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Abstract: Stockyard–port planning is a complex combinatorial problem that has been studied
primarily through simulation or optimization techniques. However, due to its classification as non-
deterministic polynomial-time hard (NP-hard), the generation of optimal or near-optimal solutions in
real time requires optimization techniques based on heuristics or metaheuristics. This paper proposes
a deterministic simulation and a meta-heuristic algorithm to address the stockyard–port planning
problem, with the aim of reducing the time that ships spend in berths. The proposed algorithm is
based on the ore handling operations in a real stockyard–port terminal, considering the interaction
of large physical equipment and information about the production processes. The stockyard–port
system is represented by a graph in order to define ship priorities for planning and generation of an
initial solution through a deterministic simulation. Subsequently, the Variable Neighborhood Descent
(VND) meta-heuristic is used to improve the initial solution. The convergence time of VND ranged
from 1 to 190 s, with the total number of ships served in the berths varying from 10 to 1000 units,
and the number of stockyards and berths varying from 11 to 15 and 3 to 5, respectively. Simulation
results demonstrate the efficiency of the proposed algorithm in determining the best allocation of
stockpiles, berths, car-dumpers, and conveyor belts. The results also show that increasing the number
of conveyor belts is an important strategy that decreases environmental impacts due to exposure
of the raw material to the atmosphere, while also increasing the stockyard–port productivity. This
positive impact is greater when the number yards and ship berths increases. The proposed algorithm
enables real-time decision-making from small and large instances, and its implementation in an iron
ore stockyard–port that uses Industry 4.0 principles is suitable.

Keywords: stockyard–port allocation system; iron ore; deterministic simulation; Variable
Neighborhood Descent

1. Introduction

The most competitive logistic companies are those whose supply chains adapt to
changes with the greatest speed and flexibility [1]. To effectively deal with a competi-
tive market, supply chains are adopting the Industry 4.0 (I4.0) concept using the main
technological innovations in the fields of automation, control, and information technol-
ogy in manufacturing processes. From connected systems like cyber physics, Internet
of Things, and Internet of Services, supply chains tend to become even more efficient,
autonomous, and personalized [2,3]. Smart supply chains are characterized by optimal
decision-making based on mathematical analysis of data, artificial intelligence, machine
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learning, and simulation-based approaches [4,5]. According to Ferreira et al. [6], there has
been an increasing trend in the number of publications on simulation in I4.0. They suggest
that digital twin and hybrid simulations, which represent a combination of optimization
and computer simulations, are the most promising approaches for I4.0 due to their ability to
capture principles related to integration, real-time capability, flexibility, real-time solutions,
autonomy, and optimization [7,8]. Indeed, optimization and hybrid simulation models can
be used to assist in decision-making quickly before implementation in real supply chains [6].
A natural extension in the use of hybrid simulation models is to evaluate several alternative
scenarios in order to obtain the best performance of the supply chain [9]. In addition to
the economic benefits, optimization can also help reduce environmental impacts, energy
costs, and violations of regulations, and can assist in the most efficient way to deal with
uncertainties in both production and customer orders [10].

However, the mining industry supply chain has critical strategic issues involving
railways, ports, and long-distance maritime shipping [11]. Before reaching a cargo ship,
the mining materials traverse stockyards with well-planned operations in order to avoid
impairments in ship delivery. This means that a stockyard represents a bottleneck in
the chain and significantly influences the mining logistic chain performance [12]. The
main processes considered in stockyard–port planning are the arrival of the wagons to the
dumpers, the routes that help in the stacking and recovery of ore, the stacking and recovery
process, and the loading of ships. Therefore, the operational efficiency of the stockyard–
port requires that the flow of ore in each process is carried out quickly and without
interruption, at the same time as the ships are loaded with the quantity and quality of ore
requested by customers. The implementation of efficient logistic practices and inventory
management strategies in the stockyard–port planning, utilizing optimization techniques,
can reduce dock time for ships, increase the operational efficiency of ports, and decrease
the environmental impacts due to the transport time reduction of the raw material exposed
to the atmosphere. This, in turn, can positively impact the carbon footprint of freight
transport. Furthermore, the integration of I4.0 principles can contribute to sustainability
efforts by reducing resource and energy consumption, improving the transparency and
efficiency of industrial processes.

