Science, ScienceDirect 1 |
Search options | Topic or title, abstract and keywords |
Search date | 1 January 2023 |
Temporal range | Up to 2022 |
Inclusion filters | Articles or reviews from peer-reviewed journals in English |
Setting | Value |
---|---|
Counting method | Full counting |
Unit of analysis | Keywords |
Minimum number of occurrences | 3 |
Type of label | Frames |
Thesaurus file 1 | Yes |
Show | All items |
Type | Origin | Ref. | Description | Process | CBE Sector | Final Products |
---|---|---|---|---|---|---|
Biomass | Algal | [47] | Several types of microalgae | AD, TE, pyrolysis | Aquaculture, biorefinery | Biogas (for EHP), biodiesel, biochar |
[56] | Several types of microalgae | Cultivation, harvesting | Aquaculture | Bio-based protein, algal carbohydrate | ||
[61] | Chlorella | Ultrafiltration, HT liquefaction | Aquaculture, biorefinery | Bio-based protein, biocrude oil | ||
Vegetal | [33] | Willow wood | Drying, pyrolysis | Forestry | Biochar, wood chips | |
[43] | Seagrass wrack | AD, composting | Aquaculture | Biogas (for EHP), BF | ||
[44] | Seagrass wrack | AD | Aquaculture | Biogas (for EHP), BF | ||
[65] | Giant miscanthus | Cultivation, harvesting | Agroindustry | Biomass feedstock | ||
Biomass/ Waste | Vegetal, industrial | [24] | Wood and paper wastes | Reuse in process, incineration | Forestry, paper industry | Paper, bioelectricity |
Vegetal | [35] | Sugar beet, pineapple leaves | Polymerization | Agroindustry, textile industry | Bio-based leather | |
Vegetal, urban | [36] | Maize, sugarcane and OFMSW | Polymerization | Agroindustry, plastic industry | Bioplastic | |
Algal, WW | [38] | Spirulina, urban and industry WW | AD, pigment extraction | Aquaculture, biorefinery | Biogas (for EHP), BF, bio-pigment | |
Algal, urban | [40] | Galdieria sulphuaria, OFMSW | Hydrolysis, fermentation | Aquaculture, municipal | Algal-based protein | |
Waste | Animal | [55] | Salmon wastes | Transesterification | Fishing | Biodiesel |
[66] | Swine manure | AD | Livestock | Biogas (for EHP), BF | ||
Industrial | [34] | Lignin from paper pulp | HT treatment | Paper industry | Bio-based filler (for polymer blends) | |
Urban | [32] | OFMSW | AD | Municipal | Biogas (for EHP), BF | |
[59] | OFMSW | AD, pyrolysis | Municipal | Biogas (for BM), biochar | ||
[60] | OFMSW | AD, composting, incineration | Municipal | Biogas (for EHP), BF, bioelectricity | ||
Vegetal | [23] | Sugarcane bagasse | Transesterification | Agroindustry, biorefinery | Bioethanol, bioelectricity | |
[25] | Rice husk and bran | Incineration, composting | Agroindustry | Steam, BF | ||
[37] | Pomegranate bagasse | Pigment extraction | Agroindustry | Bio-pigment | ||
[39] | Tomato pomace | Polymerization | Agroindustry | Bio-based lacquer | ||
[42] | Date seeds | Transesterification | Agroindustry | Biodiesel | ||
[46] | Olive bagasse and leaves | Transesterification | Agroindustry | Bio-based antioxidant, biodiesel | ||
[49] | Walnut husk | Phenolic extraction | Agroindustry | Bio-based antioxidant | ||
[51] | Sugarcane bagasse | Fermentation, crystallization | Agroindustry | Xylitol (sweetener) | ||
[52] | Sugarcane bagasse and vinasse | AD | Agroindustry, biorefinery | Biogas (for EHP), BF | ||
