Amendment of Saline–Alkaline Soil with Flue-Gas Desulfurization Gypsum in the Yinchuan Plain, Northwest China
Abstract
:1. Introduction
2. Overview of Study Area in Ningxia, China
2.1. Study Site
2.2. Climate
2.3. Soil
3. Approaches to Soil Improvement in the Study Area
Flue-Gas Desulfurization Gypsum
4. Soil Amendments
4.1. Effects of FGD Gypsum Alone
4.2. Regional Water–Salt Control Integrated with FGD Gypsum
4.3. Soil Amendments Integrated with FGD Gypsum
4.4. Soil Nutrient Control Integrated with FGD Gypsum
4.5. Effects of Technologies for Rapid Improvement of Saline Soil Fertility Integrated with FGD Gypsum
4.6. Effects of FGD-Gypsum-Improved Soil for Salt-Tolerant Plant Cultivation
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Glossary
Abbreviation
References
- Qadir, M.; Noble, A.D.; Schubert, S.; Thomas, R.J.; Arslan, A. Sodicity-induced land degradation and its sustainable management: Problems and prospects. Land Degrad. Dev. 2006, 17, 661–676. [Google Scholar] [CrossRef]
- Qadir, M.; Ghafoor, A.; Murtaza, G. Amelioration strategies for saline soils: A review. Land Degrad. Dev. 2000, 11, 501–521. [Google Scholar] [CrossRef]
- Rengasamy, P. World salinization with emphasis on Australia. J. Exp. Bot. 2006, 57, 1017–1023. [Google Scholar] [CrossRef] [PubMed]
- Ashraf, M.; Akram, N.A. Improving salinity tolerance of plants through conventional breeding and genetic engineering: An analytical comparison. Biotechnol. Adv. 2009, 27, 744–752. [Google Scholar] [CrossRef]
- Spanò, C.; Balestri, M.; Bottega, S.; Grilli, I.; Maria, L.; Forino, C.; Ciccarelli, D. Anthemis maritime L. in different coastal habitats: A tool to explore plant plasticity. Estuar. Coast. Shelf Sci. 2013, 129, 105–111. [Google Scholar] [CrossRef]
- Amezketa, E.; Aragüés, R.; Gazol, R. Efficiency of sulfuric acid, mined gypsum, and two gypsum by-products in soil crusting prevention and sodic soil reclamation. Agron. J. 2005, 97, 983–989. [Google Scholar] [CrossRef]
- DeSutter, T.M.; Cihacek, L.J. Potential agricultural uses of flue gas desulfurization gypsum in the northern Great Plains. Agron. J. 2009, 101, 817–825. [Google Scholar] [CrossRef]
- Gao, H.; Liu, J.T.; Eneji, A.E.; Han, L.P.; Tan, L.M. Using modified remote sensing imagery to interpret changes in cultivated land under saline-alkali condition. Sustainability 2016, 8, 996. [Google Scholar] [CrossRef]
- Wang, Z.Q.; Zhu, S.Q.; Yu, R.P. Salinized Soil in China; Science Press Ltd.: Beijing, China, 1993. (In Chinese) [Google Scholar]
- The National Soil Survey Office. Soils of China; China Agriculture Press: Beijing, China, 1998. [Google Scholar]
- Munns, R. Genes and salt tolerance: Bringing them together. New Phytol. 2005, 167, 645–663. [Google Scholar] [CrossRef]
- Sharma, B.R.; Minhas, P.S. Strategies for managing saline/alkali waters for sustainable agricultural production in South Asia. Agric. Water Manag. 2005, 78, 136–151. [Google Scholar] [CrossRef]
