Investigating the Impact of Green Natural Resources and Green Activities on Ecological Footprint: A Perspective of Saudi Vision 2030
Abstract
:1. Introduction
2. Literature
3. Methodology
3.1. Data and Models
- (1)
- Model 1 for the natural resources role towards the ecological footprint of Saudi Arabia is as follows:
- (2)
- Model 2 for the green variables impact on the ecological footprint in Saudi Arabia is as follows:
3.2. Autoregressive Distributed Lag (ARDL)
3.3. Nonlinear ARDL
3.4. Vector Error Correction Model
4. Results
4.1. Estimation
4.1.1. Nonlinear ARDL Estimates
Before Vision 2030 Analysis
After Vision 2030 Analysis
4.1.2. Causality Analysis
4.2. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chai, J.; Zhang, X.; Lu, Q.; Zhang, X.; Wang, Y. Research on Imbalance between Supply and Demand in China’s Natural Gas Market under the Double-Track Price System. Energy Policy 2021, 155, 112380. [Google Scholar] [CrossRef]
- Scheffran, J.; Felkers, M.; Froese, R. Economic Growth and the Global Energy Demand. Green Energy Sustain. 2020, 1–44. [Google Scholar] [CrossRef]
- Aldubyan, M.; Gasim, A. Energy Price Reform in Saudi Arabia: Modeling the Economic and Environmental Impacts and Understanding the Demand Response. Energy Policy 2021, 148, 111941. [Google Scholar] [CrossRef]
- Kahouli, B.; Hamdi, B.; Nafla, A.; Chabaane, N. Investigating the Relationship between ICT, Green Energy, Total Factor Productivity, and Ecological Footprint: Empirical Evidence from Saudi Arabia. Energy Strateg. Rev. 2022, 42, 100871. [Google Scholar] [CrossRef]
- Waheed, R. Energy Challenges, Green Growth, Blue Indicators, and Sustainable Economic Growth: A Study of Saudi Arabia. Eval. Rev. 2022, 0193841X2211346. [Google Scholar] [CrossRef] [PubMed]
- Krane, J.; Wilson, W.S. The Bottom of the Barrel: Saudi Aramco and Global Climate Action. 2021. Available online: https://www.bakerinstitute.org/research/bottom-barrel-saudi-aramco-and-global-climate-action (accessed on 20 December 2022).
- Statista. Saudi Arabia: Fossil Fuel CO₂ Emissions 1970–2021 | Statista. 2022. Available online: https://www.statista.com/statistics (accessed on 20 December 2022).
- Arab News Saudi Arabia Bolsters Its Green Initiatives amid Climate Change Concerns. 2022. Available online: https://www.arabnews.com/node/2196976/business-economy (accessed on 20 December 2022).
- Aziz, G.; Sarwar, S.; Waheed, R.; Khan, M.S. Significance of Hydrogen Energy to Control the Environmental Gasses in Light of COP26: A Case of European Countries. Resour. Policy 2023, 80, 103240. [Google Scholar] [CrossRef]
- Shahbaz, M.; Sinha, A.; Raghutla, C.; Vo, X.V. Decomposing Scale and Technique Effects of Financial Development and Foreign Direct Investment on Renewable Energy Consumption. Energy 2022, 238, 121758. [Google Scholar] [CrossRef]
- Sadiq, M.; Wen, F.; Dagestani, A.A. Environmental Footprint Impacts of Nuclear Energy Consumption: The Role of Environmental Technology and Globalization in Ten Largest Ecological Footprint Countries. Nucl. Eng. Technol. 2022, 54, 3672–3681. [Google Scholar] [CrossRef]
- Teimoory, N.; Sasaki, N.; Abe, I. Estimation of Baseline Emissions, Forest Reference Emission Level, and Carbon Removals Due to Forest Area Changes in Afghanistan between 1993 and 2030. Clean. Prod. Lett. 2022, 2, 100003. [Google Scholar] [CrossRef]
- Raihan, A.; Tuspekova, A. Toward a Sustainable Environment: Nexus between Economic Growth, Renewable Energy Use, Forested Area, and Carbon Emissions in Malaysia. Resour. Conserv. Recycl. Adv. 2022, 15, 200096. [Google Scholar] [CrossRef]
