Analysis of Spatiotemporal Evolution Patterns and Driving Forces of Reservoirs on the Northern Slope of the Tianshan Mountains in Xinjiang
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources and Methodology
2.3. Methods for Extracting Reservoir Information
2.4. Spatial and Temporal Change Analysis Model of Reservoirs
2.5. Analysis of the Drivers of Change in Reservoirs
3. Results
3.1. Temporal Changes in Reservoirs in the NSTM
3.2. Spatial Changes in Reservoirs in the NSTM
3.3. Analysis of the Driving Forces of Spatiotemporal Changes in Reservoirs on the NSTM
3.3.1. Differentiation and Factor Detection
3.3.2. Interaction Detection
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shinohara, R.; Tanaka, Y.; Kanno, A.; Matsushige, K. Relative impacts of increases of solar radiation and air temperature on the temperature of surface water in a shallow, eutrophic lake. Hydrol. Res. 2021, 52, 916–926. [Google Scholar] [CrossRef]
- Woolway, R.I.; Weyhenmeyer, G.A.; Schmid, M.; Dokulil, M.T.; de Eyto, E.; Maberly, S.C.; May, L.; Merchant, C.J. Substantial increase in minimum lake surface temperatures under climate change. Clim. Chang. 2019, 155, 81–94. [Google Scholar] [CrossRef]
- Li, X.; Wang, X.; Babovic, V. Analysis of variability and trends of precipitation extremes in Singapore during 1980–2013. Int. J. Climatol. 2018, 38, 125–141. [Google Scholar] [CrossRef]
- Li, X.; Zhang, K.; Gu, P.R.; Feng, H.T.; Yin, Y.F.; Chen, W.; Cheng, B.C. Changes in precipitation extremes in the Yangtze River Basin during 1960–2019 and the association with global warming, ENSO, and local effects. Sci. Total Environ. 2021, 760, 13. [Google Scholar] [CrossRef] [PubMed]
- Singh, V.; Jain, S.K.; Shukla, S. Glacier change and glacier runoff variation in the Himalayan Baspa river basin. J. Hydrol. 2021, 593, 17. [Google Scholar] [CrossRef]
- Terrier, S.; Bieri, M.; Jordan, F.; Schleiss, A.J. Impact of glacier shrinkage and adapted hydropower potential in the Swiss Alps. Houille Blanche-Rev. Int. 2015, 101, 93–101. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, Z.J.; Shi, P.J.; Singh, V.P.; Gu, X.H. Evaluation of ecological instream flow considering hydrological alterations in the Yellow River basin, China. Glob. Planet. Chang. 2018, 160, 61–74. [Google Scholar] [CrossRef]
- Lai, Y.; Zhang, J.; Song, Y.; Cao, Y. Comparative Analysis of Different Methods for Extracting Water Body Area of Miyun Reservoir and Driving Forces for Nearly 40 Years. J. Indian Soc. Remote Sens. 2020, 48, 451–463. [Google Scholar] [CrossRef]
- Lai, Y.Q.; Zhang, J.; Song, Y.Y.; Li, W.W. Analysis of reservoir environment evolution from 2000 to 2020: A case study in the Guanting Reservoir, China. Ecol. Indic. 2022, 134, 13. [Google Scholar] [CrossRef]
- Li, J.F.; Wang, J.W.; Yang, L.Y.; Ye, H.P. Spatiotemporal change analysis of long time series inland water in Sri Lanka based on remote sensing cloud computing. Sci. Rep. 2022, 12, 9. [Google Scholar] [CrossRef]
- Lehner, B.; Liermann, C.R.; Revenga, C.; Vörösmarty, C.; Fekete, B.; Crouzet, P.; Döll, P.; Endejan, M.; Frenken, K.; Magome, J.; et al. High-resolution mapping of the world’s reservoirs and dams for sustainable river-flow management. Front. Ecol. Environ. 2011, 9, 494–502. [Google Scholar] [CrossRef]
- Donchyts, G.; Winsemius, H.; Baart, F.; Dahm, R.; Schellekens, J.; Gorelick, N.; Iceland, C.; Schmeier, S. High-resolution surface water dynamics in Earth’s small and medium-sized reservoirs. Sci. Rep. 2022, 12, 13776. [Google Scholar] [CrossRef] [PubMed]
- Du, B.J.; Wang, Z.M.; Mao, D.H.; Li, H.Y.; Xiang, H.X. Tracking Lake and Reservoir Changes in the Nenjiang Watershed, Northeast China: Patterns, Trends, and Drivers. Water 2020, 12, 1108. [Google Scholar] [CrossRef]