- Yang, J.Y.; Zheng, W.; Tian, Y.; Wu, Y.; Zhou, D.W. Effects of various mixed salt-alkaline stress on growth, photosynthesis and photosynthetic pigment concentration of Medicagoruthenica seedlings. Photosynthetica 2011, 49, 275–284. [Google Scholar] [CrossRef]
- Zhang, Z.Z.; Zhang, J.X.; Huang, J.S.; Zhang, T.; Tang, D.; He, K.N.; Li, R.J. Efficacy of a Drainage System in Remediating Saline-alkali Soils in the Alpine Region of Qinghai Province. J. Irrig. Drain. 2018, 37, 78–85. (In Chinese) [Google Scholar] [CrossRef]
- Crescimanno, G.; Garofalo, P. Management of Irrigation with Saline Water in Cracking Clay Soils. Soil Sci. Soc. Am. J. 2006, 70, 1774–1787. [Google Scholar] [CrossRef]
- Kara, T. Leaching Requirements to Prevent Soil Salinization. J. Appl. Sci. 2006, 6, 1481–1489. [Google Scholar] [CrossRef]
- Yamaguchi, T.; Blumwald, E. Developing salt-tolerant crop plants: Challenges and opportunities. Trends Plant Sci. 2005, 10, 615–620. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.L.; Zhang, F.R.; Wang, Y.P. Effect of irrigation and drainage engineering control on improvement of soil salinity in Tianjin. Trans. Chin. Soc. Agric. Eng. 2013, 29, 82–88. (In Chinese) [Google Scholar] [CrossRef]
- Heng, T.; Liao, R.; Wang, Z.; Wu, W.; Li, W.; Zhang, J. Effects of combined drip irrigation and sub-surface pipe drainage on water and salt transport of saline-alkali soil in Xinjiang, China. J. Arid. Land 2018, 10, 932–945. [Google Scholar] [CrossRef]
- Hanay, A.; Büyüksönmez, F.; Kiziloglu, F.M.; Canbolat, M.Y. Reclamation of Saline-Sodic Soils with Gypsum and MSW Compost. Compos. Sci. Util. 2004, 12, 175–179. [Google Scholar] [CrossRef]
- Murtaza, G.; Ghafoor, A.; Owens, G.; Qadir, M.; Kahlon, U.Z. Environmental and Economic Benefits of Saline-Sodic Soil Reclamation Using Low-quality Water and Soil Amendments in Conjunction with a Rice-Wheat Cropping System. J. Agron. Crop. Sci. 2009, 195, 124–136. [Google Scholar] [CrossRef]
- Wang, Q.Z.; Liu, Q.; Gao, Y.N.; Liu, X. Review on the mechanisms of the response to salinity-alkalinity stress in plants. Acta Ecol. Sin. 2017, 37, 5565–5577. (In Chinese) [Google Scholar]
- Hayat, K.; Bundschuh, J.; Jan, F.; Menhas, S.; Hayat, S.; Haq, F.; Shah, M.A.; Chaudhary, H.J.; Ullah, A.; Zhang, D.; et al. Combating soil salinity with combining saline agriculture and phytomanagement with salt-accumulating plants. Crit. Rev. Environ. Sci. Technol. 2019, 50, 1085–1115. [Google Scholar] [CrossRef]
- Crocker, W. History of the Use of Agricultural Gypsum Industries Association; Gypsum Association: Chicago, IL, USA, 1922. [Google Scholar]
- Clark, R.; Ritchey, K.; Baligar, V. Benefits and constraints for use of FGD products on agricultural land. Fuel 2001, 80, 821–828. [Google Scholar] [CrossRef]
- Chun, S.; Nishiyama, M.; Matsumoto, S. Sodic soils reclaimed with by-product from flue gas desulfurization: Corn production and soil quality. Environ. Pollut. 2001, 114, 453–459. [Google Scholar] [CrossRef] [PubMed]