- Zafar, M.W.; Saeed, A.; Zaidi, S.A.H.; Waheed, A. The Linkages among Natural Resources, Renewable Energy Consumption, and Environmental Quality: A Path toward Sustainable Development. Sustain. Dev. 2021, 29, 353–362. [Google Scholar] [CrossRef]
- Danish; Baloch, M.A.; Mahmood, N.; Zhang, J.W. Effect of Natural Resources, Renewable Energy and Economic Development on CO2 Emissions in BRICS Countries. Sci. Total Environ. 2019, 678, 632–638. [Google Scholar] [CrossRef] [PubMed]
- Raihan, A.; Tuspekova, A. The Nexus between Economic Growth, Renewable Energy Use, Agricultural Land Expansion, and Carbon Emissions: New Insights from Peru. Energy Nexus 2022, 6, 100067. [Google Scholar] [CrossRef]
- Mohd Jaafar, W.S.W.; Maulud, K.N.A.; Muhmad Kamarulzaman, A.M.; Raihan, A.; Sah, S.M.; Ahmad, A.; Maizah Saad, S.N.; Mohd Azmi, A.T.; Syukri, N.K.A.J.; Khan, W.R. The Influence of Deforestation on Land Surface Temperature—A Case Study of Perak and Kedah, Malaysia. Forests 2020, 11, 670. [Google Scholar] [CrossRef]
- Parajuli, R.; Joshi, O.; Maraseni, T. Incorporating Forests, Agriculture, and Energy Consumption in the Framework of the Environmental Kuznets Curve: A Dynamic Panel Data Approach. Sustainability 2019, 11, 2688. [Google Scholar] [CrossRef]
- Danish; Ulucak, R.; Khan, S.U.D. Determinants of the Ecological Footprint: Role of Renewable Energy, Natural Resources, and Urbanization. Sustain. Cities Soc. 2020, 54, 101996. [Google Scholar] [CrossRef]
- Xin, F.; Qian, Y. Does Fiscal Decentralization Promote Green Utilization of Land Resources? Evidence from Chinese Local Governments. Resour. Policy 2022, 79, 103086. [Google Scholar] [CrossRef]
- Danish; Ulucak, R. How Do Environmental Technologies Affect Green Growth? Evidence from BRICS Economies. Sci. Total Environ. 2020, 712, 136504. [Google Scholar] [CrossRef]
- Hussain, M.; Dogan, E. The Role of Institutional Quality and Environment-Related Technologies in Environmental Degradation for BRICS. J. Clean. Prod. 2021, 304, 127059. [Google Scholar] [CrossRef]
- Erdoğan, S.; Yıldırım, S.; Yıldırım, D.Ç.; Gedikli, A. The Effects of Innovation on Sectoral Carbon Emissions: Evidence from G20 Countries. J. Environ. Manag. 2020, 267, 110637. [Google Scholar] [CrossRef]
- McCombie, C.; Jefferson, M. Renewable and Nuclear Electricity: Comparison of Environmental Impacts. Energy Policy 2016, 96, 758–769. [Google Scholar] [CrossRef]
- Lau, L.S.; Choong, C.K.; Ng, C.F.; Liew, F.M.; Ching, S.L. Is Nuclear Energy Clean? Revisit of Environmental Kuznets Curve Hypothesis in OECD Countries. Econ. Model. 2019, 77, 12–20. [Google Scholar] [CrossRef]
- Sarkodie, S.A.; Adams, S. Renewable Energy, Nuclear Energy, and Environmental Pollution: Accounting for Political Institutional Quality in South Africa. Sci. Total Environ. 2018, 643, 1590–1601. [Google Scholar] [CrossRef] [PubMed]
- Danish; Ulucak, R.; Erdogan, S. The Effect of Nuclear Energy on the Environment in the Context of Globalization: Consumption vs. Production-Based CO2 Emissions. Nucl. Eng. Technol. 2022, 54, 1312–1320. [Google Scholar] [CrossRef]
- Lee, C.C.; Chiu, Y. Bin Oil Prices, Nuclear Energy Consumption, and Economic Growth: New Evidence Using a Heterogeneous Panel Analysis. Energy Policy 2011, 39, 2111–2120. [Google Scholar] [CrossRef]
- Mahmood, N.; Danish; Wang, Z.; Zhang, B. The Role of Nuclear Energy in the Correction of Environmental Pollution: Evidence from Pakistan. Nucl. Eng. Technol. 2020, 52, 1327–1333. [Google Scholar] [CrossRef]
