Synergetic Benefits for a Pig Farm and Local Bioeconomy Development from Extended Green Biorefinery Value Chains
Abstract
:1. Introduction
2. Materials and Methods
2.1. Analysis of Green Biorefinery LPC as an Alternative Feed for Pigs
2.1.1. Characterization of LPC
2.1.2. LPC and Control Diet Pig Feed Trial
2.2. LPC and Control Slurry Biogas and Biomethane Analysis
2.2.1. Determination of Total and Volatile Solids for Slurries
2.2.2. Biomethane Potential (BMP) of Slurries
2.2.3. Biogas Analysis and Biomethane Calculations
3. Results
3.1. LPC and Control Diet Pig Feed Trial Results
3.1.1. Characterization of Grass-Derived LPC
3.1.2. Amino Acid Profile of LPC
3.1.3. Feeding Trial
Daily Feed Intake
Average Daily Weight Gain
Feed Conversion Ratio
3.2. LPC and Control Slurry Biogas and Biomethane Analysis Results
3.3. Bioenergy Assessment of LPC Pig Slurry and Soya Bean Meal Pig Slurry Feed AD Systems: A Case Study
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rockström, J.; Steffen, W.; Noone, K.; Persson, Å.; Chapin, F.S.; Lambin, E.F.; Lenton, T.M.; Scheffer, M.; Folke, C.; Schellnhuber, H.J. A safe operating space for humanity. Nature 2009, 461, 472–475. [Google Scholar] [CrossRef]
- Steffen, W.; Richardson, K.; Rockström, J.; Cornell, S.E.; Fetzer, I.; Bennett, E.M.; Biggs, R.; Carpenter, S.R.; De Vries, W.; De Wit, C.A. Planetary boundaries: Guiding human development on a changing planet. Science 2015, 347, 1259855. [Google Scholar] [CrossRef]
- Clark, W.; Lenaghan, M. The Future of Food: Sustainable Protein Strategies around the World; Zero Waste Scotland: Glasgow, UK, 2020. [Google Scholar]
- European Parliament. EU Agricultural Policy and Climate Change. 2020. Available online: https://www.europarl.europa.eu/RegData/etudes/BRIE/2020/651922/EPRS_BRI(2020)651922_EN.pdf (accessed on 13 January 2023).
- Eurostat. Greenhouse Gas Emissions from Agriculture, by Country. 2012. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=File:Greenhouse_gas_emissions_from_agriculture,_by_country,_2012.png (accessed on 15 January 2023).
- Department of Communications, Climate Action and Environment. National Mitigation Plan. 2017. Available online: https://www.gov.ie/en/publication/48d4e-national-mitigation-plan/ (accessed on 18 January 2023).
- European Commission. European Green Deal—Delivering on Our Targets. 2021. Available online: https://ec.europa.eu/commission/presscorner/detail/en/fs_21_3688 (accessed on 14 January 2023).
- European Commission. A Sustainable Bioeconomy for Europe: Strengthening the Connection between Economy, Society and the Environment. 2018. Available online: https://op.europa.eu/en/publication-detail/-/publication/edace3e3-e189-11e8-b690-01aa75ed71a1/ (accessed on 18 January 2023).
