Can New Urbanization Construction Improve Ecological Welfare Performance in the Yangtze River Economic Belt?
Abstract
:1. Introduction
2. Literature Review
3. Model Construction
3.1. Super Efficiency Slacks-Based Measure(SE-SBM) Model
3.2. Panel Regression Model
4. Empirical Results
4.1. Measurement of Ecological Welfare Performance in the Yangtze River Economic Belt
4.2. Tests of Ecological Welfare Performance of New Urbanization
4.2.1. Core Explanatory Variables
4.2.2. Control Variables
5. Discussion
5.1. Discussion of Ecological Welfare Performance Results
5.2. Discussion on the Relationship between New Urbanization and Ecological Welfare Performance
6. Robustness Test
7. Conclusions and Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Chen, D.J.; Liu, W.Y. The Impact of Urbanization on China’s Ecological Welfare Performance: Based on the Two-stage Super-NSBM Model. Jianghan Acad. 2023, 42, 86–98. [Google Scholar]
- Daly, H.E. Uneconomic growth in a full world. Soc. Contract J. 2003, 13, 171–180. [Google Scholar]
- Costanza, R.; Daly, L.; Fioramonti, L.; Giovannini, E.; Kubiszewski, I.; Mortensen, L.F.; Wilkinson, R. Modelling and measuring sustainable wellbeing in connection with the UN Sustainable Development Goals. Ecol. Econ. 2016, 130, 350–355. [Google Scholar] [CrossRef]
- Chen, M.; Liu, W.; Lu, D.; Chen, H.; Ye, C. Progress of China’s new-type urbanization construction since 2014: A preliminary assessment. Cities 2018, 78, 180–193. [Google Scholar] [CrossRef]
- O’Neill, D.W. The proximity of nations to a socially sustainable steady-state economy. J. Clean. Prod. 2015, 108, 1213–1231. [Google Scholar] [CrossRef]
- Zang, M.; Zhu, D.; Liu, G. Ecological well-being performance: Concept, connotation and empirical of G20. China Popul. Resour. Environ. 2013, 23, 118–124. [Google Scholar]
- Daly, H.E. The economics of the steady state. Am. Econ. Rev. 1974, 64, 15–21. [Google Scholar]
- Zhang, C.; Li, J.; Liu, T.; Xu, M.; Wang, H.; Li, X. The spatiotemporal evolution and influencing factors of the Chinese cities’ ecological welfare performance. Int. J. Environ. Res. Public Health 2022, 19, 12955. [Google Scholar] [CrossRef]
- Dong, J.; Wu, D. An evaluation of the impact of ecological compensation on the cross-section efficiency using SFA and DEA: A case study of Xin’an River Basin. Sustainability 2020, 12, 7966. [Google Scholar] [CrossRef]
- Boyd, J.; Banzhaf, S. What are ecosystem services? The need for standardized environmental accounting units. Ecol. Econ. 2007, 63, 616–626. [Google Scholar] [CrossRef]
- Cui, S.N.; Xu, P.; Wang, Y.Q.; Zhu, Z.H. Calculation and Comparison of Ecological Welfare Performance in China’s Three Major Urban Agglomerations. Stat. Decis. 2023, 39, 53–58. [Google Scholar]
- Common, M. Measuring national economic performance without using prices. Ecol. Econ. 2007, 64, 92–102. [Google Scholar] [CrossRef]
- DiMaria, C.H. An indicator for the economic performance and ecological sustainability of nations. Environ. Model. Assess. 2019, 24, 279–294. [Google Scholar] [CrossRef]