- Altıntaş, H.; Kassouri, Y. Is the Environmental Kuznets Curve in Europe Related to the Per-Capita Ecological Footprint or CO2 Emissions? Ecol. Indic. 2020, 113, 106187. [Google Scholar] [CrossRef]
- Shin, Y.; Yu, B.; Greenwood-Nimmo, M. Modelling Asymmetric Cointegration and Dynamic Multipliers in a Nonlinear ARDL Framework. In Festschrift Honor Peter Schmidt; Springer: New York, NY, USA, 2014; pp. 281–314. [Google Scholar] [CrossRef]
- Ahmad, A.; Zhao, Y.; Shahbaz, M.; Bano, S.; Zhang, Z.; Wang, S.; Liu, Y. Carbon Emissions, Energy Consumption and Economic Growth: An Aggregate and Disaggregate Analysis of the Indian Economy. Energy Policy 2016, 96, 131–143. [Google Scholar] [CrossRef]
- Mrabet, Z.; AlSamara, M.; Hezam Jarallah, S. The Impact of Economic Development on Environmental Degradation in Qatar. Environ. Ecol. Stat. 2017, 24, 7–38. [Google Scholar] [CrossRef]
- Zaidi, S.A.H.; Danish; Hou, F.; Mirza, F.M. The Role of Renewable and Non-Renewable Energy Consumption in CO2 Emissions: A Disaggregate Analysis of Pakistan. Environ. Sci. Pollut. Res. 2018, 25, 31616–31629. [Google Scholar] [CrossRef]
- Zafar, M.W.; Sinha, A.; Ahmed, Z.; Qin, Q.; Zaidi, S.A.H. Effects of Biomass Energy Consumption on Environmental Quality: The Role of Education and Technology in Asia-Pacific Economic Cooperation Countries. Renew. Sustain. Energy Rev. 2021, 142, 110868. [Google Scholar] [CrossRef]
- Danish; Baloch, M.A. Dynamic Linkages between Road Transport Energy Consumption, Economic Growth, and Environmental Quality: Evidence from Pakistan. Environ. Sci. Pollut. Res. 2018, 25, 7541–7552. [Google Scholar] [CrossRef] [PubMed]
- Wenlong, Z.; Nawaz, M.A.; Sibghatullah, A.; Ullah, S.E.; Chupradit, S.; Minh Hieu, V. Impact of Coal Rents, Transportation, Electricity Consumption, and Economic Globalization on Ecological Footprint in the USA. Environ. Sci. Pollut. Res. 2022, 1, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Adekoya, O.B.; Oliyide, J.A.; Fasanya, I.O. Renewable and Non-Renewable Energy Consumption–Ecological Footprint Nexus in Net-Oil Exporting and Net-Oil Importing Countries: Policy Implications for a Sustainable Environment. Renew. Energy 2022, 189, 524–534. [Google Scholar] [CrossRef]
- Ekins, P. The Kuznets Curve for the Environment and Economic Growth: Examining the Evidence. Environ. Plan. A Econ. Sp. 1997, 29, 805–830. [Google Scholar] [CrossRef]
- Stern, D.I.; Common, M.S.; Barbier, E.B. Economic Growth and Environmental Degradation: The Environmental Kuznets Curve and Sustainable Development. World Dev. 1996, 24, 1151–1160. [Google Scholar] [CrossRef]
- Grossman, G. Pollution and Growth: What Do We Know? In CEPR Discussion Paper; Centre for Economic Policy Research: London, UK, 1993. [Google Scholar]
- Joshua, U.; Bekun, F.V. The Path to Achieving Environmental Sustainability in South Africa: The Role of Coal Consumption, Economic Expansion, Pollutant Emission, and Total Natural Resources Rent. Environ. Sci. Pollut. Res. 2020, 27, 9435–9443. [Google Scholar] [CrossRef]
- Adebayo, T.S. Revisiting the EKC Hypothesis in an Emerging Market: An Application of ARDL-Based Bounds and Wavelet Coherence Approaches. SN Appl. Sci. 2020, 2, 1945. [Google Scholar] [CrossRef]
- Teng, J.Z.; Khan, M.K.; Khan, M.I.; Chishti, M.Z.; Khan, M.O. Effect of Foreign Direct Investment on CO2 Emission with the Role of Globalization, Institutional Quality with Pooled Mean Group Panel ARDL. Environ. Sci. Pollut. Res. 2021, 28, 5271–5282. [Google Scholar] [CrossRef]
