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Abstract: This paper proposes new anthropogenic pollen indicators for the Balearic Islands and
attempts to assess gradients of human impact on vegetation in Mediterranean islands. A combination
of modern pollen analogue studies, complemented by phytosociological descriptions and ordination
techniques using quantitative and presence/absence data was used. Redundancy analysis allowed
us to evaluate the relationships between pollen types and significant environmental variables and
propose regional (e.g., Centaurea, Rubus, Plantago lanceolata-t) and local/microregional anthropogenic
pollen indicators (e.g., Cerealia, Poygonum aviculare, Matricaria-t). Additionally, an anthropogenic
index score (AIS) for each sampled location was calculated to correlate each pollen type to a specific
degree of human impact: (a) low (e.g., Cerastium-t, Erica arborea-t, Cistus albidus), (b) moderate (e.g,
Sinapis-t, Sanguisorba minor-t, Plantago bellardii-t), (c) high (e.g., Papaveraceae undiff., Dipsacaceae,
Secale-t). This paper contributes to a further understanding of land-use dynamics and to defining the
degree of impact, which is especially necessary to assess colonization and anthropization rhythms in
Mediterranean island environments.

Keywords: Mediterranean; anthropogenic pollen indicators; palynology; modern analogues; human
impact gradients; mosaic landscape; islands

1. Introduction

The long-term history of human impacts on vegetation and the development of
cultural landscapes have been a major research topic in Europe since the second half
of the 20th century [1]. In this context, anthropogenic pollen indicators (API) and the
indicator-species approach have been valuable tools for understanding human-induced
vegetation changes in the past. Karl-Ernst Behre’s [2] seminal approach proposed a list
of taxa indicators of anthropogenic vegetation types and land use, providing a way to
identify human impact through time via pollen assemblages. While regional and local-
specific anthropogenic pollen indicators have proven to be essential in evaluating human
impacts, classical indicators, such as those proposed by Behre, are still of great value
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and common in the palynological praxis for characterizing main trends in anthropogenic
dynamics recorded on pollen diagrams, especially for detecting ancient human activities
occurring in a forest-dominated environment [3]. Nevertheless, several authors suggest the
necessity of establishing region-specific anthropogenic pollen indicators to further decipher
past human practices through pollen analysis [4]. In this sense, significant research on
modern pollen analogues has been developed in many areas of the world to further
understand source areas (regional vs. local indicators) and human activities, namely pollen
types that are indicators of specific practices such as agriculture or grazing [4–6]. Instead,
Mercuri et al. [7] observed which synanthropic plants are always or recurrently represented
in the historical and prehistoric contexts they studied, being evidence of human presence
and activities in a certain area. While this bioindicator-based approach is common in many
Central and Northern European areas, it has scarcely been applied in the Mediterranean
region. Recent research also proposes new indices such as LUP (agricultural land use
probability) as a general index to assess and quantify human impact intensity on European
ecosystems [8]. Detailed reviews on different human impact indices and ratios have been
published in Deza-Araujo et al. [8,9].

Overall, Mediterranean landscapes are characterized by a mosaic-like landscape struc-
ture, characterized by alternating forests, shrubby vegetation, and open-lands where
a wide range of human activities have traditionally been developed (e.g., forestry, agri-
culture, grazing, mining, etc.). This type of landscape physiognomy in the Mediterranean
region results in highly valuable environments due to its great biodiversity [10–12]. The
origin of mosaic landscapes is linked to the onset of sylvoagropastoral activities during the
Neolithic period, and especially since the mid-Holocene [13,14]. These legacy landscapes
result from long-term sustainable practices through time and require rural landholders to
preserve them [15].

Mediterranean island environments are particularly interesting for the study of
Holocene plant–cultural interactions due to their particular biogeographical and sociocul-
tural histories and because islands are more vulnerable to human and climate-induced
changes [16]. Islands may be considered fragile environments where human impact and
other environmental triggers may cause a tipping point, breaking their resilience status due
to specific evolutionary adaptations that make to island species particularly vulnerable to
human pressure [17]. For instance, the Balearic Archipelago seems to have been settled by
humans relatively late when compared to other Mediterranean islands, with the scholarly
accepted date for human arrival at ca. 2500 cal BC. Moreover, early agropastoral activities
occurring in a context of forested environments and small-scale shifting human activities
are difficult to detect from solely a palynological point of view, and therefore require multi-
proxy and interdisciplinary research to evaluate robust evidence of land use. In this sense, it
has been suggested that the transition “from influence to impact”, during the Late Holocene
and the development of Chalcolithic and Bronze Age cultures (III-II millennium cal BC
for the Balearics), has been detected through pollen analysis in different Mediterranean
contexts [14]. In general, to assess human impact on past environments, especially to
further assess cultural change and island colonization processes in Mediterranean island
environments, it is necessary to obtain reliable bioindicators.