- Ng, Y.-K. Environmentally Responsible Happy Nation Index: Towards an Internationally Acceptable National Success Indicator. Soc. Indic. Res. 2008, 85, 425–446. [Google Scholar] [CrossRef]
- Jorgenson, A.K. Economic development and the carbon intensity of human well-being. Nat. Clim. Chang. 2014, 4, 186–189. [Google Scholar] [CrossRef]
- Long, L.J.; Wang, X.; Guo, B. Evaluation on sustainable urban development from the perspective of ecological wellbeing performance-A case study of Shanghai. Resour. Environ. Yangtze Basin 2016, 25, 9–15. [Google Scholar]
- Fang, S.J.; Xiao, Q. Research on regional ecological well-being performance and spatial effect in China. China Popul. Resour. Environ. 2019, 29, 1–10. [Google Scholar]
- Knight, K.W.; Rosa, E.A. The environmental efficiency of well-being: A cross-national analysis. Soc. Sci. Res. 2011, 40, 931–949. [Google Scholar] [CrossRef]
- Dietz, T.; Rosa, E.A.; York, R. Environmentally efficient well-being: Rethinking sustainability as the relationship between human well-being and environmental impacts. Hum. Ecol. Rev. 2009, 16, 114–123. [Google Scholar]
- Dietz, T.; Rosa, E.A.; York, R. Environmentally efficient well-being: Is there a Kuznets curve? Appl. Geogr. 2011, 32, 21–28. [Google Scholar] [CrossRef]
- Zhu, D.J.; Zhang, S. Research on Ecological Wellbeing Performance and lts Relationship with Economic Growth. China Popul. Resour. Environ. 2014, 24, 59–67. [Google Scholar]
- Xiao, L.M.; Ji, H.R. Spatial Structure Change and Influencing Factors of Ecological Well-being Performance from the Perspective of Green Technological Innovation in China: Data Analysis Based on Provincial Panel Data. Sci. Technol. Manag. Res. 2018, 38, 243–251. [Google Scholar]
- Huang, J.; Zhong, P.S. Spatial Difference and Dynamic Evolution of the Development Level of New Urbanization in Henan Province. J. Xinyang Norm. Univ. (Philos. Soc. Sci. Ed.) 2022, 6, 1–13. [Google Scholar]
- Guo, B.N.; Lin, J.; Liu, T.F. Impact of Environmental Regulations on Urban Ecological Welfare Performance in the Yangtze River Delta. Stat. Decis. 2021, 37, 15–18. [Google Scholar]
- Zhu, J.H.; Pang, W.Y. The influence of digital economy development on ecological welfare performance. Stat. Decis. 2022, 38, 79–83. [Google Scholar]
- Valaskova, K.; Oláh, J.; Popp, J.; Lăzăroiu, G. Virtual Modeling and Remote Sensing Technologies, Spatial Cognition and Neural Network Algorithms, and Visual Analytics Tools in Urban Geopolitics and Digital Twin Cities. Geopolit. Hist. Int. Relat. 2022, 14, 9–24. [Google Scholar]
- Andronie, M.; Lăzăroiu, G.; Iatagan, M.; Hurloiu, I.; Dijmărescu, I. Sustainable cyber-physical production systems in big data-driven smart urban economy: A systematic literature review. Sustainability 2021, 13, 751. [Google Scholar] [CrossRef]
- Sullivan, R. The Geopolitics of Urban Digital Twins: Spatial Cognition and Predictive Modeling Algorithms, Simulation and Virtualization Technologies, and Blockchain-enabled Cyber-Physical Systems. Geopolit. Hist. Int. Relat. 2022, 14, 25–39. [Google Scholar]
- Chen, F.; Liu, Y.X.; Zhang, Q.; Yan, B.B.; Feng, Y.Y.; Niu, J.Q. Study on the Spatio-temporal Change of Ecosystem Service Value in Henan Province. J. Xinyang Norm. Univ. (Nat. Sci. Ed.) 2023, 2, 173–179. [Google Scholar]