- Zmami, M.; Ben-Salha, O. An Empirical Analysis of the Determinants of CO2 Emissions in GCC Countries. Int. J. Sustain. Dev. World Ecol. 2020, 27, 469–480. [Google Scholar] [CrossRef]
- Raihan, A.; Muhtasim, D.A.; Pavel, M.I.; Faruk, O.; Rahman, M. An Econometric Analysis of the Potential Emission Reduction Components in Indonesia. Clean. Prod. Lett. 2022, 3, 100008. [Google Scholar] [CrossRef]
- Ahmed, Z.; Asghar, M.M.; Malik, M.N.; Nawaz, K. Moving towards a Sustainable Environment: The Dynamic Linkage between Natural Resources, Human Capital, Urbanization, Economic Growth, and Ecological Footprint in China. Resour. Policy 2020, 67, 101677. [Google Scholar] [CrossRef]
- Balsalobre-Lorente, D.; Shahbaz, M.; Roubaud, D.; Farhani, S. How Economic Growth, Renewable Electricity and Natural Resources Contribute to CO2 Emissions? Energy Policy 2018, 113, 356–367. [Google Scholar] [CrossRef]
- Zafar, M.W.; Zaidi, S.A.H.; Khan, N.R.; Mirza, F.M.; Hou, F.; Kirmani, S.A.A. The Impact of Natural Resources, Human Capital, and Foreign Direct Investment on the Ecological Footprint: The Case of the United States. Resour. Policy 2019, 63, 101428. [Google Scholar] [CrossRef]
- Liu, H.; Khan, I.; Zakari, A.; Alharthi, M. Roles of Trilemma in the World Energy Sector and Transition towards Sustainable Energy: A Study of Economic Growth and the Environment. Energy Policy 2022, 170, 113238. [Google Scholar] [CrossRef]
- Álvarez-Herránz, A.; Balsalobre, D.; Cantos, J.M.; Shahbaz, M. Energy Innovations-GHG Emissions Nexus: Fresh Empirical Evidence from OECD Countries. Energy Policy 2017, 101, 90–100. [Google Scholar] [CrossRef]
- Tang, C.F.; Tan, E.C. Exploring the Nexus of Electricity Consumption, Economic Growth, Energy Prices and Technology Innovation in Malaysia. Appl. Energy 2013, 104, 297–305. [Google Scholar] [CrossRef]
- Acaravci, A.; Ozturk, I. On the Relationship between Energy Consumption, CO2 Emissions and Economic Growth in Europe. Energy 2010, 35, 5412–5420. [Google Scholar] [CrossRef]
- Shahbaz, M.; Kumar Tiwari, A.; Nasir, M. The Effects of Financial Development, Economic Growth, Coal Consumption and Trade Openness on CO2 Emissions in South Africa. Energy Policy 2013, 61, 1452–1459. [Google Scholar] [CrossRef]
- Jalil, A.; Feridun, M. The Impact of Growth, Energy and Financial Development on the Environment in China: A Cointegration Analysis. Energy Econ. 2011, 33, 284–291. [Google Scholar] [CrossRef]
- Bélaïd, F.; Youssef, M. Environmental Degradation, Renewable and Non-Renewable Electricity Consumption, and Economic Growth: Assessing the Evidence from Algeria. Energy Policy 2017, 102, 277–287. [Google Scholar] [CrossRef]
- Alola, A.A.; Bekun, F.V.; Sarkodie, S.A. Dynamic Impact of Trade Policy, Economic Growth, Fertility Rate, Renewable and Non-Renewable Energy Consumption on Ecological Footprint in Europe. Sci. Total Environ. 2019, 685, 702–709. [Google Scholar] [CrossRef]
- Chen, Y.; Zhao, J.; Lai, Z.; Wang, Z.; Xia, H. Exploring the Effects of Economic Growth, and Renewable and Non-Renewable Energy Consumption on China’s CO2 Emissions: Evidence from a Regional Panel Analysis. Renew. Energy 2019, 140, 341–353. [Google Scholar] [CrossRef]
- Sinha, A.; Shahbaz, M. Estimation of Environmental Kuznets Curve for CO2 Emission: Role of Renewable Energy Generation in India. Renew. Energy 2018, 119, 703–711. [Google Scholar] [CrossRef]
- Ben Jebli, M.; Ben Youssef, S. Renewable Energy Consumption and Agriculture: Evidence for Cointegration and Granger Causality for Tunisian Economy. Dev. World Ecol. 2016, 24, 149–158. [Google Scholar] [CrossRef]