In this paper, we present research on modern pollen analogues conducted in the
Balearic Islands to determine pollen types related to local/microregional and regional
anthropogenic activities, which in turn provide useful indicators of human land use for
Mediterranean and circum-Mediterranean sites. In previous research, we analyzed pollen
–vegetation relationships for specific vegetation types from the Balearic mosaic landscape,
proposing their indicator value and degree of representativity [18]. However, the identi-
fication of anthropogenic pollen indicators still needs an exhaustive evaluation to assess
their role and significance as apophytes in Mediterranean environments. We investigate
the potential indicator value of pollen types to interpret pollen-derived human impact
gradients in Mediterranean island environments.
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2. Study Area

The Balearic Islands are an archipelago located in the Western Mediterranean Sea
formed by a group of 151 islands and islets, with only the four largest being inhabited.
The vegetation of the Balearic Islands is characterized by a mosaic-like pattern (Figure 1)
which results from environmental and anthropogenic dynamics [19]. The climate of the
Balearic Archipelago is typically Mediterranean, with seasonality (dry and hot summers
and maximal rainfall during the autumn season). The highest rainfall is recorded in the
Serra de Tramuntana mountain range (ca. 1500–1400 mm) in Mallorca, while the lowest
values (300–450 mm) are recorded in Formentera [20]. These Mediterranean mosaics
have been constructed through natural and social processes since the middle Holocene
and are best understood using a longue durée perspective [21,22]. Therefore, the Balearic
landscape is primarily composed of heterogeneous forests, shrublands, grasslands, tree
orchards, agricultural, and pastoral areas. The prevalent tree vegetation are evergreen
forests, woodlands, and sclerophyllous shrublands dominated by holm oaks, pins, olive
trees, mastic, and junipers [23]. The primary agropastoral uses are based on dry extensive
farming including annual cereal crops, with dispersed orchards and post-cereal-harvest
livestock grazing [19]. Arboreal cultivars have traditionally been based on fig, olive, carob,
and almond tree agriculture. Since the second half of the 20th century, many coastal areas
have been widely urbanized in response to the tourism boom, and former crop fields and
pastures are used for non-farming and touristic activities [24].
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As a result of this long-term, co-dependent relationship between people and ecosys-
tems, Balearic landscapes and vegetation are well adapted to human-caused disturbances,
such as the preference or tolerance of sclerophyllous dry-adapted species for grazing envi-
ronments [25,26] (Figure 2). The spread of garrigues and maquis during the Late Holocene
seems to be correlated to both drier climate conditions and an increase in agropastoral
activities [22]. Vegetation community distribution may be explained through heteroge-
neous environmental conditions and different degrees of impact. Some synanthropic
communities include Urtico membranaceae-Smyrnietum olusatri A. & O. Bolòs in O. Bolòs &
Molinier 1958, Resedo albae-Chrysanthemetum coronarii O. Bolòs & Molinier 1958 or Reichardio
gracilis-Stipetum capensis Costa & Loidi 1992 corr. [23], while key synanthropic taxa from the
Balearic landscape include Centaurea cyanus L., Asphodelus fistulosus L., Diplotaxis erucoides
(L.) DC, Galactites tormentosa Moench or Plantago lanceolata L. Vegetation community distri-
bution may be explained through heterogeneous environmental conditions and different
degrees of impact. Synanthropic vegetation is broadly present in the archipelago, including
communities of Artemisietea vulgaris Lohmeyer, Preising & Tüxen ex von Rochow 1951
and Stellarietea medie Tüxen, Lohmeyer & Preising ex von Rochow 1951 classes, xerophytic
grasslands of the Lygeo-Stipetea Rivas-Martínez 1978 class or meadow grasslands communi-
ties of Molinio-Arrhenatheretea Tüxen 1937 [23]. In addition to some export of synanthropic
taxa to other neighboring natural communities with the characteristic mosaic vegetation
arrangement of the Balearic Islands, there are species that intrude deeply as companions of
plant formations favored by human disturbances; we highlight taxa such Asphodelus aestivus
Brot., Arisarum vulgare Targ.-Torz., Carlina corymbosa L., or Plantago lanceolata L. Additionally,
many non-native species are listed in Balearic botanical research on natural vegetation com-
munities, resulting from intentional and unintended anthropogenic introduction [26–28],
which are clearly favored by human activities. Nevertheless, it is still difficult to discern
between archaeophytes and neophytes in the current state of botanical-paleoenvironmental
research integration.
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Figure 2. Example of several landscape types from the Balearic Islands: (A) xeric thyme-garrigue
coastal vegetation (frigolar) from the Pytiusic Islands; (B) holm oak formations from the Serra
de Tramuntana (Mallorca); (C) Rumex pasture in a ravine wetland from Barranc de Trebalúger
(Menorca); (D) mountain olive orchards from the Serra de Tramuntana (Mallorca); (E) aerial view of
a mosaic landscape with macchia and crop fields (north-eastern Mallorca); (F) aerial view of extensive
agricultural fields from the interior of Mallorca.

3. Materials and Methods

Our methods rely on a combination of vegetation surveys, high-morphological resolu-
tion pollen identification and numerical analyses to propose anthropogenic indicators to
evaluate long-term Holocene human impacts and environmental sustainability in Mediter-
ranean island environments. Further details of fieldwork, laboratory treatment and the
selection of environmental variables are reported in Servera-Vives et al. [18].