1.1. Related Work

Several studies related to stockyard–port planning using deterministic optimization
techniques have been proposed in the last decade. Ago et al. [13] proposed a Mixed-Integer
Linear Programming (MILP) model with Lagrangian decomposition and coordination
techniques to simultaneously optimize the storage allocation and transportation routing
at the raw materials yard. Servare et al. [14] developed a MILP (see Table 1) model and
a linear relaxation-based heuristic to minimize the energy costs of an iron ore stockyard,
including the production of mines and the demands of the berth. The authors of [15,16]
proposed integer programming models with greedy construction and enumeration to
optimize stockyard management, whereas Hanoun et al. [17] formulated a bi-objective
model for stockyard planning with resource scheduling. In [18,19], Belov et al. introduced a
constraints programming model with a large neighborhood search that considers reclaimer
scheduling and vessel arrivals.

Savelsbergh and Smith [20] proposed a tree search algorithm for stockyard plan-
ning that utilizes space-time diagram geometric properties of coal stockyard planning.
Menezes el al. [21] presented a mathematical model to control the stockyard–port system,
which includes receipt through a rail system, stockyard equipment allocation, and avail-
ability at the port, taking into account production quantities, prices, and demands. The pro-
posed solution was based on column generation with branch and price. Moreno et al. [22]
proposed several variants of MILP models to optimize a combined version of open-pit mine
production scheduling with stockyard planning. Discrete event simulation models applied
in the stockyard–port planning can be found in [23], in which the authors evaluated the
value of different production plans with respect to some performance function of interest.
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Xiao-ping et al. [24] proposed a simulation model of the conveyor network system of a
surface mine, and van Vianen et al. [25] performed a discrete event simulation to redesign
a conveyor belt network.

In [26], a metaheuristic optimization was presented for complex iron ore and coal
chains with integrated operations from raw material extraction to the market. The opti-
mization takes into account total revenue, cost, productivity, contractual penalties and
bonuses, and energy consumption, considering the entire chain as a dynamic structure
due to changes in commodity markets. Gao [27] studied the problem of sequencing ships
based on the contract of a steel plant that receives iron ore, coal, and stone. The model
was formulated as a mixed integer scheduling problem and solved by column generation,
minimizing the total demurrage costs within a given planning time horizon. The results
were compared with CPLEX to verify the effectiveness of the methodology. In [28], storage
space was allocated in a yard considering unloading, stacking, and recovery operations,
through a Mixed Integer Problem (MIP) formulation. An approach based on Benders
decomposition was applied to decompose the problem and solve it efficiently and quickly.

Silva et al. [29] addressed the problem of mixing stocks in a nickel mine, formulating
an optimization problem using MILP to minimize the total mass target, the deviations from
grade targets, and the number of used stockpiles. In computational experiments, optimal
solutions were found in a few seconds. Tang [30] investigated the allocation of storage
space in stockyards at iron ore terminals with mixed ore. The MIP model minimized the
total distance of iron ore displacement, and a genetic algorithm was also used to efficiently
obtain near-optimal solutions. Computational experiments showed that large instances
were solved almost optimally in just a few seconds. Finally, Leal et al. [11] presented a
review of operational research in the mining industry. They described applications isolated
from the chain first and thereafter connecting subsystems of the mining chain. They
indicated that stochastic models involving environmental issues and artificial intelligence
can be used to solve more complex problems.

Based on the presented literature review, it is clear that the stockyard–port planning
problem is a complex combinatorial problem that has been studied primarily through
mathematical programming techniques with limitations related to the size of data instances.
Thus, we identified that the gap to be filled is to solve large input instances while consider-
ing a long planning horizon in a few seconds. In this article, we propose the combination
of a simulation tool for stockyard–port operations with a VND metaheuristic to efficiently
allocate stacks and ships in the port’s berth, minimizing the total time of equipment op-
erations in the stockyard, from train cars unloading at the terminal to ore loading onto
the ships.

Table 1. Acronyms and programming techniques (important related references are also shown).

Acronym Explanation Ref.