- Ahmed, E.; Batbekh, B.; Fukuma, N.; Hanada, M.; Nishida, T. Evaluation of Different Brown Seaweeds as Feed and Feed Additives Regarding Rumen Fermentation and Methane Mitigation. Fermentation 2022, 8, 504. [Google Scholar] [CrossRef]
- Roque, B.M.; Venegas, M.; Kinley, R.D.; de Nys, R.; Duarte, T.L.; Yang, X.; Kebreab, E. Red seaweed (Asparagopsis taxiformis) supplementation reduces enteric methane by over 80 percent in beef steers. PLoS ONE 2021, 16, e0247820. [Google Scholar] [CrossRef]
- Antoniêto, A.C.C.; Nogueira, K.M.V.; Mendes, V.; Maués, D.B.; Oshiquiri, L.H.; Zenaide-Neto, H.; de Paula, R.G.; Gaffey, J.; Tabatabaei, M.; Gupta, V.K. Use of carbohydrate-directed enzymes for the potential exploitation of sugarcane bagasse to obtain value-added biotechnological products. Int. J. Biol. Macromol. 2022, 221, 456–471. [Google Scholar] [CrossRef]
- Usmani, Z.; Sharma, M.; Gaffey, J.; Sharma, M.; Dewhurst, R.J.; Moreau, B.; Newbold, J.; Clark, W.; Thakur, V.K.; Gupta, V.K. Valorization of dairy waste and by-products through microbial bioprocesses. Bioresour. Technol. 2021, 346, 126444. [Google Scholar] [CrossRef]
- Wang, L.; Littlewood, J.; Murphy, R.J. Environmental sustainability of bioethanol production from wheat straw in the UK. Renew. Sustain. Energy Rev. 2013, 28, 715–725. [Google Scholar] [CrossRef]
- Meza, L.E.; Rodríguez, A.G. Nature-Based Solutions and the Bioeconomy: Contributing to a Sustainable and Inclusive Transformation of Agriculture and to the Post-COVID-19 Recovery. 2022. Available online: https://www.cepal.org/en/publications/48101-nature-based-solutions-and-bioeconomy-contributing-sustainable-and-inclusive (accessed on 18 January 2023).
- Neill, A.M.; O’Donoghue, C.; Stout, J.C. A Natural capital lens for a sustainable Bioeconomy: Determining the unrealised and unrecognised services from nature. Sustainability 2020, 12, 8033. [Google Scholar] [CrossRef]
- Dias, R.S.; Costa, D.V.; Correia, H.E.; Costa, C.A. Building bio-districts or eco-regions: Participative processes supported by focal groups. Agriculture 2021, 11, 511. [Google Scholar] [CrossRef]
- Mulder, W.; van der Peet-Schwering, C.; Hua, N.-P.; van Ree, R. Proteins for Food, Feed and Biobased Applications: Biorefining of Protein Containing Biomass; IEA Bioenergy Task 42; IEA Bioenergy: Enschede, The Netherlands, 2016. [Google Scholar]
- Damborg, V.K.; Jensen, S.K.; Johansen, M.; Ambye-Jensen, M.; Weisbjerg, M.R. Ensiled pulp from biorefining increased milk production in dairy cows compared with grass–clover silage. J. Dairy Sci. 2019, 102, 8883–8897. [Google Scholar] [CrossRef]
- Santamaría-Fernández, M.; Lübeck, M. Production of leaf protein concentrates in green biorefineries as alternative feed for monogastric animals. Anim. Feed. Sci. Technol. 2020, 268, 114605. [Google Scholar] [CrossRef]
- Serra, E.; Lynch, M.; Gaffey, J.; Sanders, J.; Koopmans, S.; Markiewicz-Keszycka, M.; Bock, M.; McKay, Z.; Pierce, K. Biorefined press cake silage as feed source for dairy cows: Effect on milk production and composition, rumen fermentation, nitrogen and phosphorus excretion and in vitro methane production. Livest. Sci. 2022, 267, 105135. [Google Scholar] [CrossRef]
- Pijlman, J.; Koopmans, S.; De Haan, G.; Lenssinck, F.; Van Houwelingen, K.; Sanders, J.; Deru, J.; Erisman, J. Effect of the grass fibrous fraction obtained from biorefinery on n and P utilization of dairy cows. In Proceedings of the 20th Nitrogen Workshop: “Coupling C-N-P-S cycles”, Rennes, France, 25 June 2018; pp. 25–27. [Google Scholar]
- Stødkilde, L.; Ambye-Jensen, M.; Krogh Jensen, S. Biorefined grass-clover protein composition and effect on organic broiler performance and meat fatty acid profile. J. Anim. Physiol. Anim. Nutr. 2020, 104, 1757–1767. [Google Scholar] [CrossRef]