- Wang, R.M.; Pan, L.; Niu, W.H.; Li, R.M.; Zhao, X.Y.; Bian, X.Q.; Yu, C.; Xia, H.M.; Chen, T.Z. Monitoring the spatiotemporal dynamics of surface water body of the Xiaolangdi Reservoir using Landsat-5/7/8 imagery and Google Earth Engine. Open Geosci. 2021, 13, 1290–1302. [Google Scholar] [CrossRef]
- Luo, L.; Mao, D.H.; Wang, Z.M.; Zhang, B.; Ren, C.Y.; Jia, M.M. Analysis of dynamics and driving forces of lakes and reservoirs in western Songnen Plain. Trans. Chin. Soc. Agric. Eng. 2015, 31, 285–291. (In Chinese) [Google Scholar]
- Xu, Y.X.; Lian, Y.; Chen, X.M.; Mo, X.Q.; He, M.X. Temporal and spatial variation characteristics of the water body of Beidagang Reservoir and the driving force factors. J. Tianjin Norm. Univ. (Nat. Sci. Ed.) 2021, 41, 55–62. (In Chinese) [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Phan, T.N.; Kuch, V.; Lehnert, L.W. Land Cover Classification using Google Earth Engine and Random Forest Classifier-The Role of Image Composition. Remote Sens. 2020, 12, 2411. [Google Scholar] [CrossRef]
- Venkatappa, M.; Sasaki, N.; Anantsuksomsri, S.; Smith, B. Applications of the Google Earth Engine and Phenology-Based Threshold Classification Method for Mapping Forest Cover and Carbon Stock Changes in Siem Reap Province, Cambodia. Remote Sens. 2020, 12, 3110. [Google Scholar] [CrossRef]
- Luijendijk, A.; Hagenaars, G.; Ranasinghe, R.; Baart, F.; Donchyts, G.; Aarninkhof, S. The State of the World’s Beaches. Sci. Rep. 2018, 8, 11. [Google Scholar] [CrossRef]
- Donchyts, G.; Baart, F.; Winsemius, H.; Gorelick, N.; Kwadijk, J.; van de Giesen, N. Earth’s surface water change over the past 30 years. Nat. Clim. Chang. 2016, 6, 810–813. [Google Scholar] [CrossRef]
- Pekel, J.F.; Cottam, A.; Gorelick, N.; Belward, A.S. High-resolution mapping of global surface water and its long-term changes. Nature 2016, 540, 418. [Google Scholar] [CrossRef] [PubMed]
- Allen, G.H.; Pavelsky, T.M. Global extent of rivers and streams. Science 2018, 361, 585–587. [Google Scholar] [CrossRef] [PubMed]
- Ye, Q.H.; Liu, G.H.; Tian, G.L.; Chen, S.L.; Huang, C.; Chen, S.P.; Liu, Q.S.; Chang, J.; Shi, Y. Geospatial-temporal analysis of land-use changes in the Yellow River Delta during the last 40 years. Sci. China Ser. D-Earth Sci. 2004, 47, 1008–1024. [Google Scholar] [CrossRef]
- Li, Z.L.; Bagan, H.; Yamagata, Y. Analysis of spatiotemporal land cover changes in Inner Mongolia using self-organizing map neural network and grid cells method. Sci. Total Environ. 2018, 636, 1180–1191. [Google Scholar] [CrossRef]
- Maimaitijiang, M.; Alimujiang, K. Spatial-temporal change of Urumqi urban land use and land cover based on grid cell approach. Trans. Chin. Soc. Agric. Eng. 2018, 34, 210–216. (In Chinese) [Google Scholar]
- Bagan, H.; Yamagata, Y. Analysis of urban growth and estimating population density using satellite images of nighttime lights and land-use and population data. GISci. Remote Sens. 2015, 52, 765–780. [Google Scholar] [CrossRef]
- Chu, L.; Sun, T.C.; Wang, T.W.; Li, Z.X.; Cai, C.F. Evolution and Prediction of Landscape Pattern and Habitat Quality Based on CA-Markov and InVEST Model in Hubei Section of Three Gorges Reservoir Area (TGRA). Sustainability 2018, 10, 3854. [Google Scholar] [CrossRef]
- Zhang, Z.P.; Xia, F.Q.; Yang, D.G.; Huo, J.W.; Wang, G.L.; Chen, H.X. Spatiotemporal characteristics in ecosystem service value and its interaction with human activities in Xinjiang, China. Ecol. Indic. 2020, 110, 105826. [Google Scholar] [CrossRef]
- Duan, S.B.; Li, Z.L. Spatial Downscaling of MODIS Land Surface Temperatures Using Geographically Weighted Regression: Case Study in Northern China. IEEE Trans. Geosci. Remote Sens. 2016, 54, 6458–6469. [Google Scholar] [CrossRef]