[53] | Castor-oil seeds | AD, Transesterification | Agroindustry, biorefinery | Biogas (for EHP), biodiesel | ||
[57] | Rice husk | Polymerization | Agroindustry | Bioplastic | ||
[58] | Açai seeds | Incineration | Agroindustry | Mortar for construction | ||
[62] | Potato bagasse | Drying, heating | Agroindustry | Potato fiber, protein and BF | ||
[63] | Safflower seeds and straw | Transesterification | Agroindustry, biorefinery | Bioethanol, biodiesel | ||
[64] | Orange bagasse | Fermentation, crystallization | Agroindustry | Essential oil, citric acid, animal feed | ||
WW | [31] | Urban WW | AD, fermentation | WW Treatment | Biogas (for BM), SCP | |
[41] | Food industry WW | AD, fermentation | Agroindustry | Biogas (for EHP), SCP | ||
[48] | Urban WW | AD | WW Treatment | Biogas (for EHP), BF | ||
[50] | Urban WW | Fermentation | WW Treatment | Propionic acid | ||
[54] | Duckweed WW | AD | Aquaculture, biorefinery | Biogas (for EHP), BF |
Syst. Bound. | Ref. | Software | Database | Method for IA | M/E | N° of Midpoints | N° of Endpoints |
---|---|---|---|---|---|---|---|
Gate-to-gate | [4] | SimaPro 8.0 | Ecoinvent 3 | ReCiPe 2016 | M/E | 18 | 3 |
[32] | SimaPro 8.5 | Ecoinvent 3.3 | Impact 2002+ | E | - | 4 | |
[55] | SimaPro 9.3 | Ecoinvent 3 | Impact world+ | M/E | 18 | 2 | |
[57] | OpenLCA 1.10 | Ecoinvent 3.7 | ReCiPe 2016 | M/E | 18 | 3 | |
Cradle-to-gate | [23] | SimaPro 8.0 | U.I. | CML-IA, Eco-indicator 99 | M | 20 | - |
[31] | SimaPro 9.1 | Ecoinvent 3 | ReCiPe 2016 | M/E | 11 | 3 | |
[33] | GaBi 9.2 | GaBi Thinkstep | CML-2001 | M | 1 | - | |
[34] | Umberto LCA+ 10.0.3 | Ecoinvent 3.6 | IPCC 2013 | M | 1 | - | |
[35] | GaBi 6.0 | GaBi Thinkstep, Ecoinvent 3.5 | EF 2.0 | M | 16 | - | |
[37] | SimaPro 8.5 | Ecoinvent 3.5 | IPCC 2013, ReCiPe 2016 | M | 19 | - | |
[39] | GaBi 9.2 | GaBi Thinkstep, Ecoinvent 3.5 | EF 3.0 | M | 16 | - | |
[40] | SimaPro 8.0 | Ecoinvent v.3.4 | Impact 2002+ | M | 15 | - | |
[42] | U.I. | U.I. | CML-IA, ReCiPe 2016 | M/E | 11 | 3 | |
[44] | SimaPro 8 | Ecoinvent v.3 | CML-IA, ReCiPe 2016 | M | 9 | - | |
[46] | SimaPro 8.2 | Ecoinvent 3.2 | Impact 2002+ | E | - | 4 | |
[48] | U.I. | U.I. | Impact 2002+ | E | - | 4 | |
[50] | SimaPro 8.5 | Ecoinvent 3.5 | CML-IA, Impact 2002+, IPCC 2013 | M/E | 12 | 4 | |
[51] | OpenLCA 1.10 | Ecoinvent 3.3 | ReCiPe 2016 | M | 7 | - | |
[53] | OpenLCA 1.10 | Agribalyse 3.0.1 | CML-2001 | M | 12 | - | |
[54] | Brightway 2 | Ecoinvent 3.3 | IPCC 2013/ReCiPe 2016 | M/E | 4 | 1 | |
[56] | OpenLCA 1.11 | Ecoinvent 3.6 | IPCC 2021 | M | 1 | - | |
[58] | U.I. | Ecoinvent 3.6 | EN 15804 + A2 | M | 1 | - | |
[60] | SimaPro 9.1 | U.I. | ReCiPe 2016 | M | 10 | - | |
[61] | TELCA | ICE 2.0 | IPCC 2013 | M | 1 | - | |
[62] | SimaPro 9.3 | Ecoinvent 3.8 | ReCiPe 2016 | M/E | 18 | 1 | |
[63] | SimaPro 8.0 | Ecoinvent 3 | Impact 2002+ | E | - | 4 | |
[64] | SimaPro 9.0 | Ecoinvent 3.6 | EF 3.0 | M | 6 | - | |
[65] | U.I. | U.I. | ReCiPe 2016 | M | 8 | - | |
[66] | SimaPro 9.2 | Ecoinvent 3 | CML-IA | M | 11 | - | |
Cradle-to-use | [59] | SimaPro 8.5 | Ecoinvent 3.1, Agrifootprint | ReCiPe 2016 | M | 8 | - |
Cradle-to-grave | [24] | U.I. | U.I. | IPCC 2006 | M | 1 | - |
[36] | U.I. | Ecoinvent 3.6 | IPCC 2006 | M | 1 | - | |