- Stødkilde, L.; Ambye-Jensen, M.; Jensen, S.K. Biorefined organic grass-clover protein concentrate for growing pigs: Effect on growth performance and meat fatty acid profile. Anim. Feed Sci. Technol. 2021, 276, 114943. [Google Scholar] [CrossRef]
- Jensen, H.G.; Elleby, C.; Domínguez, I.P. Reducing the European Union’s plant protein deficit: Options and impacts. Agric. Econ. 2021, 67, 391–398. [Google Scholar] [CrossRef]
- Ravindran, R.; Donkor, K.; Gottumukkala, L.; Menon, A.; Guneratnam, A.J.; McMahon, H.; Koopmans, S.; Sanders, J.P.; Gaffey, J. Biogas, Biomethane and Digestate Potential of By-Products from Green Biorefinery Systems. Clean Technol. 2022, 4, 35–50. [Google Scholar] [CrossRef]
- Santamaría-Fernández, M.; Molinuevo-Salces, B.; Lübeck, M.; Uellendahl, H. Biogas potential of green biomass after protein extraction in an organic biorefinery concept for feed, fuel and fertilizer production. Renew. Energy 2018, 129, 769–775. [Google Scholar] [CrossRef]
- Igliński, B.; Pietrzak, M.B.; Kiełkowska, U.; Skrzatek, M.; Kumar, G.; Piechota, G. The assessment of renewable energy in Poland on the background of the world renewable energy sector. Energy 2022, 261, 125319. [Google Scholar] [CrossRef]
- Igliński, B.; Kiełkowska, U.; Piechota, G.; Skrzatek, M.; Cichosz, M.; Iwański, P. Can energy self-sufficiency be achieved? Case study of Warmińsko-Mazurskie Voivodeship (Poland). Clean Technol. Environ. Policy 2021, 23, 2061–2081. [Google Scholar] [CrossRef]
- D’Adamo, I.; Gastaldi, M.; Morone, P.; Rosa, P.; Sassanelli, C.; Settembre-Blundo, D.; Shen, Y. Bioeconomy of sustainability: Drivers, opportunities and policy implications. Sustainability 2021, 14, 200. [Google Scholar] [CrossRef]
- Gaffey, J.; Rajuaria, G.; McMahon, H.; Ravindran, R.; Dominguez, C.; Jensen, M.A.; Souza, M.F.; Meers, E.; Aragonés, M.M.; Skunca, D. Green Biorefinery systems for the production of climate-smart sustainable products from grasses, legumes and green crop residues. Biotechnol. Adv. 2023, 66, 108168. [Google Scholar] [CrossRef] [PubMed]
- Ravindran, R.; Koopmans, S.; Sanders, J.P.; McMahon, H.; Gaffey, J. Production of Green Biorefinery Protein Concentrate Derived from Perennial Ryegrass as an Alternative Feed for Pigs. Clean Technol. 2021, 3, 656–669. [Google Scholar] [CrossRef]
- Zhang, Y.; Jiang, Y.; Wang, S.; Wang, Z.; Liu, Y.; Hu, Z.; Zhan, X. Environmental sustainability assessment of pig manure mono-and co-digestion and dynamic land application of the digestate. Renew. Sustain. Energy Rev. 2021, 137, 110476. [Google Scholar] [CrossRef]
- Rodríguez, A.; Ángel, J.; Rivero, E.; Acevedo, P.; Santis, A.; Rojas, I.C.; Acosta, M.; Hernández, M. Evaluation of the biochemical methane potential of pig manure, organic fraction of municipal solid waste and cocoa industry residues in Colombia. Chem. Eng. Trans. 2017, 57, 55–60. [Google Scholar]
- Carrère, H.; Sialve, B.; Bernet, N. Improving pig manure conversion into biogas by thermal and thermo-chemical pretreatments. Bioresour. Technol. 2009, 100, 3690–3694. [Google Scholar] [CrossRef] [PubMed]
- ISO 6865:2000; Animal Feeding Stuffs—Determination of Crude Fibre Content—Method with Intermediate Filtration. ISO: Geneva, Switzerland, 2000.
- ISO 5983-2:2009; Animal Feeding Stuffs—Determination of Nitrogen Content and Calculation of Crude Protein Content—Part 2: Block Digestion and Steam Distillation Method. Animal Feeding Stuffs—Determination of Nitrogen Content and Calculation of Crude Protein Content—Part 2: Block Digestion and Steam Distillation Method. ISO: Geneva, Switzerland, 2009.