3.1. Fieldwork

Fifty-six modern pollen samples were collected within the main islands of the Balearic
Archipelago: Mallorca, Menorca, Eivissa, Formentera and Cabrera, in 2016 and 2018 [18].
The locations were chosen to document the heterogeneity of major vegetation types of the
Balearic mosaic-like landscapes in relation to a wide range of human activities and an-
thropization intensity. The studied samples consisted of moss cushions, as they may record
several years of pollen rain on the sampling location [29,30]. Surface sedimentary samples
were collected when local environmental constraints prevented the moss cushions from
growing [31]. At least 5 moss cushions or surface sedimentary samples were combined into
one sample from each sampling point and phytosociological descriptions were conducted
in a 100 m2 square using the Braun-Blanquet [32] system.

3.2. Environmental Variables

Environmental variables were recorded at each sampling site to explore the modern
pollen–vegetation–anthropization relationship. Additional variables were also acquired
through regional and international geospatial databases of landcover and other landscape
metrics. A total of 34 environmental variables were collected for each sampling point,
including vegetation type, meteorology, soil, landscape openness, fire activity, topography,
landscape metrics and land use information. Detailed information for all environmental
variables is described in Table S1 of the Supplementary Material.

3.3. Pollen Analysis

Both moss cushions and surface sedimentary samples were collected to perform pollen
analyses on the current pollen rain. Pollen samples were dried overnight. While moss
samples were treated following the standard procedures in palynology, including KOH,
200-µm sieving and acetolysis [33,34], surface sedimentary samples were analyzed using
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a 7-µm nylon handheld sieve and heavy-liquid separation. Pollen counts and identification
were performed using a 400×, 600× and 1000× light microscope. Pollen percentages are
based on pollen sum, excluding Pinus due to its overrepresentation. The taxonomic identifi-
cation of pollen grains was based on pollen atlases [35,36], morphological keys [37,38] and
the pollen reference collection of the Laboratorio di Palinologia e Paleobotanica (Università
degli Studi di Modena e Reggio Emilia). In this work, cereals are recognized as Poaceae
pollen grains with diameter larger than 40 µm, a pore annulus ≥ 12 µm [34] and scabrate
exine decoration [35,39].

3.4. Statistical Analysis
3.4.1. Data Preparation and Statistical Software

A total of 63 pollen types were selected from all modern pollen sampling locations
based on their role as potential anthropogenic indicators, as identified in the specialized
literature (see, e.g., [2,4,6–9,40,41]). A square-root transformation was applied to the
selected data to reduce the influence of the most abundant taxa, following Ejarque et al. [6],
López-Sáez et al. [42] and Servera-Vives et al. [18]. All data transformations, analyses
and visualizations were performed using R, version 4.2.0 [43], the vegan package, version
2.6-4 [44] and the ggplot2 package version 3.4.0 [45].

3.4.2. Redundancy Analysis (RDA) of Pollen Taxa and Environmental Variables

Ordination techniques were used to evaluate the relationship between modern pollen
sampling sites, selected pollen taxa and the environmental variables recorded at each
sampling site. Detrended correspondence analysis (DCA) was performed to determine the
most appropriate ordination techniques for these data, following Smilauer and Lepš [46],
Ejarque et al. [6], López-Sáez et al. [47] and others. The resulting gradient length of the
selected pollen dataset was 2.58 standard deviation of species turnover units, indicating
that a linear ordination method, such as redundancy analysis, is suitable for these data.
Additionally, the numerous environmental variables compiled for this analysis (n = 48)
increases the likelihood of multicollinearity among each of these predictors, which in turn
can obscure relationships between all variables. Variance inflation factors (VIF) were calcu-
lated for all environmental variables to assess redundancy in our measures. Environmental
variables with VIF values greater than 20.0 were considered highly collinear and removed,
leaving eight variables for redundancy analysis. The RDA of pollen, sites, and environ-
mental variables was conducted using a combination forward/backward stepwise model
selection, after which ANOVA permutation tests were performed to identify the influential
of each predictor on the structure of the pollen dataset. Pearson’s correlation coefficients
(r) were calculated to evaluate the relationship between pollen taxa and each environmen-
tal variable using the orthogonal linear combinations of the explanatory variables from
the RDA.

3.4.3. Constructing the Anthropogenic Intensity Score (AIS) for Sample Sites

We evaluate the degree of anthropization at each sample site by creating an anthro-
pogenic intensity score (AIS), which accounts for the values of the most influential environ-
mental variables at each site, as identified through the RDA. The steps in creating the AIS
are outlined below:

(1) At each sample site, the values of the 8 most influential environmental variables were
compiled and transformed to equalize the magnitude of each measure. For example,
agropastoral use is a binary variable with values ranging from 0 to 1, while herbivory
pressure is an ordinal variable with values ranging from 0 to 2. To give both variables
equal magnitude in constructing the AIS, the values of the agropastoral use variable are
multiplied by 2 to match the range of values of the herbivory pressure variable. This
logic was applied to all variables in our dataset.

(2) The resulting values of each environmental variable were weighted by the p-values
calculated by the ANOVA permutation tests applied to the results of the RDA,
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following Equation (1). Weighting these variables gave the more influential en-
vironmental predictors greater effect in determining the AIS than less influential
environmental variables.

Weighted Variable = Trans f ormed Variable × (1 − p − value) (1)

(3) Weighted environmental variables were then summed for each sample site to create
a raw anthropogenic intensity score value.