- Zhang, J.; Yu, L.; Li, X.C.; Zhang, C.C.; Shi, T.Z.; Wu, X.Y.; Yang, C.; Gao, W.X.; Li, Q.Q.; Wu, G.F. Exploring Annual Urban Expansions in the Guangdong-Hong Kong-Macau Greater Bay Area: Spatiotemporal Features and Driving Factors in 1986–2017. Remote Sens. 2020, 12, 16. [Google Scholar] [CrossRef]
- Liu, Y.; Cao, X.; Li, T. Identifying Driving Forces of Built-Up Land Expansion Based on the Geographical Detector: A Case Study of Pearl River Delta Urban Agglomeration. Int. J. Environ. Res. Public Health 2020, 17, 1759. [Google Scholar] [CrossRef] [PubMed]
- Fan, S.D.; Liu, Z.H.; Zhu, M.B.; Zhang, M.M. Time series change and influencing factors of land use in Guangzhou city based on geodetector. Southwest China J. Agric. Sci. 2022, 35, 2276–2289. (In Chinese) [Google Scholar] [CrossRef]
- Wang, J.F.; Xu, C.D. Geodetector: Principle and prospective. Acta Geogr. Sin. 2017, 72, 116–134. (In Chinese) [Google Scholar]
- Li, J.; Liu, Y.; Liu, S.Y.; Peng, Z.X.; Wu, T. Main problems and countermeasures of reservoir dam construction in Xinjiang in the new period. Arid Land Geogr. 2020, 43, 1409–1416. (In Chinese) [Google Scholar]
- Guo, P.C.; Bao, A.M.; Yi, Q.X.; Wang, X.J.; Wang, Q.; Bai, Z.L. Water Footprint Characteristics in Evolution of Oasis and Desertification in an Arid Area—A Case Study of the Northern Slope of Tianshan Mountains, Xinjiang Wei Autonoumos. Bull. Soil Water Conserv. 2012, 32, 171–176. (In Chinese) [Google Scholar] [CrossRef]
- Chen, J.; Cao, L. Spatiotemporal Variability in Water-Use Efficiency in Tianshan Mountains (Xinjiang, China) and the Influencing Factors. Sustainability 2022, 14, 8191. [Google Scholar] [CrossRef]
- Xinjiang Yearbook; Xinjiang Yearbook Press: Urumqi, China, 2018; pp. 353–421. (In Chinese)
- Liu, J.T.; Li, Y.X.; Zhang, Y.; Liu, X.Q. Large-Scale Impervious Surface Area Mapping and Pattern Evolution of the Yellow River Delta Using Sentinel-1/2 on the GEE. Remote Sens. 2023, 15, 136. [Google Scholar] [CrossRef]
- He, S.T.; Wang, D.J.; Zhao, P.; Li, Y.; Lan, H.J.; Chen, W.L.; Jamali, A.A. A review and prospects of debris flow waste-shoal land use in typical debris flow areas, China. Land Use Pol. 2020, 99, 105064. [Google Scholar] [CrossRef]
- Jamali, A.A.; Tabatabaee, R.; Randhir, T.O. Ecotourism and socioeconomic strategies for Khansar River watershed of Iran. Environ. Dev. Sustain. 2021, 23, 17077–17093. [Google Scholar] [CrossRef]
- Hou, J.B.; Zhen, X.K.; Wang, M.; Wang, M.; Shang, Y.X.; Song, K.S. Remote Sensing Information Extraction and Pattern Analysis of Reservoirs in Northeast China. Wetl. Sci. 2017, 15, 582–587. (In Chinese) [Google Scholar] [CrossRef]
- Bagan, H.; Yamagata, Y. Land-cover change analysis in 50 global cities by using a combination of Landsat data and analysis of grid cells. Environ. Res. Lett. 2014, 9, 13. [Google Scholar] [CrossRef]
- Yi, W.; Guo-hua, B.; Qing-yuan, Y.; Zhao-lin, W. Analyzing land use characteristics of rural settlements on the urban fringe of Liangjiang New Area, Chongqing, China. J. Mt. Sci. 2016, 13, 1855–1866. [Google Scholar]
- He, Z.Y.; Song, S. Temporal and spatial variations of reservoirs in China and their effect analysis in the past 30 years. J. Guangzhou Univ. (Nat. Sci. Ed.) 2020, 19, 75–87. (In Chinese) [Google Scholar]
- Xu, Z.N.; Gao, X.L. A novel method for identifying the boundary of urban built-up areas with POI data. Acta Geogr. Sin. 2016, 71, 928–939. (In Chinese) [Google Scholar]
- Li, Q.; Wu, J. Factors affecting the lower limit of the safe mud weight window for drilling operation in hydrate-bearing sediments in the Northern South China Sea. Geomech. Geophys. Geo-Energy Geo-Resour. 2022, 8, 82. [Google Scholar] [CrossRef]