CB Conveyor Belt -
CD Car Dumper -

IOSpT Iron Ore Stockyard-Planning Terminal [14]
MILP Mixed-Integer Linear Programming [13,14,29]
MIP Mixed-Integer Programming [28,30]
RE Reclaimer -
SR Stacker–Reclaimer -
ST Stacker -
SY Stockyard -
SB Ship Berth -

VND Variable Neighborhood Descent [31], this work
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1.2. Formulation of the Iron Ore Stockyard Planning Terminal Problem

The main goal of the work described in this paper is to solve the problem of stockpile
allocation in a stockyard–port with general characteristics. The problem consists of opti-
mizing the configuration of the stockyard and berth equipment and choosing the routes for
transporting iron ore and for determining the positions for the ore piles in the stockyard.
Additionally, it includes the definition of the berths for ships in order to minimize the total
time spent on stockyard operations, such as stacking and reclaiming processes of ore piles
and their loading on ships. Therefore, the optimization problem was formulated as follows:

• Objective Function: minimizing the elapsed time between the port’s first ship arrival
and the completion of the transshipment operation of the last ship leaving the port;

• Constraints: the lengths and velocity of the stacking and reclaiming conveyor belts,
and the number and volume of stockyards used for stacking and reclaiming.

1.3. Contributions

As contributions of this work, we highlight:

• The design of abstracted graph representations to capture the main concepts of a real
stockyard–port system;

• The graph representation that allows a robust and effective implementation of a VND
metaheuristic that optimizes the stockyard–port NP-hard planning problem;

• The proposal of a novel, flexible, and fast Deterministic Simulation Algorithm (DSA)
to generate solutions and calculate the objective function;

• A description of a hybrid method combining the VND metaheuristic with the DSA.
The hybrid method was used to determine the minimum total time spent to complete
the stockyard–port planning process;

• The application of the hybrid approach to analyze a real stockyard–port system, using
real data from its conveyor belts, stockpiles, berths, and ships.

The remainder of this paper is divided as follows. Section 2 provides the characteristics
of the stockyard–port system, Sections 3 and 4 describe the simulation algorithm and
the VND metaheuristic applied to an Iron Ore Stockyard-Planning Terminal (IOSpT).
Sections 5 and 6 present the computational results and conclusions, respectively.

2. Features of the Stockyard–Port System

This section describes the functionality and features of the idealized IOSpT presented
in Figure 1. The port is specifically dedicated to the exportation of iron ore and has three
berths. The stockyard–port system comprises several subsystems, including an unloading
terminal with five car dumpers (CDs), several pelletizing plants, stockyards for the inputs
used in the pelletizing process, eleven stockyards (SYs) for the allocation of stockpiles,
ship berths (SBs), and equipment associated with these processes, such as stackers (STs),
reclaimers (REs), stackers–reclaimers (SRs), and shiploaders. The stacking equipment
consists of nine units, of which three are hybrids (SRs that can stack and reclaim materials),
eight are reclaimers, and three are the same hybrids used in the stacking process. The
stackers interact with the car dumpers, with the conveyor belt (CB) that runs from the
unloading terminal to the stockyards, as well as with the stockyards. The reclaimers serve
the stockyards and the conveyor belt, where the stockpiles are reclaimed and transported
from the stockyards to the piers. Stackers and reclaimers move to reach the piles in their
positions in the stockyards.
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Figure 1. Graphical representation of the idealized Iron Ore Stockyard-Planning Terminal (IOSpT).

2.1. Iron Ore Unloading Terminal

At the beginning of the process, iron ore is transported from the mines to the terminal
by rail cars towed by a locomotive. When the locomotives arrive at the unloading terminal,
the wagons are unloaded by equipment called car-dumpers [32]. In the IOSpT, there are
five car-dumpers (CD), and each one has a handling capacity of 8000 tons per hour. Each
car-dumper receives one wagon at a time, unloading the ore onto a conveyor belt. The
ore is then conveyed by belts to the stockyards, which are composed of eleven ore deposit
areas with a total capacity of m3 capable of storing up to 10.5 million tons [14].

2.2. Stockyards

Stockyards are spaces for storing stockpiles. There are 11 stockyards in the IOSpT
divided into 2 areas, as shown in Figure 1. Stockpiles are stored on a first-come, first-
served basis.