- Sakai, Y.; Matsumoto, S.; Sadakata, M. Alkali Soil Reclamation with Flue Gas Desulfurization Gypsum in China and Assessment of Metal Content in Corn Grains. Soil Sediment Contam. Int. J. 2004, 13, 65–80. [Google Scholar] [CrossRef]
- Chen, H.; Wang, S.J.; Chen, C.H.; Xu, X.C.; Li, Y.; Wu, L.G.; Zhang, W.H. The application and effect of desulphurized waste of flue gas in improving alkali soil. Agric. Res. Arid. Areas 2005, 23, 38–42. (In Chinese) [Google Scholar]
- Dick, W.A.; Kost, D.; Nakano, N. A Review of Agricultural and Other Land Application Uses of Flue Gas Desulfurization Products; Report 1010385; EPRI: Palo Alto, CA, USA, 2006. [Google Scholar]
- Wang, J.; Xiao, G.J.; Zhang, F.J.; Wang, J.; Xu, X. Effect of returning straw with straw-decomposing inoculants onsaline-alkali soil in North Yinchuan of China. Agric. Res. Arid. Areas 2017, 35, 209–215. (In Chinese) [Google Scholar]
- Zhu, L.; Wang, Z.H.; Mao, G.L.; Zheng, S.X.; Xu, X. Water uptake from different soil depths for halophytic shrubs grown in Northern area of Ningxia plain (China) in contrasted water regimes. J. Plant Interact. 2012, 9, 26–34. [Google Scholar] [CrossRef]
- Wang, J.; Xu, X.; Xiao, G.J. Effect of typical takyrsolonetzs reclamation with Flue gas desulphurization gypsum and assessment of mental content in rice grains. Trans. Chin. Soc. Agric. Eng. 2015, 32, 141–147. (In Chinese) [Google Scholar]
- Sun, Z.J. Amelioration Models for Saline Alkali Wasteland in Yinchuan Plain; Beijing Forest University: Beijing, China, 2011. (In Chinese) [Google Scholar]
- Wang, S.J.; Chen, Q.; Li, Y.; Zhuo, Y.Q.; Xu, L.Z. Research on saline-alkali soil amelioration with FGD gypsum. Resour. Conserv. Recycl. 2016, 121, 82–92. [Google Scholar] [CrossRef]
- Rooney, D.J.; Brown, K.W.; Thomas, J.C. The Effectiveness of Capillary Barriers to Hydraulically Isolate Salt Contaminated Soils. Water Air Soil Pollut. 1998, 104, 403–411. [Google Scholar] [CrossRef]
- Guo, G.; Araya, K.; Jia, H.; Zhang, Z.; Ohomiya, K.; Matsuda, J. Improvement of Salt-affected Soils, Part 1: Interception of Capillarity. Biosyst. Eng. 2006, 94, 139–150. [Google Scholar] [CrossRef]
- Akudago, J.A.; Nishigaki, M.; Chegbeleh, L.P.; Komatsu, M.; Alim, M.A. Capillary cut design for soil-groundwater salinity control. J. Fac. Environ. Sci. Technol. 2009, 14, 17–22. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, S.; Li, Y.; Zhuo, Y.; Liu, J. Sustainable effects of gypsum from desulphurization of flue gas on the reclamation of sodic soil after 17 years. Eur. J. Soil Sci. 2019, 70, 1082–1097. [Google Scholar] [CrossRef]
- Stout, W.L.; Priddy, W.E. Use of flue gas desulfurization (FGD) by-product gypsum on alfalfa. Commun. Soil Sci. Plant Anal. 1996, 27, 2419–2432. [Google Scholar] [CrossRef]
- Xiao, G.J.; Luo, C.K.; Zhang, F.J.; Wang, B.; Zhang, G.Q.; Yang, J.; Mao, G.L.; Bai, H.B. Application amount of desulfurized gypsum from coal fired power plants on improving the quality of alkalized soil. Res. Environ. Sci. 2010, 23, 762–767. (In Chinese) [Google Scholar]