- ISO 6869:2000; Animal Feeding Stuffs—Determination of the Contents of Calcium, Copper, Iron, Magnesium, Manganese, Potassium, Sodium and Zinc—Method Using Atomic Absorption Spectrometry. ISO: Geneva, Switzerland, 2000.
- ISO 6496:1999; Animal Feeding Stuffs—Determination of Moisture and Other Volatile Matter Content. ISO: Geneva, Switzerland, 1999.
- ISO 6491:1998; Animal Feeding Stuffs—Determination of Phosphorus Content—Spectrometric Method. ISO: Geneva, Switzerland, 1998.
- ISO 15914:2004; Animal Feeding Stuffs—Enzymatic Determination of Total Starch Content. ISO: Geneva, Switzerland, 2004.
- ISO 6492:1999; Animal Feeding Stuffs—Determination of fat Content. ISO: Geneva, Switzerland, 1999.
- ISO 5984:2002; Animal Feeding Stuffs—Determination of Crude Ash. ISO: Geneva, Switzerland, 2002.
- De Haer, L.; Merks, J. Patterns of daily food intake in growing pigs. Anim. Sci. 1992, 54, 95–104. [Google Scholar] [CrossRef]
- Horodyska, J.; Hamill, R.M.; Varley, P.F.; Reyer, H.; Wimmers, K. Genome-wide association analysis and functional annotation of positional candidate genes for feed conversion efficiency and growth rate in pigs. PLoS ONE 2017, 12, e0173482. [Google Scholar] [CrossRef]
- EN 14774-1:2009; Solid Biofuels-Determination of Moisture Content-Oven Dry Method-Part 1: Total Moisture-Reference Method. EN: Brussels, Belgium, 2010.
- EN 14775:2009; Solid Biofuels–Determination of Ash Content. EU: Brussels, Belgium, 2009.
- ISO/TC 238; Solid Biofuels--Determination of Total Content of Sulfur and Chlorine. ISO: Geneva, Switzerland, 2015.
- EN 15290:2011; Solid Biofuels. Determination of Major Elements-Al, Ca, Fe, Mg, P, K, Si, Na and Ti. British Standards Institution: Chiswick, UK, 2011.
- O’Dell, J. The Determination of Chemical Oxygen Demand by Semi-Automated Colorimetry-Method 410.4; Environmental Monitoring Systems Laboratory, Office of Research and Development, US Environmental Protection Agency: Cincinnati, OH, USA, 1993. [Google Scholar]
- ISO/TC 238; Solid Biofuels—Determination of Minor Elements. ISO: Geneva, Switzerland, 2015.
- Prochnow, A.; Heiermann, M.; Drenckhan, A.; Schelle, H. Seasonal Pattern of Biomethanisation of Grass from Landscape Management; International Commission of Agricultural Engineering: Liège, Belgium, 2005. [Google Scholar]
- Florou-Paneri, P.; Christaki, E.; Giannenas, I.; Bonos, E.; Skoufos, I.; Tsinas, A.; Tzora, A.; Peng, J. Alternative Protein Sources to Soybean Meal in Pig Diets. J. Food Agric. Environ. 2014, 12, 655–660. [Google Scholar]
- Pork Information Gateway. Timing the Purchase of Your Project Pig. Available online: https://porkgateway.org/resource/timing-the-purchae-of-your-project-pig/#:~:text=Average%20Daily%20Gain%20(ADG)&text=Understanding%20ADG%20is%20key%20to,approach%20their%20final%20market%20weight (accessed on 18 January 2023).