(4) The final AIS was calculated by rescaling the raw anthropogenic intensity values for
each site to a 0 to 1 index, with 1 representing the highest anthropogenic intensity
score and 0 the lowest anthropogenic intensity score.

3.4.4. Evaluating Anthropogenic Indicator Gradients

Final anthropogenic intensity scores were ranked by dividing the values into three equal
quantiles to represent low (0.00–>0.33), moderate (≤0.33–>0.66) and high (≤0.66–1.00) degrees
of anthropogenic influence on vegetation communities at each sample site (Figure 1). Pollen
taxa were then summed by their abundance (%) in sample sites belonging to each AIS
quantile rank category. Principal components analysis (PCA) and a biplot were used to
visually illustrate species abundance by AIS rank.

The relationship between each pollen taxon and AIS rank category provides infor-
mation on its strength as a potential indicator of diverse anthropogenic activities in the
fossil pollen record. We constructed an initial categorization of the taxa that are the most
correlated to high, moderate and low AIS using K-means clustering (K = 4) of the summed
pollen taxa by gradient category. Four clusters were used to group these data to allow
for taxa that were weakly correlated with high, moderate and low AIS to be captured in
an intermediate category. While K-means provides a general indicator of a pollen taxon’s
relationship to anthropogenic activities, it does not specifically evaluate a taxon’s indicator
strength. Subsequently, each pollen taxon’s indicator strength was evaluated by mapping
its distance in the PCA factorial plane to an “idealized” taxon that is perfectly correlated
with either high, moderate or low AIS values. The distances between taxa and the idealized
taxon were calculated and scaled between 0 and 1, which illustrates the indicator strength
of each taxon for its AIS group. These values were then displayed as a color gradient in
a PCA biplot and in a series of silhouette plots for each group. Finally, pollen sums of key
ruderal and nitrophilous taxa were plotted in the PCA biplot as supplementary passive
variables (e.g., Plantago SUM) to assess the potential role of some pollen aggregations in
lower taxonomic resolution than pollen types as potential API. This is especially important
to be able to evaluate human impact through pollen analysis in on-site sedimentary records,
where palynomorph’s preservation generally do not allow high taxonomic resolution [7,48].

Additionally, the local/microregional vs. regional indicator value of each pollen type
was evaluated by considering the Davis [49] and fidelity/dispersibility [50,51] indices
obtained in Servera-Vives et al. 2022. More specifically, in this paper, local vs. regional
indicators are proposed either considering pollen types classed as strongly associated taxa
(SAT) or associated taxa (AT) in the Davis indices calculation or high fidelity (>50) + low
dispersibility (<50) values. Davis indices and fidelity/dispersibility indices were calculated
for all taxa based on their presence or absence in both the pollen and observed vegetation
datasets [18].

4. Results
4.1. Pollen Type-Environmental Variables Correlation

Pearson’s correlation coefficients (r) and redundancy analysis values indicating moder-
ate to high (>0.5) correlation between pollen types and environmental variables are shown
in Table 1. Pasture area (sqm) and landscape openness show similar correlations with PC1
and PC2 and includes comparable pollen types such as Papaveraceae undiff., Dipsacaceae,
Vitis and Trifolium-t. Distance to forest shows the highest correlation with Plantago cf.
crassifolia, Verbascum-t, Cistus salviifolius and Hornungia-t, while agropastoral use correlates



Sustainability 2023, 15, 8807 8 of 19

with Avena-Triticum-group, Plantago lanceolata-t, Rubus and Galium-t. Here, we also propose
potential local/microregional and regional indicators based on fidelity/dispersibility, and
Davis indices obtained in Servera-Vives et al. [18] and discussed in Section 5.1. Poten-
tial local indicators of open and anthropized habitats include Poaceae undiff., Polygonum
aviculare-t, Avena/Triticum-group, Matricaria-t, and Urtica dioica-t.

Table 1. List of taxa showing positive Pearson correlation r values higher than 0.5 to significant envi-
ronmental variables. The list of pollen types is listed in decreasing correlation order for each category,
while the order of environmental variables follows the RDA p-values. Local indicators vs. regional
are proposed either considering pollen types classed as SAT or AT in the Davis indices calculation
or high fidelity (>50) + low dispersibility (<50) values resulting from Servera-Vives et al. [18]. Taxa
linked to the agropastoral use variable are highlighted in bold in the text.

Regional Indicators Local/Microregional Indicators

Distance to forest

Plantago cf. crassifolia, Verbascum-t,
Hornungia-t, Plantago coronopus-t, Lotus-t,
Apiaceae, Plantago bellardii-t, Centaurea

jacea-t, Linaria-t, Chenopodiaceae,
Brassicaceae SUM

Cistus salviifolius, Artemisia

Pasture area

Papaveraceae undiff, Dipsacaceae, Vitis,
Trifolium-t, Plantago sp., Cirsium-t,

Senecio-t, Cichorieae, Brassicaceae SUM,
Chenopodiaceae, Rumex, Carduus-t,
Apiaceae, Sinapis-t, Lotus-t, Plantago

albicans, Plantago coronopus-t, Hornungia-t,
Plantago major/media, Echium, Centaurea