- Sol, D.; González-Lagos, C.; Moreira, D.; Maspons, J. Measuring tolerance to urbanization for comparative analyses. Ardeola 2013, 60, 3–13. [Google Scholar] [CrossRef]
- Sampson, L.; Ettman, C.K.; Galea, S. Urbanization, urbanicity, and depression: A review of the recent global literature. Curr. Opin. Psychiatry 2020, 33, 233–244. [Google Scholar] [CrossRef]
- Yu, B. Ecological effects of new-type urbanization in China. Renew. Sustain. Energy Rev. 2021, 135, 110239. [Google Scholar] [CrossRef]
- Wang, S.; Yang, C.Y.; Li, Z.H. Spatio-Temporal Evolution Characteristics and Spatial Interaction Spillover Effects of New-Urbanization and Green Land Utilization Efficiency. Land 2021, 10, 1105. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, G.; Hu, Y.; Jiang, Y.; Zhou, C.; Ma, J. The evolutionary mechanism of haze collaborative governance: Novel evidence from a tripartite evolutionary game model and a case study in China. Humanit. Soc. Sci. Commun. 2023, 10, 69. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, G.; Su, B. The Spatial Impacts of Air Pollution and Socio-Economic Status on Public Health: Empirical Evidence from China. Socio-Econ. Plan. Sci. 2022, 83, 101167. [Google Scholar] [CrossRef]
- Alfonso Piña, W.H.; Pardo Martínez, C.I. Development and urban sustainability: An analysis of efficiency using data envelopment analysis. Sustainability 2016, 8, 148. [Google Scholar] [CrossRef]
- Chen, M.X.; Ye, C.; Lu, D.D.; Sui, Y.; Guo, S. Cognition and construction of the theoretical connotations of new urbanization with Chinese characteristics. J. Geogr. Sci. 2019, 29, 1681–1698. [Google Scholar] [CrossRef]
- Haase, D.; Frantzeskaki, N.; Elmqvist, T. Ecosystem Services in Urban Landscapes: Practical Applications and Governance Implications. Ambio 2014, 43, 407–412. [Google Scholar] [CrossRef]
- Lin, K.; Deng, X.; Ye, J. Evaluation of Regional Ecological Well-Being Performance Based on Super- NSBM and Window DEA Model: A Case Study of Fujian Province. Ecol. Environ. Sci. 2020, 29, 2110–2117. [Google Scholar]
- Li, C.; Zhang, S.; Zhang, W.; Liao, X. Measurement and Influencing Factors of Inter-Provincial Ecological Well-being Performance in China. Sci. Geogr. Sin. 2019, 39, 1875–1883. [Google Scholar]
- Wu, J.; Bai, Z.; Eggert, R.G. Spatial and temporal changes of the ecological footprint of China’s resource-based cities in the process of urbanization. Resour. Policy 2022, 75, 102491. [Google Scholar] [CrossRef]
- Yan, B.; Wu, L.; Wang, X.H.; Wu, J.N. How can environmental intervention work during rapid urbanization? Examining the moderating effect of environmental performance-based accountability in China. Environ. Impact Assess. Rev. 2021, 86, 106476. [Google Scholar] [CrossRef]
- Zhou, L.; Xia, Y.; Chen, W. Review of low carbon development targets and relative co-benefits in China. China Popul. Resour. Environ. 2020, 30, 10–17. [Google Scholar]
- Ren, W.Z.; Zhang, Z.L.; Wang, Y.J.; Xue, B.; Chen, X. Measuring Regional Eco-Efficiency in China (2003–2016): A “Full World” Perspective and Network Data Envelopment Analysis. Int. J. Environ. Res. Public Health 2020, 17, 3456. [Google Scholar] [CrossRef]