- Pierozan, C.; Dias, C.; Temple, D.; Manteca, X.; da Silva, C. Welfare indicators associated with feed conversion ratio and daily feed intake of growing-finishing pigs. Anim. Prod. Sci. 2020, 61, 412–422. [Google Scholar] [CrossRef]
- Hancock, J.D.; Behnke, K.C. Use of ingredient and diet processing technologies (grinding, mixing, pelleting, and extruding) to produce quality feeds for pigs. In Swine Nutrition; CRC Press: Boca Raton, FL, USA, 2000; pp. 489–518. [Google Scholar]
- Hall, R.E.; Biehl, L.; Meyer, K. Slaughter Checks—An Aid to Better Herd Health; Pork Industry Handbook/Purdue University, Cooperative Extension Service: West Lafayette, IN, USA, 1978. [Google Scholar]
- Patience, J. The influence of dietary energy on feed efficiency in grow-finish swine. In Feed Efficiency in Swine; Springer: Berlin/Heidelberg, Germany, 2012; pp. 101–129. [Google Scholar]
- Vertes, A.A.; Qureshi, N.; Yukawa, H.; Blaschek, H.P. Biomass to Biofuels: Strategies for Global Industries; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Santos, A.D.; Silva, J.R.; Castro, L.M.; Quinta-Ferreira, R.M. A biochemical methane potential of pig slurry. Energy Rep. 2022, 8, 153–158. [Google Scholar] [CrossRef]
- Miroshnichenko, I.; Oskina, A.; Eremenko, E. Biogas potential of swine manure of different animal classes. Energy Sources Part A Recovery Util. Environ. Eff. 2020, 1–12. [Google Scholar] [CrossRef]
- Browne, J.D.; Allen, E.; Murphy, J.D. Evaluation of the biomethane potential from multiple waste streams for a proposed community scale anaerobic digester. Environ. Technol. 2013, 34, 2027–2038. [Google Scholar] [CrossRef]
- Wu, B.; Lin, R.; O’Shea, R.; Deng, C.; Rajendran, K.; Murphy, J.D. Production of advanced fuels through integration of biological, thermo-chemical and power to gas technologies in a circular cascading bio-based system. Renew. Sustain. Energy Rev. 2021, 135, 110371. [Google Scholar] [CrossRef]
- Nguyen, T.L.T.; Hermansen, J.E.; Mogensen, L. Fossil energy and GHG saving potentials of pig farming in the EU. Energy Policy 2010, 38, 2561–2571. [Google Scholar] [CrossRef]
- McAuliffe, G.A.; Chapman, D.V.; Sage, C.L. A thematic review of life cycle assessment (LCA) applied to pig production. Environ. Impact Assess. Rev. 2016, 56, 12–22. [Google Scholar] [CrossRef]
- Karlsson, J.O.; Parodi, A.; Van Zanten, H.H.; Hansson, P.-A.; Röös, E. Halting European Union soybean feed imports favours ruminants over pigs and poultry. Nat. Food 2021, 2, 38–46. [Google Scholar] [CrossRef] [PubMed]
- Taelman, S.E.; De Meester, S.; Van Dijk, W.; Da Silva, V.; Dewulf, J. Environmental sustainability analysis of a protein-rich livestock feed ingredient in The Netherlands: Microalgae production versus soybean import. Resour. Conserv. Recycl. 2015, 101, 61–72. [Google Scholar] [CrossRef]
- Stockholm Environment Institute. Connecting Exports of Brazilian Soy to Deforestation. 2022. Available online: https://www.sei.org/featured/connecting-exports-of-brazilian-soy-to-deforestation/ (accessed on 28 January 2023).
- Franchi, C.; Brouwer, F.; Compeer, A. LCA summary report Grass protein versus Soy protein. Mechelen, Belgium. 2020. Available online: https://www.grasgoed.eu/wp-content/uploads/2020/06/GrasGoed-LCA-summary-report-chicken-feed-protein.pdf (accessed on 28 January 2023).