Poaceae undiff., Polygonum aviculare-t,
Cerealia SUM, Matricaria-t, Urtica dioica-t

Landscape openness

Trifolium-t, Vitis, Papaveraceae undiff,
Dipsacaceae, Plantago sp., Cirsium-t,

Senecio-t, Brassicaceae SUM,
Chenopodiaceae, Cichorieae, Apiaceae,

Lotus-t, Rumex, Plantago coronopus-t,
Carduus-t, Sinapis-t, Hornungia-t, Plantago

albicans

Poaceae undiff., Polygonum aviculare-t,
Cerealia SUM, Matricaria-t

Agropastoral use
Plantago lanceolata-t, Rubus, Galium-t,
Caryophyllaceae undiff., Centaurea,

Echium, Plantago major/media
Avena/Triticum-group

List of potential local/microregional
indicators of anthropized habitats

Poaceae undiff., Polygonum aviculare-t, Avena/Triticum-group, Cerealia SUM,
Matricaria-t, Urtica dioica-t

List of potential regional indicators of
anthropized habitats

Plantago lanceolata-t, Rubus, Galium-t, Caryophyllaceae undiff., Centaurea,
Echium, Plantago major/media, Papaveraceae undiff, Dipsacaceae, Vitis, Trifolium-t,

Plantago sp., Cirsium-t, Senecio-t, Cichorieae, Brassicaceae SUM, Chenopodiaceae,
Rumex, Carduus-t, Apiaceae, Sinapis-t, Lotus-t, Plantago albicans,

Plantago coronopus-t, Hornungia-t

4.2. Redundancy Analysis (RDA)

After the calculation of VIF to test for collinearity, a total of eight environmental
variables were retained for redundancy analysis. The two first RDA axes explain a total
of 18.63% of the variance within the dataset. Forward–backward selection results in three
statistically significant environmental variables (p-value ≤ 0.05), namely distance to forest,
pasture size (square meters) and landscape openness. While less significant, agropastoral
use shows noticeable importance in structuring our dataset, while trampling, fire, distance
to urban and herbivory pressure demonstrate low significance (Table 2).



Sustainability 2023, 15, 8807 9 of 19

Table 2. ANOVA permutation test results for the environmental variables selected for the RDA using
the forward/backward method for stepwise model selection. Significant p-values (≤0.05) appear in
bold. Significance codes: 0.001 = “**”, 0.05 = “*” and 0.05 = “·”

Environmental
Variable Df Variance F p-Value

Herbivory pressure 1 0.35 0.83 0.603

Agropastoral use 1 0.72 1.69 0.057·
Trampling 1 0.50 1.18 0.230

Landscape openness 1 0.73 1.72 0.036 *

EFFIS Fire Occurrence 1 0.51 1.21 0.250

Distance to urban 1 0.28 0.65 0.803

Distance to forest 1 1.09 2.56 0.009 **

Pasture area 1 0.96 2.25 0.021 *

The first RDA axis shows a gradient from closed to open environments (Figure 3). It
contrasts most of the sites, from maquis, garrigues, oak forest and Buxus formations demon-
strating positive values to coastal saltmarshes, some anthropized habitats, dune habitats
and wet pastures in tall humid grassland and freshwater riverine scrubs showing negative
values on the axis. The second RDA axis is most related to anthropogenic environments,
with garrigues and maquis demonstrating positive values and oak forest, box formations
and coastal salt environments with negative values. Pollen types in the negative RDA1 and
positive RDA2 values quadrant (upper left) are related to pastoral activity (pasture square
meters and agropastoral use) and landscape openness. In this sense, Plantago lanceolata-t,
Cichorieae, Avena/Triticum-group, Plantago albicans, Rumex, Plantago sp. and, to a lesser
extent, Hordeum-t, Cistus monspeliensis, Asphodelus, Erica arborea-t, Matricaria-t and Sinapis-t
are correlated to agropastoral use. Other taxa placed in the negative RDA1 and RDA2 axis
values (lower left quadrant), such as Verbascum-t, Plantago cf. crassifolia and Plantago corono-
pus-t, are related to open areas (distance to forest) and, less significatively, to trampling.
Ranunculaceae undiff. Artemisia, Linaria-t and Erica arborea seem to be correlated with fire
occurrence (lower right quadrant), and Plantago SUM and Plantago afra to distance to urban
areas and herbivory pressure (upper right quadrant).

4.3. K-means Clustering and Unconstrained PCA with Anthropogenic Impact Gradient Categories

K-means clustering was used to create four groups to describe the types and intensity
of anthropogenic activities characterizing the sample sites, which we have termed (i) low,
(ii) moderate, (iii) high and (iv) intermediate anthropogenic impacts. (i) The first group is
comprised of indicators of low-levels of anthropogenic impacts on vegetation and includes
a total of 10 pollen types, such as Erica, Cerastium-t and Medicago. (ii) Moderate impact
indicators are represented by a group of 15 pollen types, including Sinapis-t, Sanguisorba
minor-t and Plantago bellardii-t. (iii) High anthropogenic impact indicators include 12 pollen
types, such as Papaveraceae, Dipsacaceae and Secale-t. (iv) The final group of taxa are
not clearly associated with a specific degree of human impact, and include a total of
24 pollen types (e.g., Galium-t, Urtica dioica-t., Cistus, etc.). Pollen sums of key botanic genera
and families, also included in this analysis, are for instance sums (SUM) of Brassicaceae,
Cerealia-t and Plantago, which may be considered good indicators of high human pressure,
while Erica SUM is well represented in low impact habitats. The results obtained from
K-means clustering are plotted in an unconstrained PCA, where pollen types are drawn
as observations and the degrees of impact obtained by the AIS calculation are plotted as
variables (Figure 4A). To give more details about the performance of each pollen type
within each group, a complementary PCA showing the indicator strength is also shown
(Figure 4B). An extensive list of K-means clustering for each impact degree category is
presented in Figure 5.
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5. Discussion
5.1. Identifying Local/Microregional and Regional Anthropogenic Pollen Indicators