- Dong, F.; Li, Y.F.; Gao, Y.J.; Zhu, J.; Qin, C.; Zhang, X. Energy transition and carbon neutrality: Exploring the non-linear impact of renewable energy development on carbon emission efficiency in developed countries. Resour. Conserv. Recycl. 2022, 177, 106002. [Google Scholar] [CrossRef]
- Charnes, A.; Cooper, W.W.; Rhodes, E. Measuring the efficiency of decision making units. Eur. J. Oper. Res. 1978, 2, 429–444. [Google Scholar] [CrossRef]
- Hu, Z.; Zhao, Z.; Zhang, Y.; Jing, H.; Gao, S.; Fang, J. Does ‘Forage-Livestock Balance’ policy impact ecological efficiency of grasslands in China? J. Clean. Prod. 2019, 207, 343–349. [Google Scholar] [CrossRef]
- Tone, K.A. Slacks-based measure of efficiency in data envelopment analysis. Eur. J. Oper. Res. 2001, 130, 498–509. [Google Scholar] [CrossRef]
- Hoechle, D. Robust standard errors for panel regressions with cross-sectional dependence. Stata J. 2007, 7, 281–312. [Google Scholar] [CrossRef]
- Zhou, Q.X.; Tong, C.F. Does Rapid Urbanization Improve Green Water-Use Efficiency? Based on the Investigation of Guangdong Province, China. Sustainability 2022, 14, 7481. [Google Scholar] [CrossRef]
- Tian, X.H.; Lu, F.; Xu, C.R. Ecological Efficiency Measurement and Spatial Correlation Analysis in theMiddle and Lower Reaches of the Yellow River Based on the Super-SBM Model. J. Xinyang Norm. Univ. (Philos. Soc. Sci. Ed.) 2023, 1, 89–97. [Google Scholar]
- Long, L.J.; Wang, X. A study on Shanghai’s ecological well-being performance. China Popul. Resour. Environ. 2017, 27, 84–92. [Google Scholar]
- Wang, R.; Feng, Y. Research on China’s Ecological Welfare Performance Evaluation and Improvement Path from the Perspective of High-Quality Development. Math. Probl. Eng. 2020, 2020, 5476089. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, Z. Spatial Pattern Evolution and Influencing Factors of Ecological Welfare Performance in Yangtze River Economic Belt: Based on Super Efficiency SBM Model. Resour. Environ. Yangtze Basin 2021, 30, 2822–2832. [Google Scholar]
- Deng, Y.; Yang, X.; Ma, Q.; Wang, K. Regional disparity and convergence of Chinas ecological welfare performance level. China Popul. Resour. Environ. 2021, 31, 132–143. [Google Scholar]
- Xu, Y.D.; Qi, P.; Tong, L.F. Spatial-temporal Differentiation of Chinese Provincial Ecological Well-being Performance. Reg. Econ. Rev. 2017, 28, 123–131. [Google Scholar]
- Cheng, H.R. Evaluation and Analysis of High-Quality Development of New Urbanization Based on Intelligent Computing. Math. Probl. Eng. 2022, 2022, 6428970. [Google Scholar] [CrossRef]
- Wang, S.; Wang, J. Nonlinear relationship between municipal solid waste and economic growth: Empirical analysis based on environmental Kuznets curve. China Popul. Resour. Environ. 2022, 32, 63–70. [Google Scholar]
- Ahmad, M.; Rehman, A.; Shah, S.A.A.; Solangi, Y.A.; Chandio, A.A.; Jabeen, G. Stylized heterogeneous dynamic links among healthcare expenditures, land urbanization, and CO2 emissions across economic development levels. Sci. Total Environ. 2021, 753, 142228. [Google Scholar] [CrossRef]