- Xiao, G.J.; Luo, C.K.; Zhang, F.J.; Qin, P. Impacts of the applied period and depth of desulfurized gypsum on improving the alkaline soil. Agric. Res. Arid. Areas 2009, 27, 197–203. (In Chinese) [Google Scholar]
- Huang, J.Y.; Yu, H.L.; Zhang, J.H. Effects of flue gas desulfurization gypsum and krilium application on alkali soil amelioration. Chin. J. Soil Sci. 2011, 42, 1467–1471. (In Chinese) [Google Scholar]
- Du, Y.X.; Ma, K.B.; Kang, Y.M.; Yu, H.L.; Huang, J.Y.; Zhang, J.H. Influence of adding structure krilium combined with desulfurized gypsum on takyric solonetz soil improvement and growth of Lyciumchinense. North. Hortic. 2018, 21, 129–135. (In Chinese) [Google Scholar]
- He, W.S.; Li, H.G.; Yan, C.X.; Zhang, J.H.; Sun, Z.J.; Xia, X.Z.; Lv, W.; He, J.Q. DB64/T552-2009; Fertilization Technology Regulation of Rice in Saline-Alkali Land of Ningxia. Department of Agriculture and Rural Affairs of Ningxia Hui Autonomous Regions: Yinchuan, China, 2009. (In Chinese)
- Chen, P.; He, W.S. The effects of different fertilization structure on yield of sunflower in saline alkali soil. Agric. Res. Arid. Areas 2011, 29, 108–114. (In Chinese) [Google Scholar]
- Huang, J.C.; Chen, G.D.; Gui, L.G. Study on the improved technology of comprehensive rapid fertilization of saline and alkali soil. Ningxia J. Agric. For. Sci. Technol. 2010, 4, 5–6. (In Chinese) [Google Scholar]
- Erario, M.d.l.Á.; Croce, E.; Moviglia Brandolino, M.T.; Moviglia, G.; Grangeat, A.M. Ozone as Modulator of Resorption and Inflammatory Response in Extruded Nucleus Pulposus Herniation. Revising Concepts. Int. J. Mol. Sci. 2021, 22, 9946. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Yang, S.; Wei, Y.; Shi, Q.; Ding, J. Characterizing soil salinity at multiple depth using electromagnetic induction and remote sensing data with random forests: A case study in Tarim River Basin of southern Xinjiang, China. Sci. Total. Environ. 2021, 754, 142030. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.S.; Yao, R.J.; Wang, X.P.; Xie, W.; Zhang, X.; Zhu, W.; Zhang, L.; Sun, R. Research on Salt-affected Soils in China: History, Status Quo and Prospect. Acta Pedol. Sin. 2022, 59, 10–27. [Google Scholar] [CrossRef]
- Arzani, A. Improving salinity tolerance in crop plants: A biotechnological view. Vitr. Cell. Dev. Biol. Plant 2008, 44, 373–383. [Google Scholar] [CrossRef]
- Agarwal, P.K.; Shukla, P.S.; Gupta, K.; Jha, B. Bioengineering for Salinity Tolerance in Plants: State of the Art. Mol. Biotechnol. 2012, 54, 102–123. [Google Scholar] [CrossRef] [PubMed]
- Arzani, A.; Ashraf, M. Smart engineering of genetic resources for enhanced salinity tolerance in crop plants. Crit. Rev. Plant Sci. 2016, 35, 146–189. [Google Scholar] [CrossRef]
- Watts, D.B.; Dick, W.A. Sustainable uses of FGD Gypsum in agricultural systems: Introduction. J. Environ. Qual. 2014, 43, 246–252. [Google Scholar] [CrossRef]