- Parajuli, R.; Dalgaard, T.; Birkved, M. Can farmers mitigate environmental impacts through combined production of food, fuel and feed? A consequential life cycle assessment of integrated mixed crop-livestock system with a green biorefinery. Sci. Total Environ. 2018, 619, 127–143. [Google Scholar] [CrossRef]
- Escobar, N.; Tizado, E.J.; zu Ermgassen, E.K.; Löfgren, P.; Börner, J.; Godar, J. Spatially-explicit footprints of agricultural commodities: Mapping carbon emissions embodied in Brazil’s soy exports. Glob. Environ. Chang. 2020, 62, 102067. [Google Scholar] [CrossRef]
- Kuepper, B.; Stravens, M. Mapping the European Soy Supply Chain; Profundo, Commissioned by WWF European Policy Office: Amsterdam, The Netherlands, 2022. [Google Scholar]
- European Commission. Report from the Commission to the Council and the European Parliament on the Development of Plant Proteins in the European Union. Eur. Comm. 2018, 757, 1–15. [Google Scholar]
- Schils, R.L.; Newell Price, P.; Klaus, V.; Tonn, B.; Hejduk, S.; Stypinski, P.; Hiron, M.; Fernández, P.; Ravetto Enri, S.; Lellei-Kovács, E. European Permanent Grasslands Mainly Threatened by Abandonment, Heat and Drought, and Conversion to Temporary Grassland. In Proceedings of the 28th General Meeting of the European Grassland Federation, Online, 19–21 October 2020; pp. 553–555. [Google Scholar]
- Mandl, M.G. Status of green biorefining in Europe. Biofuels Bioprod. Biorefin. Innov. A Sustain. Econ. 2010, 4, 268–274. [Google Scholar] [CrossRef]
- European Biogas Association. Biomethane Production Potentials in the EU—Feasibility of REPowerEU 2030 Targets, Production Potentials in the Member States and Outlook to 2050; European Biogas Association: Utrecht, The Netherlands, 2022. [Google Scholar]
- Soares, C.A.; Viancelli, A.; Michelon, W.; Sbardelloto, M.; Camargo, A.F.; Vargas, G.D.L.; Fongaro, G.; Treichel, H. Biogas yield prospection from swine manure and placenta in real-scale systems on circular economy approach. Biocatal. Agric. Biotechnol. 2020, 25, 101598. [Google Scholar] [CrossRef]
- Freitas, F.; Furtado, A.; Piñas, J.; Venturini, O.; Barros, R.; Lora, E. Holistic Life Cycle Assessment of a biogas-based electricity generation plant in a pig farm considering co-digestion and an additive. Energy 2022, 261, 125340. [Google Scholar] [CrossRef]
- Jiang, Y.; Zhang, Y.; Wang, S.; Wang, Z.; Liu, Y.; Hu, Z.; Zhan, X. Improved environmental sustainability and bioenergy recovery through pig manure and food waste on-farm co-digestion in Ireland. J. Clean. Prod. 2021, 280, 125034. [Google Scholar] [CrossRef]
- Regueiro, I.; Gómez-Muñoz, B.; Lübeck, M.; Hjorth, M.; Jensen, L.S. Bio-acidification of animal slurry: Efficiency, stability and the mechanisms involved. Bioresour. Technol. Rep. 2022, 19, 101135. [Google Scholar] [CrossRef]
- Pääkkönen, A.; Aro, K.; Aalto, P.; Konttinen, J.; Kojo, M. The Potential of biomethane in replacing fossil fuels in heavy transport—A case study on Finland. Sustainability 2019, 11, 4750. [Google Scholar] [CrossRef]
- Hagstroem, A. Prospects for Continued Use and Production of Swedish Biogas in Relation to Current Market Transformations in Public Transport. 2019. Available online: http://kth.diva-portal.org/smash/record.jsf?pid=diva2%3A1352422&dswid=7334 (accessed on 28 January 2023).
- European Commission. Short-Term Outlook for EU Agricultural Markets in 2022. 2022. Available online: https://agriculture.ec.europa.eu/system/files/2022-10/short-term-outlook-autumn-2022_en_1.pdf (accessed on 29 January 2023).
- Eurostat. EU Agricultural Prices Continued to Rise in Q2 2022. 2022. Available online: https://ec.europa.eu/eurostat/web/products-eurostat-news/-/ddn-20220930-3 (accessed on 29 January 2023).
- Cong, R.-G.; Termansen, M. A bio-economic analysis of a sustainable agricultural transition using green biorefinery. Sci. Total Environ. 2016, 571, 153–163. [Google Scholar] [CrossRef]
- European Biogas Association. A Way out of the EU Gas Price Crisis with Biomethane. 2022. Available online: https://www.europeanbiogas.eu/a-way-out-of-the-eu-gas-price-crisis-with-biomethane/ (accessed on 30 January 2023).