The anthropogenic indicators for the Balearic Islands can be identified based on results
obtained from redundancy analysis and Pearson correlation results (Figure 3 and Table 1).
The correlation between pollen types and three variables (landscape openness, pasture
size and agropastoral use) from our study is especially useful for proposing anthropogenic
pollen indicators. Interestingly, Plantago lanceolata-t, Avena/Triticum-group, Rubus, Galium-t,
Caryophyllaceae undiff., Centaurea, Echium and Plantago major/media are the pollen types
with the best performance as agropastoral indicators, as shown by the moderate/high cor-
relation with “agropastoral use”. Other taxa, such as Poaceae undiff., Polygonum aviculare-t,
Matricaria-t, Papaveraceae undiff, Dipsacaceae, Vitis, Trifolium-t, Plantago sp., Cirsium-t,
Urtica dioica-t, Senecio-t and Cichorieae, are more correlated with large pastures and the
degree of landscape openness.

Other heliophilous taxa such as Verbascum-t, Plantago cf. crassifolia, Plantago coronopus-t
and Chenopodiaceae are correlated to high values of the distance to forest variable, suggest-
ing their preference for open environments. These taxa are especially abundant in samples
from coastal, salt-tolerant and dune vegetation in our study, where salt and soil compaction
are frequent. In this sense, while not statistically significant, trampling appears correlated to
these taxa. Plantago crassifolia pollen is included within the P. coronopus-t [52]. As the P. cras-
sifolia plant mostly grows as a halophyte on shore marshlands [53,54], Plantago coronopus-t
must be interpreted carefully as an API in coastal paleoenvironmental records [18,22]. This
is the same for Chenopodiaceae. Species from this family are salt-tolerant but they are also
frequent in ruderal and nitrophilous environments. Nevertheless, its overrepresentation in
the modern pollen rain from the Balearic Islands hinders its consideration as an API, when
not accompanied by other APIs in pollen assemblages.

A detailed list of potential regional and local indicators is shown in Table 1 and
Figure 4. This list is based on the fidelity/dispersibility and Davis indices obtained in
Servera-Vives et al. [18] and the statistical work presented in this work. Potential local
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indicators of open and anthropized habitats include Poaceae undiff., Polygonum aviculare-t,
Avena/Triticum-group, Matricaria-t and Urtica dioica-t. Otherwise, pollen types identified as
potential regional indicators include Plantago lanceolata-t, Rubus, Galium-t, Caryophyllaceae
undiff., Centaurea, Echium and Plantago major/media. Modern analogue research carried
out in mountain areas such as the Pyrenees also highlighted that Plantago lanceolata-t
and Plantago major/media indicate regional human activity [4]. Even though Poaceae are
anemophilous taxa, the high association values in the Davis indices suggest a good plant–
pollen association, as has been recorded in similar research [4,6,55,56].

5.2. Pollen Types Related to Different Degrees of Human Impact Intensity

Despite the many studies on modern pollen analogues that have been carried out
to understand how pollen types respond to specific human practices, attempts to specify
pollen’s role in differentiating the degree of human impacts has not yet been explored
systematically. Consequently, we explored the potential of pollen indicators to evaluate
the degree of human impacts based on an ad hoc AIS index and statistical analysis on
modern pollen data from the Balearic Islands (Figures 4 and 6). This work provides insights
into comprehensive pollen indicators that may also be applied to other Mediterranean
island environments.

1 
 

 Figure 6. Artistic illustration showing selected pollen types associated with low, moderate, and high
human impact degree. An exhaustive list of pollen types for the anthropogenic impact gradient
appears in Figure 5.

The group of indicators most related to environments with low anthropogenic impacts
aggregates several Ericaceae pollen types (Erica sp., Erica arborea-t, Erica cf. multiflora),
as well as Cerastium-t, Medicago and Rubia. Ericaceae pollen curves have regularly been
related to early successional vegetation and high fire frequency in pollen analysis from the
Mediterranean region [22,57,58]. This may be due to the adaptation of many species of this
family to regular fire disturbance through developing lignotubers that allow resprouting
after burning [59,60]. In the Balearic Islands, all three Erica species are currently present in
the landscape, including E. multiflora L., E. arborea L. and E. scoparia L., present lignotubers
and are common in sclerophyllous maquis and garrigues formations [59–61]. Erica pollen
may be considered a local pollen indicator (associated taxa) with low dispersibility and
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strong fidelity in the Balearic Islands [18]. Moderate to high values of Erica pollen types
can be associated with repeated burning for pastoral activities [58].