- Chen, Q.; Wang, S.; Li, Y.; Zhang, N.; Zhao, B.; Zhuo, Y.; Chen, C. Influence of flue gas desulfurization gypsum amendments on heavy metal distribution in reclaimed sodic soils. Environ. Eng. Sci. 2015, 32, 470–478. [Google Scholar] [CrossRef]
Chemical Items | Value | Physical Properties | Value |
---|---|---|---|
pH | 9.0–10.5 | Bulk density (g cm−3) | 1.59 |
Total saline (g kg−1) | 3.50 | Specific gravity | 2.51 |
Exchangeable sodium saturation (%) | 42.10 | Total porosity (%) | 34.80 |
Total N (g kg−1) | 0.76 | Fine sand (g kg−1) | 29.00 |
Total P (g kg−1) | 0.69 | Coarse silt (g kg−1) | 19.00 |
Total K (g kg−1) | 14.50 | Medium silt (g kg−1) | 7.20 |
Fine silt (g kg−1) | 13.50 | ||
Clay (g kg−1) | 31.10 |
Subclass of Takyric Solonetz | Total Salinity (%) | ESP 1 (%) | Further Classification |
---|---|---|---|
Alkalized takyric solonetz | <0.3 | 10–40 | Mildly alkalized takyric solonetz |
40–60 | Moderately alkalized takyric solonetz | ||
>60 | Severely alkalized takyric solonetz | ||
Salinized takyric solonetz | >0.3 | 10–40 | Mildly salinized takyric solonetz |
40–60 | Moderately salinized takyric solonetz | ||
>60 | Severely salinized takyric solonetz |
Saline–Alkali Soil Classification | Soil Property | Recommended FGD Amount (kg·ha−1) | ||
---|---|---|---|---|
pH | ESP (%) | Total Alkalinity (cmol·kg−1) | ||
Slightly alkaline | 8.0–8.5 | 10–20 | 0.2–0.6 | 11,250–22,500 |
Moderately alkaline | 8.5–9.0 | 20–30 | 0.5–0.9 | 11,250–22,500 |
Severely alkaline | >9.0 | 30–40 | 0.8–1.2 | 22,500–33,750 |
Treatment | Seedling Emergence Rate (%) | Yield (kg·ha−1) |
---|---|---|
Autumn application at 10 cm | 73.1 b | 1068 b |
Autumn application at 25 cm | 81.9 a | 1302 a |
Spring application at 10 cm | 64.7 c | 912 c |
Spring application at 25 cm | 60.9 c | 822 c |
Change in Soil Index | Oil Sunflower Index | |||
---|---|---|---|---|
pH Value | Total Salinity | Degree of Alkalization | Seedling Emergence Rate | Yield with Irrigation Once or Twice for Salt-Leaching |
18.4–30.4% | 4.1–13.3% | 32.8–34.2% | increased by 84.6% or 80.3% | increased by 84.6% or 80.3% and 97.0% or 94.0% |
Treatment | Rice Yield in Alkaline Soil (kg·ha−1) | Oil Sunflower Yield in Alkaline Soil (kg·ha−1) | Oil Sunflower Yield in Saline Soil (kg·ha−1) |
---|---|---|---|
Furfural-residue (CK) | 2700 d | 410 d | 1290 d |
FGD gypsum + humic acid | 4340 c | 990 c | 2270 c |
FGD gypsum + goat manure | 5630 b | 2030 b | 3980 b |
FGD gypsum + shredded stalk | 5690 b | 2050 b | 4010 a |
FGD gypsum + K–Zn–Mn fertilizer | 6350 a | 2560 a | 4170 a |
Soils | Location | Crops | N (kg·ha−1) | P2O5 (kg·ha−1) | K2O (kg·ha−1) | Yield (kg·ha−1) |
---|---|---|---|---|---|---|
Alkaline soil | Xidatan | Rice | 120–135 | 45–60 | 0 | ≤4500 |
135–165 | 45–60 | 0 | 4500–6000 | |||
165–195 | 45–60 | 0 | 6000–7500 | |||
195–225 | 60–75 | 30 | 7500–9000 | |||
225–240 | 75 | 30 | ≥9000 |
Yield Increase Rate Compared with Treatment without FGD Gypsum | |||
---|---|---|---|