- Biresselioglu, M.E.; Demir, M.H.; Demirbag Kaplan, M.; Solak, B. Individuals, Collectives, and Energy Transition: Analysing the Motivators and Barriers of European Decarbonisation. Energy Res. Soc. Sci. 2020, 66, 101493. [Google Scholar] [CrossRef]
- Pesaran, M.H.; Shin, Y.; Smith, R.J. Bounds Testing Approaches to the Analysis of Level Relationships. J. Appl. Econom. 2001, 16, 289–326. [Google Scholar] [CrossRef]
- Kumar Narayan, P. An Application to the Tourism Demand Model for Fiji Terrorism and International Stock Returns. Tour. Econ. 2004, 10, 193–206. [Google Scholar]
- Qamruzzaman, M.; Jianguo, W. Nexus between Financial Innovation and Economic Growth in South Asia: Evidence from ARDL and Nonlinear ARDL Approaches. Financ. Innov. 2018, 4, 20. [Google Scholar] [CrossRef]
- Morley, B. Causality between Economic Growth and Immigration: An ARDL Bounds Testing Approach. Econ. Lett. 2006, 90, 72–76. [Google Scholar] [CrossRef]
- Andrews, D.W.K. Tests for Parameter Instability and Structural Change with Unknown Change Point. Econometrica 1993, 61, 821. [Google Scholar] [CrossRef]
- Andrews, D.W.K.; Ploberger, W. Optimal Tests When a Nuisance Parameter Is Present Only Under the Alternative. Econometrica 1994, 62, 1383. [Google Scholar] [CrossRef]
- Broock, W.A.; Scheinkman, J.A.; Dechert, W.D.; LeBaron, B. A Test for Independence Based on the Correlation Dimension. Econom. Rev. 1996, 15, 197–235. [Google Scholar] [CrossRef]
- Uddin, G.A.; Alam, K.; Gow, J. Ecological and Economic Growth Interdependency in the Asian Economies: An Empirical Analysis. Environ. Sci. Pollut. Res. 2019, 26, 13159–13172. [Google Scholar] [CrossRef]
- Destek, M.A.; Ulucak, R.; Dogan, E. Analyzing the Environmental Kuznets Curve for the EU Countries: The Role of Ecological Footprint. Environ. Sci. Pollut. Res. 2018, 25, 29387–29396. [Google Scholar] [CrossRef] [PubMed]
- Waheed, R.; Sarwar, S.; Alsaggaf, M.I. Relevance of Energy, Green and Blue Factors to Achieve Sustainable Economic Growth: Empirical Study of Saudi Arabia. Technol. Forecast. Soc. Chang. 2023, 187, 122184. [Google Scholar] [CrossRef]
- Sarwar, S. Impact of Energy Intensity, Green Economy and Blue Economy to Achieve Sustainable Economic Growth in GCC Countries: Does Saudi Vision 2030 Matters to GCC Countries. Renew. Energy 2022, 191, 30–46. [Google Scholar] [CrossRef]
- Samargandi, N. Sector Value Addition, Technology and CO2 Emissions in Saudi Arabia. Renew. Sustain. Energy Rev. 2017, 78, 868–877. [Google Scholar] [CrossRef]
- Kahia, M.; Omri, A.; Jarraya, B. Green Energy, Economic Growth and Environmental Quality Nexus in Saudi Arabia. Sustainability 2021, 13, 1264. [Google Scholar] [CrossRef]
- Çakmak, E.E.; Acar, S. The Nexus between Economic Growth, Renewable Energy and Ecological Footprint: An Empirical Evidence from Most Oil-Producing Countries. J. Clean. Prod. 2022, 352, 131548. [Google Scholar] [CrossRef]
- Waheed, R.; Sarwar, S.; Dignah, A. The Role of Non-Oil Exports, Tourism and Renewable Energy to Achieve Sustainable Economic Growth: What We Learn from the Experience of Saudi Arabia. Struct. Chang. Econ. Dyn. 2020, 55, 49–58. [Google Scholar] [CrossRef]
- Waheed, R.; Chang, D.; Sarwar, S.; Chen, W. Forest, Agriculture, Renewable Energy, and CO2 Emission. J. Clean. Prod. 2018, 172, 4231. [Google Scholar] [CrossRef]
- Samargandi, N. Oil Exploration, Biocapacity, and Ecological Footprint in Saudi Arabia. Environ. Sci. Pollut. Res. 2021, 28, 54621–54629. [Google Scholar] [CrossRef] [PubMed]