Raw Material | Control (%) | Treatment (%) |
---|---|---|
Barley | 30.00 | 29.20 |
Maize | 10.00 | 10.00 |
Wheat | 25.00 | 25.00 |
Molasses | 2.00 | 2.00 |
Hipro soya | 22.00 | 11.00 |
Soya hulls | 1.00 | 1.00 |
Whey permeate powder | 2.50 | 2.50 |
Soya oil | 3.70 | 3.10 |
Grass protein (42.8% CP) | 0.00 | 12.40 |
Limestone flour | 0.80 | 0.68 |
Salt | 0.40 | 0.40 |
Lysine hydrochloride | 0.00 | 0.08 |
Methionine | 0.00 | 0.04 |
104 Weaner + Vita GP (2.6%) | 2.60 | 2.60 |
Total | 100.0 | 100.0 |
Constituent | Value | Control (%) | Treatment (%) |
---|---|---|---|
Protein | % | 17.87 | 18.00 |
Oil | % | 5.34 | 6.07 |
Fiber | % | 3.34 | 3.35 |
Ash | % | 5.51 | 5.86 |
DE | MJ/kg | 14.32 | 14.24 |
NE | MJ/kg | 10.25 | 10.24 |
Lysine | % | 1.26 | 1.25 |
ILD lysine | % | 1.15 | 1.15 |
Calcium | % | 0.70 | 0.71 |
Dig phos | % | 0.36 | 0.36 |
Sodium | % | 0.23 | 0.23 |
Constituent | % |
---|---|
Cystine | 0.21 |
Aspartic | 3.53 |
Methionine | 0.72 |
Threonine | 1.71 |
Serine | 1.54 |
Glutamic | 3.77 |
Glycine | 1.91 |
Alanine | 2.24 |
Valine | 2.09 |
Iso-leucine | 1.71 |
Leucine | 3.10 |
Tyrosine | 1.00 |
Phenylalanine | 2.07 |
Histidine | 0.78 |
Lysine | 2.03 |
Arginine | 2.07 |
Proline | 1.65 |
Animal Feed Protein Sources | Unit | Crude Protein | Lysine | Methionine | Cysteine | Threonine | Crude Fiber |
---|---|---|---|---|---|---|---|
Soya bean meal | g/100 g | 44–48 | 2.81–3.20 | 0.60–0.75 | 0.69–0.74 | 0.71–2.00 | 3.0–7.0 |
Sunflower meal | g/100 g | 24–44 | 1.18–1.49 | 0.74–0.79 | 0.55–0.59 | 1.21–1.48 | 12.0–32.0 |
Rapeseed meal | g/100 g | 34–36 | 2.00–2.12 | 0.67–0.75 | 0.54–0.91 | 1.53–2.21 | 10.0–15.0 |
Cottonseed meal | g/100 g | 24–41 | 1.05–1.71 | 0.41–0.72 | 0.64–0.70 | 1.32–1.36 | 25.0–30.0 |
Grass protein concentrate | g/100 g | 42.8 | 2.03 | 0.72 | 0.21 | 1.71 | 3.9 |
Total Weight Gain Per Pig Since Weaning (kg) | ||
---|---|---|
Date of Weighing | Treatment | Control |
Week 1 | 4.656 | 4.413 |
Week 2 | 8.557 | 9.178 |
Week 3 | 13.104 | 14.178 |
Week 4 | 18.204 | 17.704 |
Week 5 | 19.554 | 19.494 |
Date of Weighing | Daily Feed Intake (kg/day) | Feed Conversion Efficiency | Average Daily Gain (kg/day) | |||
---|---|---|---|---|---|---|
Treatment | Control | Treatment | Control | Treatment | Control | |
Week 1 | 1.079 | 1.060 | 1.62 | 1.68 | 0.665 | 0.630 |
Week 2 | 1.155 | 1.167 | 1.89 | 1.78 | 0.611 | 0.656 |
Week 3 | 1.285 | 1.265 | 2.06 | 1.87 | 0.624 | 0.675 |
Week 4 | 1.384 | 1.349 | 2.13 | 2.13 | 0.650 | 0.632 |
Week 5 | 1.427 | 1.391 | 2.19 | 2.14 | 0.652 | 0.650 |
Measurement | Control Diet Slurry | Treatment Diet Slurry |
---|---|---|
Biogas potential—replicate A (L/kg VSfed) | 470.33 | 499.79 |
Biogas potential—replicate B (L/kg VSfed) | 486.20 | 504.45 |