- Li, Q.; Wang, F.; Wang, Y.; Zhou, C.; Chen, J.; Forson, K.; Miao, R.; Su, Y.; Zhang, J. Effect of reservoir characteristics and chemicals on filtration property of water-based drilling fluid in unconventional reservoir and mechanism disclosure. Environ. Sci. Pollut. Res. 2023, 30, 55034–55043. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Liu, Y.; Wu, T.; Peng, Z.X. 70 years of dam construction in Xinjiang. J. China Inst. Water Resour. Hydropower Res. 2020, 18, 322–330. (In Chinese) [Google Scholar] [CrossRef]
- Wang, Y.; Shi, R.Y.; Qiao, C.L. Evaluation of Water Resources Carrying Capacity Based on Fuzzy Comprehensive Evaluation Method in Northern Slope Economic Belt of Tianshan Mountains. Bull. Soil Water Conserv. 2018, 38, 206–212. (In Chinese) [Google Scholar] [CrossRef]
- Sun, G.L.; Lu, H.Y.; Yu, M.Z.; Yan, X.R.; Zheng, X.; Zhang, Y.M. Ecological vulnerability spatial-time distribution and driving forces analysis in the economic belt on the northern slope of Tianshan Mountains. Southwest China J. Agric. Sci. 2022, 35, 2161–2170. (In Chinese) [Google Scholar] [CrossRef]
- Deng, M.J.; Yu, H.M.; Li, X.Q.; Xu, K.N. Dam construction progress in Xinjiang. Water Resour. Hydropower Eng. 2010, 41, 29–35. (In Chinese) [Google Scholar] [CrossRef]
- Deng, M.J. Studies on water resources strategy in Xingjiang. China Water Resour. 2009, 17, 23–27. (In Chinese) [Google Scholar]
Date | Sources | Number |
---|---|---|
1990 | LANDSAT/LT05/C02/T1_L2 | 354 |
1995 | LANDSAT/LT05/C02/T1_L2 | 254 |
2000 | LANDSAT/LT05/C02/T1_L2 | 301 |
2005 | LANDSAT/LT05/C02/T1_L2 | 293 |
LANDSAT/LE07/C02/T1_L2 | 13 | |
2010 | LANDSAT/LT05/C02/T1_L2 | 188 |
2015 | LANDSAT/LC08/C01/T1_SR | 487 |
2020 | LANDSAT/LC08/C01/T1_SR | 482 |
PA/% | UA/% | OA/% | Kappa | ||
---|---|---|---|---|---|
Area < 1 km2 | water | 96.74 | 95.96 | 96.27 | 0.9253 |
No-water | 95.77 | 96.59 | |||
1 km2 ≤ area < 10 km2 | water | 98.63 | 96.77 | 97.42 | 0.9477 |
No-water | 95.92 | 98.26 | |||
Area ≥ 10 km2 | water | 97.90 | 98.41 | 98.08 | 0.9587 |
No-water | 99.09 | 96.37 |
Category | Variables | Driver Indicators | Indicator Description |
---|---|---|---|
Socio-economic factors | S1 | GDP | Level of development |
S2 | Average population | Demographic factors | |
S3 | Cultivate land area | The degree of water required | |
Topographical factors | T1 | Average elevation | Elevation conditions |
T2 | Average slope | Slope conditions | |
T3 | River network density | Water system conditions |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Y.; Liu, B.; Yang, G.; Du, Y.; Huang, H.; Wang, T.; Wang, J. Analysis of Spatiotemporal Evolution Patterns and Driving Forces of Reservoirs on the Northern Slope of the Tianshan Mountains in Xinjiang. Sustainability 2023, 15, 8824. https://doi.org/10.3390/su15118824
Sun Y, Liu B, Yang G, Du Y, Huang H, Wang T, Wang J. Analysis of Spatiotemporal Evolution Patterns and Driving Forces of Reservoirs on the Northern Slope of the Tianshan Mountains in Xinjiang. Sustainability. 2023; 15(11):8824. https://doi.org/10.3390/su15118824
Chicago/Turabian StyleSun, Yinglin, Bing Liu, Guang Yang, Yongjun Du, Hejiaolong Huang, Ting Wang, and Jun Wang. 2023. "Analysis of Spatiotemporal Evolution Patterns and Driving Forces of Reservoirs on the Northern Slope of the Tianshan Mountains in Xinjiang" Sustainability 15, no. 11: 8824. https://doi.org/10.3390/su15118824
APA StyleSun, Y., Liu, B., Yang, G., Du, Y., Huang, H., Wang, T., & Wang, J. (2023). Analysis of Spatiotemporal Evolution Patterns and Driving Forces of Reservoirs on the Northern Slope of the Tianshan Mountains in Xinjiang. Sustainability, 15(11), 8824. https://doi.org/10.3390/su15118824