- Sahoo, B.; Behera, D.K.; Rahut, D. Decarbonization: Examining the Role of Environmental Innovation versus Renewable Energy Use. Environ. Sci. Pollut. Res. 2022, 29, 48704–48719. [Google Scholar] [CrossRef] [PubMed]
- Munir, K.; Ameer, A. Effect of Economic Growth, Trade Openness, Urbanization, and Technology on Environment of Asian Emerging Economies. Manag. Environ. Qual. Int. J. 2018, 29, 1123–1134. [Google Scholar] [CrossRef]
- Ahmad, M.; Jiang, P.; Majeed, A.; Umar, M.; Khan, Z.; Muhammad, S. The Dynamic Impact of Natural Resources, Technological Innovations and Economic Growth on Ecological Footprint: An Advanced Panel Data Estimation. Resour. Policy 2020, 69, 101817. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, F.; Li, R.; Li, L. The Impact of Renewable Energy on Decoupling Economic Growth from Ecological Footprint–An Empirical Analysis of 166 Countries. J. Clean. Prod. 2022, 354, 131706. [Google Scholar] [CrossRef]
- Bala, G.; Caldeira, K.; Wickett, M.; Phillips, T.J.; Lobell, D.B.; Delire, C.; Mirin, A. Combined Climate and Carbon-Cycle Effects of Large-Scale Deforestation. Proc. Natl. Acad. Sci. USA 2007, 104, 6550–6555. [Google Scholar] [CrossRef]
- Panja, P. Deforestation, Carbon Dioxide Increase in the Atmosphere and Global Warming: A Modelling Study. Int. J. Model. Simul. 2019, 41, 209–219. [Google Scholar] [CrossRef]
- Waheed, R.; Sarwar, S.; Wei, C. The Survey of Economic Growth, Energy Consumption and Carbon Emission. Energy Rep. 2019, 5, 1103–1115. [Google Scholar] [CrossRef]
- Sarwar, S.; Alsaggaf, M.I. Role of Urbanization and Urban Income in Carbon Emissions: Regional Analysis of China. Appl. Ecol. Environ. Res. 2019, 17, 10303–10311. [Google Scholar] [CrossRef]
- Li, Z.; Mighri, Z.; Sarwar, S.; Wei, C. Effects of Forestry on Carbon Emissions in China: Evidence From a Dynamic Spatial Durbin Model. Front. Environ. Sci. 2021, 9, 1–15. [Google Scholar] [CrossRef]
Indication | Variable | Definition | Measure | Source |
---|---|---|---|---|
EFP | Ecological footprint | EFP measures human demand from agriculture, construction, grazing, fishing and forest land, and CO2 absorption from fossil fuel combustion. | Global hectares Per person | Global Footprint Network |
GDP | Economic growth | Gross domestic product | (Constant 2015 US dollars) | WDI |
FR | Forest resource | Forest resource stocks | Cubic Metrics, Millions | WDI |
LR | Land resource | Natural and seminatural vegetated land, % total | Percentage | OECD |
ET | Environmental Technology | Development of environment-related technologies, % of all technologies | Percentage | OECD |
REC | Renewable energy consumption | Renewable energy consumption | Gigawatt hours | IRENA |
EFP | GDP | FR | LR | ET | REC | |
---|---|---|---|---|---|---|
Obs | 40 | 40 | 40 | 40 | 40 | 40 |
mean | 4.977 | 1.362 | 7.456 | 5.784 | 2.707 | −2.268 |
max | 6.134 | 3.969 | 7.429 | 5.842 | 3.301 | −1.186 |
min | 3.812 | −2.674 | 7.645 | 5.655 | 1.783 | −4.93 |
sd | 0.033 | 1.343 | 0.031 | 0.015 | 0.267 | 1.059 |
variance | 0.002 | 1.78 | 0.016 | 0.021 | 0.061 | 1.122 |
skewness | 0.121 | −1.32 | 0.47 | 0.107 | −0.648 | −0.945 |
kurtosis | 1.712 | 5.241 | 2.238 | 1.697 | 4.785 | 2.376 |
Chow Structural Break | |||
---|---|---|---|
F-Statistics | 2.371 | Prob. F (7,15) | 0.064 |
Quandt–Andrews structural break test | Maximum LR | Expected LR | Average LR |
F-Statistics | 128.365 | 120.541 | 100.637 |
DF-GLS | KSUR | |||||||