[38] | SimaPro 9.0 | Ecoinvent 3.7 | ReCiPe 2016 | M | 10 | - | |
[47] | SimaPro 8.0 | U.I. | ReCiPe 2016 | M/E | 14 | 2 | |
[49] | SimaPro 8.2 | Ecoinvent 3.0 | Impact 2002+ | M/E | 13 | 4 | |
[52] | SimaPro 8.0 | Ecoinvent 3 | ReCiPe 2008 | M | 9 | - | |
[70] | GaBi 6.0 | GaBi Thinkstep | CML-2001 | M | 1 | - | |
Hybrid LCA | [41] | U.I. | Exiobase, Agrifootprint | IPCC 2013 | M | 1 | - |
Dim. | Ref. | Type of Assessment | Data Source | Database | Indicators |
---|---|---|---|---|---|
Economic | [23] | Economic assessment | Secondary | Aspen Plus EE | Direct costs (CAPEX, OPEX), IRR |
[25] | Hybrid LCA | Secondary | Exiobase | Gross value added | |
[33] | Financial assessment | Primary | - | Direct costs (CAPEX, OPEX), CFA, NPV, IRR | |
[40] | Economic assessment | Primary | - | Direct costs (CAPEX, OPEX), Necessary break-even price | |
[41] | Hybrid LCA | Secondary | Exiobase | Gross value added | |
[43] | LCC | Primary | - | Direct costs (CAPEX, OPEX), Indirect costs (environmental costs and benefits), NPV | |
[44] | LCC | Primary | - | Direct costs (CAPEX, OPEX), Indirect costs (consequence of actions), external costs (environmental costs), NPV | |
[51] | TEA | Secondary | Aspen Plus EE | Direct costs (CAPEX, OPEX), IRR | |
[53] | Economic assessment | Primary | - | Total revenues from potential sales of bioproducts | |
[54] | TEA | Secondary | NREL report | Direct costs (CAPEX, OPEX), IRR | |
[56] | TEA | Secondary | IEA bioenergy | Direct costs (CAPEX, OPEX) | |
[57] | Environmental costs assessment | Secondary | Ecovalue 14 | Environmental Costs associated to impact categories | |
[61] | TELCA | Primary | - | Direct costs (CAPEX, OPEX), IRR, NPV | |
Social | [25] | Hybrid LCA | Primary | Exiobase | Number of hours of employment |
[41] | Hybrid LCA | Primary | Exiobase | Number of hours of employment | |
[61] | TELCA | Primary | - | Energy returned on energy invested (ERoEI) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramos Huarachi, D.A.; Hluszko, C.; Ulloa, M.I.C.; Moretti, V.; Ramos Quispe, J.A.; Puglieri, F.N.; Francisco, A.C.d. Life Cycle Thinking for a Circular Bioeconomy: Current Development, Challenges, and Future Perspectives. Sustainability 2023, 15, 8543. https://doi.org/10.3390/su15118543
Ramos Huarachi DA, Hluszko C, Ulloa MIC, Moretti V, Ramos Quispe JA, Puglieri FN, Francisco ACd. Life Cycle Thinking for a Circular Bioeconomy: Current Development, Challenges, and Future Perspectives. Sustainability. 2023; 15(11):8543. https://doi.org/10.3390/su15118543
Chicago/Turabian StyleRamos Huarachi, Diego Alexis, Cleiton Hluszko, Micaela Ines Castillo Ulloa, Vinicius Moretti, Julio Abraham Ramos Quispe, Fabio Neves Puglieri, and Antonio Carlos de Francisco. 2023. "Life Cycle Thinking for a Circular Bioeconomy: Current Development, Challenges, and Future Perspectives" Sustainability 15, no. 11: 8543. https://doi.org/10.3390/su15118543
APA StyleRamos Huarachi, D. A., Hluszko, C., Ulloa, M. I. C., Moretti, V., Ramos Quispe, J. A., Puglieri, F. N., & Francisco, A. C. d. (2023). Life Cycle Thinking for a Circular Bioeconomy: Current Development, Challenges, and Future Perspectives. Sustainability, 15(11), 8543. https://doi.org/10.3390/su15118543