Moderate human impact indicators include Cistus pollen types (C. salvifolius and C.
monspeliensis), several Plantago types (P. cf. crassifolia, P. bellardii-t and P. albicans-t), several
Asteroideae types (Centaurea, C. jacea, Carduus-t, Cirsium-t and Matricaria-t), Verbascum-t,
Phlomis and Sanguisorba minor. Centaurea and Plantago types are among the most frequent
taxa recorded in Italian archaeopalynological studies, proving their value as cultural pollen
indicators [7], and they are both interpreted as pastoral indicator with increased prevalence
in grazed areas [5,62]. This study suggests that Sinapis-t and Matricaria-t are also likely
important agropastoral indicators that should be considered in addition to Centaurea and
Plantago types. Balearic Verbascum species are recurrent in croplands and roadsides, and
therefore Verbascum pollen type may be also considered an API based on our research.
Matricaria-t includes five plant species recorded during the Braun-Blanquet descriptions,
among which three develop in ruderal and agricultural environs, namely Anthemis arvensis
L., Chrysanthemum segetum L. and Glebionis coronaria (L.) Cass ex Sprach. In previous
modern analogue research from the Balearic Islands [18], Matricaria-t pollen values higher
than 1% were only found in crop fields and pastures. Similarly, Sinapis-t has also previously
been considered an indicator of weed flora in other modern analogue studies [5], and its
role as a cultural indicator is confirmed by the results of both RDA and PCA analyses
presented here.

Indicators of high human impact include 12 pollen types: Papaveraceae undiff., Dip-
sacaceae, Secale-t, Polygonum aviculare-t, Trifolium-t, Centaurea nigra-t, Cerealia SUM, Rumex,
Plantago coronopus-t, Plantago SUM, Lotus-t and Brassicaceae SUM. All these pollen types
are frequently referred to as cultural pollen indicators in modern pollen analogue research
(e.g, [5–7]. The family of Dipsacaceae includes several synanthropic taxa in the Balearic
Islands such as Centranthus calcitrapae (L.) Dufresne and Scabiosa atropurpurea L., both of
which were reported in the Braun-Blanquet descriptions collected during the fieldwork.
Centranthus and Dipsacaceae pollen were reported with greater values in sites categorized
as high impact in the AIS classification. Although Dipsacaceae is not usually considered
an anthropogenic pollen indicator, RDA and PCA results suggest it is most related to
sites with high AIS values and that it should be considered an indicator of high levels of
anthropization. Moreover, Dipsacaceae pollen has also been related to human practices in
other palynological research [62–64].

Brassicaceae is also an indicator of high human impact in this study and are commonly
related to human-induced environments in pollen-analytic studies [65], but the highest
values are related to cultivated fields in modern analogue research [62]. Interestingly,
Brassicaceae pollen types are found in high abundance in prehistoric settlements and
funerary archaeological sites from the Balearics [21,66], suggesting that humans interacted
with Brassicaceae plants through both propagation and cultural uses due to their economic,
dietary and symbolic value. In the historical period, Brassicaceae have been found in
stratigraphies from the ancient imperial harbors of Rome [67,68] and Naples [69], as well
as in rural contexts in Sicily [70]. These taxa have been interpreted as evidence for crop
cultivation of cabbage during the Roman period, as attested to by classical authors (e.g.,
Pliny the Elder) or for oil extraction, as is documented by recovered macroremains [71].

Cereal pollen types are confirmed to be good indicators of both human impact and
agropastoral uses by ordination techniques. Secale-t and Cerealia SUM (Avena/Triticum-
group + Secale-t + Cerealia-t) are related to high impact, but Avena/Triticum-group is in-
cluded in the intermediate indicator category. Nevertheless, its scores in the two first axes
of the constrained PCA were between high and moderate impact, suggesting that this
pollen type may potentially be related to both moderate and high impact sites. In this
sense, the RDA logically confirms Avena/Triticum-group as a good indicator of agropastoral
activities. Both Plantago SUM and P. coronopus pollen types are included in the high impact
category. As explained previously, Plantago cf. crassifolia pollen is included within the
P. coronopus type, being the first classed as a moderate impact indicator, therefore pointing
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out that these pollen taxonomical classifications may be associated with cultural activities,
especially when they are associated with other anthropogenic pollen indicators.

Finally, the intermediate impact category includes pollen types that are difficult to
assign to a specific degree of AIS. This is likely caused by the ubiquity of such taxa in all
the studied sites. This should not be understood as their lack of value as anthropogenic
pollen indicators, but rather that they should be considered general indicators of a vari-
ety of anthropogenic activities. In this sense, some pollen types clearly associated with
agropastoral use in the RDA, such as Urtica dioica-t or Plantago lanceolata-t, do not perform
well as reliable indicators for detecting human impact gradients. The intermediate group
includes well known API based both on palynological and ecological knowledge. For
instance, Plantago lanceolata-t, Avena/Triticum-t and Cichorieae are included in this general
category, but much pollen-analysis research has proved their strong value in detecting
human impact [5,8]. Plantago lanceolata-t has commonly been used as an anthropogenic
pollen indicator in several palynological analyses, especially in North European areas [2]
while the interpretations of low values in Mediterranean and circum-Mediterranean areas
should be considered carefully [4,6]. Plantago species are found in ruderal habitats subjected
to soil compaction, therefore being related to human and herd presence [7].