Biogas potential—replicate C (L/kg VSfed) | 478.03 | 480.81 |
Average biogas potential (L/kg VSfed) | 478.19 ± 7.93 | 495.02 ± 12.52 |
Average biomethane potential (L/kg VSfed) | 280.85 ± 7.11 | 354.87 ± 9.45 |
Biogas potential (L/kg DM) | 316.09 ± 5.25 | 349.65 ± 8.85 |
Biomethane potential (L/kg DM) | 185.65 ± 4.70 | 250.66 ± 6.67 |
Biogas potential (L/kg FM) | 8.52 ± 0.15 | 11.37 ± 0.29 |
Biomethane potential (L/kg FM) | 5.01 ± 0.13 | 8.15 ± 0.21 |
Biogas composition (CH4 %) | 52.5–58.7 | 70.9–71.7 |
Biogas composition (CO2 %) | 41.3–47.5 | 28.3–29.1 |
Components | Conditions/Assumptions | |
---|---|---|
Anaerobic digester | Operating temperature | 36 °C |
Lower heating value (LHV) of methane | 10 kWh/Nm3 CH4 | |
Energy requirement of anaerobic digester | Electrical energy required for mixing slurry | 10 kWhelectric/t slurry |
Thermal energy for heating digester | Ethermal = Cp × m × ΔT | |
Boiler efficiency | 0.9 | |
Energy requirement for digestate centrifugation | Electrical energy demand | 3.5 kWhelectric/t digestate |
Moisture content in solid digestate | 0.7 | |
Energy requirement for amine scrubber biogas upgrading | Methane content in the upgraded biogas | 96% |
Methane losses neglected | ||
Electrical energy demand | 0.09 kWhelectric/m3 biogas input | |
Thermal energy demand | 0.45 kWhthermal/m3 biogas input |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gaffey, J.; O’Donovan, C.; Murphy, D.; O’Connor, T.; Walsh, D.; Vergara, L.A.; Donkor, K.; Gottumukkala, L.; Koopmans, S.; Buckley, E.; et al. Synergetic Benefits for a Pig Farm and Local Bioeconomy Development from Extended Green Biorefinery Value Chains. Sustainability 2023, 15, 8692. https://doi.org/10.3390/su15118692
Gaffey J, O’Donovan C, Murphy D, O’Connor T, Walsh D, Vergara LA, Donkor K, Gottumukkala L, Koopmans S, Buckley E, et al. Synergetic Benefits for a Pig Farm and Local Bioeconomy Development from Extended Green Biorefinery Value Chains. Sustainability. 2023; 15(11):8692. https://doi.org/10.3390/su15118692
Chicago/Turabian StyleGaffey, James, Cathal O’Donovan, Declan Murphy, Tracey O’Connor, David Walsh, Luis Alejandro Vergara, Kwame Donkor, Lalitha Gottumukkala, Sybrandus Koopmans, Enda Buckley, and et al. 2023. "Synergetic Benefits for a Pig Farm and Local Bioeconomy Development from Extended Green Biorefinery Value Chains" Sustainability 15, no. 11: 8692. https://doi.org/10.3390/su15118692
APA StyleGaffey, J., O’Donovan, C., Murphy, D., O’Connor, T., Walsh, D., Vergara, L. A., Donkor, K., Gottumukkala, L., Koopmans, S., Buckley, E., O’Connor, K., & Sanders, J. P. M. (2023). Synergetic Benefits for a Pig Farm and Local Bioeconomy Development from Extended Green Biorefinery Value Chains. Sustainability, 15(11), 8692. https://doi.org/10.3390/su15118692