---|---|---|---|---|---|---|---|---|
DF-GLS | Level | Diff | Level | Diff | ||||
Variable | Stat | Stat | p-Value | p-Value | ||||
EFP | −1.264 | IS | −4.615 *** | Sig | 0.911 | IS | 0.003 *** | Sig |
GDP | −2.414 | IS | −8.021 *** | Sig | 0.005 *** | Sig | 0.004 *** | Sig |
FR | −2.501 | IS | −5.498 *** | Sig | 0.336 | IS | 0.000 *** | Sig |
LR | −1.541 | IS | −4.215 *** | Sig | 0.001 *** | IS | 0.005 *** | Sig |
ET | −4.474 *** | Sig | −6.756 *** | Sig | 0.937 | Sig | 0.001 *** | Sig |
REC | −1.834 | IS | −4.813 *** | Sig | 0.932 | IS | 0.003 *** | Sig |
ARDL Bounds Cointegration Test | F-Stat | EFP |
---|---|---|
EFP = f (GDP, FR, LR) | 5.931 * | Exist |
EFP = f (GDP, ET, REC) | 9.454 *** | Exist |
Lower-bound critical value at 10% | 3.34 | |
Upper-bound critical value at 10% | 4.65 | |
Lower-bound critical value at 1% | 4.87 | |
Upper-bound critical value at 1% | 5.65 |
Dimensions | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|
EFP | 0.141 *** | 0.336 *** | 0.528 *** | 0.512 *** | 0.609 *** |
GDP | 0.165 *** | 0.128 *** | 0.411 *** | 0.738 *** | 0.023 *** |
FR | 0.220 *** | 0.453 *** | 0.517 *** | 0.015 *** | 0.511 *** |
LR | 0.183 *** | 0.864 *** | 0.253 *** | 0.303 *** | 0.482 *** |
ET | 0.148 *** | 0.574 *** | 0.625 *** | 0.526 *** | 0.417 *** |
REC | 0.325 *** | 0.234 *** | 0.434 *** | 0.481 *** | 0.213 *** |
Long Run | Model 1 | Model 2 |
---|---|---|
EFP | −0.709 *** | −0.105 |
GDP+t−1 | 0.003 ** | 0.061 * |
GDP−t−1 | 0.011 | 0.031 |
FR+t−1 | −0.036 ** | |
FR−t−1 | 0.351 | |
LR+t−1 | −0.046 ** | |
LR−t−1 | 0.391 | |
ET+t−1 | −0.042 | |
ET−t−1 | −0.057 | |
REC+t−1 | 0.217 | |
REC−t−1 | 0.104 | |
Short Run | ||
ΔEFPt−1 | 0.142 | −0.296 |
ΔGDP+t−1 | 0.239 ** | 0.269 ** |
ΔGDP−t−1 | 4.162 ** | 3.166 ** |
ΔFR+t−1 | 0.042 | |
ΔFR−t−1 | 0.033 | |
ΔLR+t−1 | −0.061 * | |
ΔLR−t−1 | 0.342 | |
ΔET+t−1 | 0.025 | |
ΔET−t−1 | −0.107 | |
ΔREC+t−1 | 0.091 | |
ΔREC−t−1 | 0.082 | |
Constant | −1.169 | 7.638 *** |
Long Run (+) | Long Run (−) | Long-Run Asymmetry (p-Value) W LR | Short-Run Asymmetry (p-Value) W LR | |
---|---|---|---|---|
EFP = f (GDP, FR, LR) | ||||
GDP | 2.135 ** | 1.743 * | 0.482 | 0.371 |
FR | −2.042 * | 0.971 | 0.541 | 0.135 |
LR | 2.034 | 2.467 | 0.342 | 0.196 |
Cointegration | F-Stat | 1.645 | ||
Portmanteau | p-value | 0.642 | ||
Heteroskedasticity | p-value | 0.513 | ||
Ramsey test | p-value | 0.158 | ||
J–B test | p-value | 0.661 | ||
EFP = f (GDP, ET, REC) | ||||
GDP | 0.237 * | 1.995 | 0.372 | 0.427 |
ET | −0.215 | 0.291 | 0.835 | 0.331 |
REC | −2.137 | 0.732 | 0.472 | 0.167 |
Cointegration | F-Stat | 2.319 | ||
Portmanteau | p-value | 0.747 | ||
Heteroskedasticity | p-value | 0.161 | ||
Ramsey test | p-value | 0.216 | ||
J–B test | p-value | 0.001 |
Long Run | Model 1 | Model 2 |
---|---|---|
EFPt−1 | −0.003 *** | −0.004 *** |
GDP+t−1 | 0.006 *** | −0.005 |
GDP−t−1 | −0.002 | 0.004 *** |
FR+t−1 | −0.013 | |
FR−t−1 | 0.042 | |
LR+t−1 | −0.033 | |
LR−t−1 | −0.056 | |
ET+t−1 | −0.054 | |
ET−t−1 | 0.032 | |
REC+t−1 | −0.031 | |
REC−t−1 | 0.045 | |
Short Run | ||
ΔEFPt−1 | 0.845 *** | 0.945 *** |
ΔGDP+t−1 | 0.456 *** | 0.024 ** |
ΔGDP− t−1 | 0.316 *** | 0.006 |
ΔFR+t−1 | 0.029 | |
ΔFR−t−1 | −0.024 | |
ΔLR+t−1 | −0.042 *** | |
ΔLR−t−1 | −0.091 | |
ΔET+t−1 | −0.043 * | |
ΔET−t−1 | 0.051 | |
ΔREC+t−1 | 0.043 | |
ΔREC−t−1 | −0.031 | |
Constant | 0.046 *** | 0.021 *** |
Long Run (+) | Long Run (−) | Long-Run Asymmetry (p-Value) W LR | Short-Run Asymmetry (p-Value) W LR | |
---|---|---|---|---|
EFP = f (GDP, FR, LR) | ||||
GDP | 1.845 *** | 0.161 | 0.000 *** | 0.251 |