- Yang, Z.H.; Tian, L. A Panel Co-integration Analysis of the Pollution Haven Hypothesis and Its Determinants in China. J. World Econ. 2017, 40, 148–172. [Google Scholar]
- Li, Z.; Duan, K.; Sun, T. How does Industrial Agglomeration of manufacturing Industry Affect ecological Environment?—Research on Dual Mediation Model based on Green Technology Innovation and Foreign Direct Investment. Sci. Technol. Prog. Policy 2019, 36, 51–57. [Google Scholar]
- Duan, X.J.; Wang, L.; Kang, J.Y.; Yan, W. Achievements in Ecological and Environmental Governance and Green Development in the Yangtze River Economic Belt. Resour. Environ. Yangtze Basin 2022, 31, 1677–1684. [Google Scholar]
- Wu, W.L.; Luo, S.H.; Liu, X.G. Measurement Evaluation, Dynamic Distribution and Convergent Tendency of the Inclusive Green Development in the Yangtze River Economic Belt. J. Jiangxi Univ. Financ. Econ. 2021, 6, 13–28. [Google Scholar]
- Arnaut, J.; Lidman, J. Environmental Sustainability and Economic Growth in Greenland: Testing the Environmental Kuznets Curve. Sustainability 2021, 13, 1228. [Google Scholar] [CrossRef]
- Shen, J.; Zhang, K.Y. An empirical analysis of factors leading to typical urban problems in China. Prog. Geogr. 2020, 39, 1–12. [Google Scholar] [CrossRef]
- Liu, J.S.; Yi, B.Z. Green Development: The New lmpetus of Urbanization in Japan. Contemp. Econ. Jpn. 2015, 204, 34–41. [Google Scholar]
- Liu, M.F.; Xie, H.J. Analysis of the Double Threshold Effect of Industrialization and Urbanization in the Proceed of Environment Economic Aggregation. Manag. Rev. 2017, 29, 21–33. [Google Scholar]
- Zhou, K.; Chen, Y.F.; Xu, Y. Associated effects and interaction mechanism of urban expansion and water pollutant emissions: A case study of the Yangtze River Delta from 2011 to 2015. Acta Ecol. Sin. 2022, 48, 3167–3180. [Google Scholar]
- Zhang, X.J.; Xu, W.X.; Liu, C.J. Spatiotemporal disparity of Coupling Coordination of Economic–Land–Population–Society Urbanization in Guangdong–Hong Kong–Macao Region and Its Influencing Factors. Inq. Econ. Issues 2019, 10, 54–64. [Google Scholar]
- Yan, D.Q.; Zhang, X.Q. An Analysis of Government Environmental Responsibility in Urbanization. J. Nanjing For. Univ. 2013, 13, 71–76. [Google Scholar]
- Letchumanan, R.; Kodama, F. Reconciling the conflict between the ‘pollution-haven’ hypothesis and an emerging trajectory of international technology transfer. Res. Policy 2000, 29, 59–79. [Google Scholar] [CrossRef]
- Taylor, C.G. Globalization and the Environment: Determinants of Firm Self-Regulation in China. J. Int. Bus. Stud. 2001, 32, 439–458. [Google Scholar]
- Shen, Q.J. Study on New Urbanization based on Ecological Civilization. Urban Plan. Forum 2013, 1, 29–36. [Google Scholar]
Region | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Shanghai | 0.563 | 0.583 | 0.626 | 0.684 | 0.715 | 0.787 | 0.809 | 0.925 | 1.024 | 0.991 | 1.089 | 1.357 |
Jiangsu | 0.547 | 0.542 | 0.560 | 0.575 | 0.594 | 0.602 | 0.620 | 0.626 | 0.636 | 0.646 | 0.683 | 0.711 |
Zhejiang | 0.668 | 0.677 | 0.727 | 0.782 | 0.801 | 0.820 | 0.851 | 0.879 | 0.890 | 0.899 | 1.016 | 1.172 |