5.3. Reflection on Pollen Morphology Resolution and Productive Cultural Practices

In the palynological interpretations, the co-occurrence of several anthropogenic in-
dicators is needed to detect human impacts on vegetation. Indeed, our interpretations
should rely on the accurate integration of off-site bio-indicators (e.g., pollen, non-pollen pa-
lynomorphs, charcoals, diatoms, etc.) with archaeobotanical, historical and archaeological
data. Disregarding such important sources of information would diminish our ability to un-
derstand the inter-relationship between landscape processes and human behavior through
time. Nevertheless, pollen morphology is a complex task and occasionally it is not possible
to achieve the high-resolution level needed to link pollen types to specific environments or
human practices [5,9,62]. This is particularly true in archaeopalynological research, where
taphonomy and post-depositional processes amplify the increased deterioration of some
palynomorphs, resulting in the frequent morphological identification limited to genus or
family-level morphological identifications.

Nevertheless, despite the fact that the species level would always be suitable for
palaeoecological reconstruction, this does not mean that lower taxonomical levels (family,
subfamily, genus, etc.) cannot be valuable anthropogenic pollen indicators. In this study,
we include some morphological aggregations such as Brassicaceae or Plantago SUM, which
perform even better than the pollen type taxonomic level in the ordination analysis. Another
taxon performing well as API is Cichorieae, a tribe of the sub-family Cichorioideae included
in the Asteraceae family. Cichorieae has proven to be an indicator of secondary pastures
and some types of primary open habitats in the Mediterranean area [41]. In the constrained
PCA and k-means clustering, it is included in the intermediate category, but based on the
scores on the first PCA axis it seems to be related both to medium and high human impact.
Furthermore, Cichorieae in the RDA is clearly linked to larger pastures and agropastoral
use. Caryophyllaceae undiff. is also linked to agropastoral use, but not manifestly linked
to a determinate degree of landscape impact. Otherwise, other family-level morphological
classifications such as Ranunculaceae undiff. do not seem to be clearly associated with either
human impact gradients or specific environmental variables in the ordination analysis.

6. Conclusions

This paper constitutes the first proposal of anthropogenic pollen indicators for the
Balearic Islands, and a new attempt to assess the human-impact gradient in Mediterranean
islands. To do so, we used a combination of modern pollen analogues, phytosociological
descriptions and ordination techniques employing quantitative and presence/absence data.
Redundancy analysis allowed us to evaluate the relation of pollen types to significant
environmental variables, from which we devised an anthropogenic index score (AIS) for
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each site based on the degree to which it exhibited the most impactful anthropogenic
environmental variables.

Comparing the redundancy analysis data and the pollen representation indices
(Davis’ and fidelity dispersibility indices) used in previous research [18], we proposed
local/microregional and regional anthropogenic indicators that will allow us to further
spatialize human activities during the Holocene. Local/microregional indicators of human
activities are Poaceae undiff., Polygonum aviculare-t, Avena/Triticum-group, Cerealia SUM,
Matricaria-t and Urtica dioica-t, while regional indicators are Plantago lanceolata-t, Rubus,
Galium-t, Caryophyllaceae undiff., Centaurea, Echium, Plantago major/media among others.
Additionally, we identified indicators of low anthropogenic impact (i.e., Erica, Cerastium-t
and Medicago); moderate anthropogenic impact, (i.e., Sinapis-t, Sanguisorba minor-t Plantago
bellardii-t); and high anthropogenic impact (i.e., Papaveraceae, Dipsacaceae and Secale-t).
Some taxa are not clearly related to specific impact gradients, such as Galium-t, Urtica
dioica-t. and Cistus, and have been classified as intermediate anthropogenic indicators
through this study. Our research also confirmed that lower taxonomical levels in the pollen
analysis (genera or family) may also be good indicators of human activities, as for instance
with Brassicaceae, Plantago SUM or Cichorieae.

Some potential limitations of our research are that current human activities are not
easily and directly comparable to those that took place in the past. Therefore, when
constructing general indices, possible biases must be considered. In this sense, quality and
resolution of environmental variable datasets can also make the interpretation of pollen
type-environmental variable correlations difficult. To tackle this issue, it is mandatory
to generate narratives on past landscape dynamics, socioenvironmental interactions and
anthropization intensity by putting anthropogenic indicators in a broader context including
other palaeoecological, historical and archaeological information.

This research may have implications for the environmental, archaeological and palaeoe-
cological fields. As insights into modern pollen analogues provide new perspectives on
pollen–vegetation relationships, this paper extends this understanding by leveraging land-
use dynamics as a means to define the degree of anthropogenic impact in these landscapes.
This process is especially necessary to assess colonization and anthropization rhythms in
Mediterranean island environments. The novel methods applied through this study can
also be applied to further interdisciplinary research pertaining to environmental restoration
and management that are interested in assessing anthropogenic drivers of change in areas
with differing ecological and cultural histories. Forthcoming research will further apply
the results presented here to more fully understand Holocene anthropogenic dynamics in
the Balearic Islands.
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