FGD Gypsum | FGD Gypsum + Organic Fertilizer | FGD Gypsum + Organic and Chemical Fertilizer | Chemical and Organic Fertilizer |
12.1% | 21.2% | 60.4% | 63.5% |
Soil type | Halophytes | FGD Treatments | CK without FGD Application | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Di+ | Di− | Ci | Rank | Salt Tolerance | Di+ | Di− | Ci | Rank | Salt Tolerance | ||
Alkaline soil | Chinese tamarisk | 0.02 | 0.20 | 0.91 | 1 | Strongest | 0.03 | 0.24 | 0.89 | 1 | Strongest |
Medlar | 0.08 | 0.23 | 0.74 | 2 | Strongest | 0.08 | 0.23 | 0.74 | 2 | Strongest | |
GreenChinese onion | 0.07 | 0.18 | 0.72 | 3 | Strongest | 0.13 | 0.21 | 0.62 | 3 | Stronger | |
Oil sunflower | 0.12 | 0.19 | 0.70 | 4 | Strongest | 0.24 | 0.2 | 0.45 | 4 | Stronger | |
Sugarbeet | 0.14 | 0.18 | 0.61 | 5 | Stronger | 0.40 | 0.14 | 0.26 | 7 | Moderate | |
Sorghum–sudangrass hybrid | 0.26 | 0.12 | 0.49 | 6 | Stronger | 0.38 | 0.13 | 0.25 | 8 | Moderate | |
Sweet sorghum | 0.33 | 0.13 | 0.42 | 7 | Stronger | 0.55 | 0.05 | 0.08 | 9 | Weak | |
Reed fescue | 0.18 | 0.24 | 0.32 | 8 | Moderate | 0.37 | 0.17 | 0.31 | 5 | Moderate | |
Lyme grass | 0.25 | 0.16 | 0.28 | 9 | Moderate | 0.39 | 0.15 | 0.28 | 6 | Moderate | |
Saline soil | Chinese tamarisk | 0.02 | 0.21 | 0.92 | 1 | Strongest | 0.03 | 0.23 | 0.88 | 1 | Strongest |
Medlar | 0.02 | 0.21 | 0.91 | 2 | Strongest | 0.04 | 0.23 | 0.85 | 2 | Strongest | |
GreenChinese onion | 0.04 | 0.21 | 0.84 | 3 | Strongest | 0.09 | 0.20 | 0.68 | 3 | Stronger | |
Reed fescue | 0.06 | 0.20 | 0.77 | 4 | Strongest | 0.11 | 0.20 | 0.65 | 5 | Stronger | |
Oil sunflower | 0.05 | 0.19 | 0.76 | 5 | Strongest | 0.12 | 0.23 | 0.66 | 4 | Stronger | |
Sugarbeet | 0.20 | 0.15 | 0.56 | 6 | Stronger | 0.26 | 0.11 | 0.30 | 8 | Moderate | |
Sweet sorghum | 0.34 | 0.13 | 0.50 | 7 | Stronger | 0.48 | 0.05 | 0.09 | 9 | Weak | |
Sorghum–sudangrass hybrid | 0.40 | 0.10 | 0.20 | 8 | Moderate | 0.24 | 0.13 | 0.35 | 6 | Moderate | |
Lyme grass | 0.35 | 0.08 | 0.19 | 9 | Moderate | 0.26 | 0.12 | 0.32 | 7 | Moderate |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Zhao, A.; Ma, F.; Liu, J.; Xiao, G.; Xu, X. Amendment of Saline–Alkaline Soil with Flue-Gas Desulfurization Gypsum in the Yinchuan Plain, Northwest China. Sustainability 2023, 15, 8658. https://doi.org/10.3390/su15118658
Wang J, Zhao A, Ma F, Liu J, Xiao G, Xu X. Amendment of Saline–Alkaline Soil with Flue-Gas Desulfurization Gypsum in the Yinchuan Plain, Northwest China. Sustainability. 2023; 15(11):8658. https://doi.org/10.3390/su15118658
Chicago/Turabian StyleWang, Jing, Aiqin Zhao, Fei Ma, Jili Liu, Guoju Xiao, and Xing Xu. 2023. "Amendment of Saline–Alkaline Soil with Flue-Gas Desulfurization Gypsum in the Yinchuan Plain, Northwest China" Sustainability 15, no. 11: 8658. https://doi.org/10.3390/su15118658
APA StyleWang, J., Zhao, A., Ma, F., Liu, J., Xiao, G., & Xu, X. (2023). Amendment of Saline–Alkaline Soil with Flue-Gas Desulfurization Gypsum in the Yinchuan Plain, Northwest China. Sustainability, 15(11), 8658. https://doi.org/10.3390/su15118658