Anhui | 1.038 | 0.847 | 0.829 | 0.826 | 0.840 | 0.885 | 0.889 | 0.889 | 0.903 | 0.932 | 1.000 | 0.951 |
Jiangxi | 1.085 | 0.927 | 0.942 | 0.952 | 0.954 | 0.926 | 0.929 | 0.928 | 0.939 | 0.946 | 0.983 | 1.025 |
Hubei | 0.551 | 0.541 | 0.555 | 0.568 | 0.668 | 0.677 | 0.739 | 0.761 | 0.777 | 0.782 | 0.805 | 0.799 |
Hunan | 1.001 | 0.757 | 0.766 | 0.844 | 0.889 | 0.924 | 1.001 | 1.024 | 1.021 | 0.904 | 0.963 | 1.686 |
Chongqing | 0.671 | 0.617 | 0.634 | 0.826 | 0.806 | 0.802 | 0.879 | 0.910 | 1.035 | 0.910 | 0.947 | 1.147 |
Sichuan | 1.085 | 0.823 | 0.795 | 0.769 | 0.817 | 0.819 | 0.918 | 0.908 | 1.099 | 0.922 | 1.094 | 1.096 |
Guizhou | 1.059 | 1.022 | 1.015 | 0.985 | 1.023 | 1.002 | 0.941 | 0.892 | 0.816 | 0.794 | 0.930 | 1.077 |
Yunnan | 1.017 | 0.873 | 0.751 | 0.820 | 1.001 | 0.839 | 0.859 | 0.864 | 0.864 | 0.860 | 1.004 | 1.072 |
Variables | Mixed-Effects Model | Fixed-Effects Model UNIT | Random-Effects Model | |||
---|---|---|---|---|---|---|
Coefficient | p-Value | Coefficient | p-Value | Coefficient | p-Value | |
population | −1.4171 | 0.000 | −1.6393 | 0.000 | −1.3908 | 0.000 |
economy | 0.0228 | 0.000 | 0.0093 | 0.032 | 0.0223 | 0.000 |
land | −0.0104 | 0.001 | −0.0160 | 0.000 | −0.0106 | 0.000 |
social | 2.4717 | 0.000 | 1.4316 | 0.017 | 2.3892 | 0.000 |
fdi | 3.3471 | 0.006 | 3.6885 | 0.001 | 3.4319 | 0.004 |
ft | −0.2232 | 0.002 | 0.0963 | 0.405 | −0.2168 | 0.013 |
rd | 8.8998 | 0.013 | 8.9307 | 0.008 | 8.5783 | 0.003 |
_cons | −0.0376 | 0.041 | 0.7984 | 0.031 | −0.3280 | 0.081 |
Prob > F | 0.0000 | 0.0000 | 0.0000 | |||
R-squared | 0.5653 | 0.5334 | 0.5649 | |||
Adj R-squared | 0.5408 | -- | -- | |||
F-value | 23.04 | 18.45 | -- |
Variables | Excluding Municipalities | Adding Core Explanatory Variables | ||
---|---|---|---|---|
Coefficient | p-Value | Coefficient | p-Value | |
Population | −1.3755 | 0.001 | −1.8222 | 0.000 |
Economy | 0.0099 | 0.037 | 0.0115 | 0.010 |
Land | −0.0184 | 0.001 | −0.0167 | 0.000 |
Social | 1.1609 | 0.081 | 1.0180 | 0.109 |
Ecological | -- | -- | 0.0118 | 0.077 |
Fdi | 5.3132 | 0.000 | 4.6502 | 0.000 |
Rt | 0.1630 | 0.251 | 0.1095 | 0.340 |
Rd | 6.4976 | 0.134 | 11.3404 | 0.002 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bao, L.; Ding, X.; Zhang, J.; Ma, D. Can New Urbanization Construction Improve Ecological Welfare Performance in the Yangtze River Economic Belt? Sustainability 2023, 15, 8758. https://doi.org/10.3390/su15118758
Bao L, Ding X, Zhang J, Ma D. Can New Urbanization Construction Improve Ecological Welfare Performance in the Yangtze River Economic Belt? Sustainability. 2023; 15(11):8758. https://doi.org/10.3390/su15118758
Chicago/Turabian StyleBao, Lingyan, Xuhui Ding, Jingxian Zhang, and Dingyi Ma. 2023. "Can New Urbanization Construction Improve Ecological Welfare Performance in the Yangtze River Economic Belt?" Sustainability 15, no. 11: 8758. https://doi.org/10.3390/su15118758
APA StyleBao, L., Ding, X., Zhang, J., & Ma, D. (2023). Can New Urbanization Construction Improve Ecological Welfare Performance in the Yangtze River Economic Belt? Sustainability, 15(11), 8758. https://doi.org/10.3390/su15118758