FR | −0.042 | −0.059 * | 0.090 * | 0.641 |
LR | −0.051 * | 0.032 | 0.021 | 0.031 |
Cointegration | F-Stat | 8.431 | ||
Portmanteau | p-value | 0.642 | ||
Heteroskedasticity | p-value | 0.182 | ||
Ramsey test | p-value | 1.351 | ||
J–B test | p-value | 0.161 | ||
EFP = f (GDP, ET, REC) | ||||
GDP | 0.129 ** | 0.161 | 0.034 ** | 0.242 |
ET | −0.031 | 0.231 | 0.033 *** | 0.216 |
REC | ||||
Cointegration | F-Stat | 3.241 | ||
Portmanteau | p-value | 0.531 | ||
Heteroskedasticity | p-value | 0.502 | ||
Ramsey test | p-value | 0.441 | ||
J–B test | p-value | 0.861 |
Long Run | Model 1 | Model 2 |
---|---|---|
EFPt−1 | −0.002 *** | −0.004 *** |
GDP+t−1 | 0.004 *** | −0.004 |
GDP−t−1 | −0.006 | 0.061 *** |
FR+t−1 | −0.017 | |
FR−t−1 | 0.032 | |
LR+t−1 | −0.056 * | |
LR−t−1 | −0.042 | |
ET+t−1 | −0.034 * | |
ET−t−1 | 0.041 | |
REC+t−1 | −0.062 * | |
REC−t−1 | 0.052 | |
Short Run | ||
ΔEFPt−1 | 0.724 *** | 0.841 *** |
ΔGDP+t−1 | 0.361 *** | 0.022 ** |
ΔGDP−t−1 | 0.521 *** | 0.0421 |
ΔFR+t−1 | 0.027 | |
ΔFR−t−1 | −0.041 | |
ΔLR+t−1 | −0.024 ** | |
ΔLR−t−1 | −0.639 | |
ΔET+t−1 | −0.056 * | |
ΔET−t−1 | 0.063 * | |
ΔREC+t−1 | −0.712 ** | |
ΔREC−t−1 | 0.052 | |
Constant | 0.036 *** | 0.012 *** |
Long Run (+) | Long Run (−) | Long-Run Asymmetry (p-Value) W LR | Short-Run Asymmetry (p-Value) W LR | |
---|---|---|---|---|
EFP = f (GDP, FR, LR) | ||||
GDP | 1.713 *** | 0.152 | 0.000 *** | 0.361 |
FR | −0.048 | −0.059 * | 0.050 * | 0.641 |
LR | −0.071 * | 0.418 | 0.031 | 0.022 |
Cointegration | F-Stat | 7.421 | ||
Portmanteau | p-value | 0.532 | ||
Heteroskedasticity | p-value | 0.171 | ||
Ramsey test | p-value | 1.427 | ||
J–B test | p-value | 0.135 | ||
EFP = f (GDP, ET, REC) | ||||
GDP | 0.149 ** | 0.166 | 0.044 ** | 0.421 |
ET | −0.031 | 0.371 | 0.041 *** | 0.272 |
REC | ||||
Cointegration | F-Stat | 3.21 | ||
Portmanteau | p-value | 0.431 | ||
Heteroskedasticity | p-value | 0.423 | ||
Ramsey test | p-value | 0.331 | ||
J–B test | p-value | 0.642 |
Model 1 | ΔEFP | ΔGDP | ΔFR | ΔLR | ECT-1 |
---|---|---|---|---|---|
ΔEFP | - | 0.238 ** | −4.424 | 4.317 | |
ΔGDP | 0.341 ** | - | 0.921 | 0.840 | −0.250 * |
ΔFR | −0.531 | 0.219 | - | 0.215 | −0.213 |
ΔLR | −0.632 * | 0.031 | 0.428 | - | −0.349 * |
Model 2 | ΔEFP | ΔGDP | ΔET | ΔREC | ECT-1 |
ΔEFP | - | 0.928 | 1.574 | 1.781 * | −0.155 |
ΔGDP | 6.223 ** | - | 1.035 | 1.126 | −0.349 ** |
ΔET | −5.932 * | 1.384 | - | 1.749 | −0.501 * |
ΔREC | −6.196 * | 0.042 | 0.096 | - | 0.037 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aziz, G.; Waheed, R.; Alsaggaf, M.I. Investigating the Impact of Green Natural Resources and Green Activities on Ecological Footprint: A Perspective of Saudi Vision 2030. Sustainability 2023, 15, 8639. https://doi.org/10.3390/su15118639
Aziz G, Waheed R, Alsaggaf MI. Investigating the Impact of Green Natural Resources and Green Activities on Ecological Footprint: A Perspective of Saudi Vision 2030. Sustainability. 2023; 15(11):8639. https://doi.org/10.3390/su15118639
Chicago/Turabian StyleAziz, Ghazala, Rida Waheed, and Majid Ibrahim Alsaggaf. 2023. "Investigating the Impact of Green Natural Resources and Green Activities on Ecological Footprint: A Perspective of Saudi Vision 2030" Sustainability 15, no. 11: 8639. https://doi.org/10.3390/su15118639
APA StyleAziz, G., Waheed, R., & Alsaggaf, M. I. (2023). Investigating the Impact of Green Natural Resources and Green Activities on Ecological Footprint: A Perspective of Saudi Vision 2030. Sustainability, 15(11), 8639. https://doi.org/10.3390/su15118639