2.3. Stockpiles

Stockpiles correspond to the products stored in the stockyards and have different sizes.
They can be handled using stackers and reclaimers. The material-handling equipment
represents the conveyor belts with their deviations and connections, both for the stacking
of the stockpiles and for their reclaiming. The handling material equipment comprises the
station and the conveyor belts with their deviations and connections for the stacking of
the stockpiles and for their reclaiming. Similar to the work described in [33], we consider
two types of conveyor belts with different capacities. The daily operating period must be
respected when a conveyor belt is used in order to avoid damage. Thus, a conveyor belt
with a capacity of 8000 tons per hour, with 8 hours of work per day, supports an amount of
64,000 tons of ore per day.

2.4. Routes

Routes are paths (vectors of conveyor belts) that interconnect processes in the port
logistics chain such as from car-dumpers to stockyards and from stockyards to berths.

2.5. Stacking

The operation of stacking the iron ore stockpile consists of adding a product to a par-
ticular stockpile or empty space that is carried out by a stacker. The products, transported
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afterward by the conveyor belts, are stacked, forming stockpiles in the stockyards. The
stacker allocates iron ores since the conveyor belt is not at its daily working limit, or since
the capacity of the stockyard location is not extrapolated. If the stacker works in more than
one stockyard and one of the stockyards overflows, it allocates the rest of the products
to another stockyard. If the other stockyard also extrapolates, the stacker waits until the
stockyards and the conveyor belt are ready to proceed with the stacking.

2.6. Reclaiming

This consists of removing material or product from a specific stockpile made by bucket
wheel reclaimers. SRs are also used to reclaim hybrid stockpiles. After the placement of
the stockpiles in the stockyard, the ship is allowed to enter the berth. Once docked, the
stockpile reclaimed for boarding is immediately calculated. The product is transported for
boarding via routes from the stockyards to the berths. Reclaiming is also done by respecting
the capacity of the conveyor belts transporting the products for shipment. If the conveyor
belt reaches its daily working limit, it is disabled, and reclaiming is interrupted. Reclaiming
is done stockpile by stockpile. The first reclaimed stockpile is the first to be loaded onto
the ship. After the last stockpile is loaded on the ship, it is released from the berth. Then,
historical information about this ship is obtained, such as the moment the stacking starts,
the moment the ship berths, the beginning of the ship’s reclaiming, and the departure of
the ship. This history is used to calculate the total time specified in the objective function.

2.7. Berths

A ship may dock at the pier only after its respective iron ore stockpiles have been
formed in the stockyard. The mooring at the pier has to be according to the ship’s capacity.
Therefore, before starting the reclaiming of the stockpiles for a ship, it must dock at a pier
that has characteristics to support the relevant size of the ship.

2.8. Ships

The first step in planning a ship’s boarding at a port is to appoint it, which consists
of specifying which ship should arrive and when. After the appointment, the port’s
planning and programming teams already know which product should be made available
for boarding the ship, which allows for an availability check of this product at the port
and, eventually, makes it a transport priority along the entire route (from the loading of the
cargo on the railroad, to the unloading of the wagons in the port, and then to the loading
of the ships). With the ship’s arrival at the port, a mooring order is issued [34]. After this
operation, the docking and loading of the product follow. In this work, three types of ships
were used: Panamax, Capesize, and Valemax . The type of vessel is defined by its product
storage capacity in tons. The piers have capacities equivalent to those of the types of ships
supported by the IOSpT. Therefore, we can state that, in the SB1, ships are moored up to
the Capesize type, and in the SB2, they are moored up to the ultra-large crude carrier type,
without extrapolating the 330,000 tons of ore; otherwise, they will dock at SB3.

3. The Developed Simulation Algorithm

In this work, we used programming techniques based on the graph representation [35]
and queue concepts to implement the algorithm proposed to solve the iron ore stockyard
planning and berth allocation in a port terminal. Simulation data were obtained according
to the following procedures:

• Identify the technical reports with relevant information such as the characteristics and
operational data of the stockyard–port system;

• Use electronic spreadsheets for data mining of technical reports;
• Validate the extracted data according to comparison with other sources of information,

and verify consistency and precision;
• Generate data input files in the proper format to be used in the developed simula-

tion software;



Sustainability 2023, 15, 8970 7 of 20

• Compare the data obtained in the simulation with the information extracted from the
technical report to validate the model;

• Perform additional analysis to identify trends or patterns in the simulation results.

In the following, we describe the proposed deterministic simulation algorithm, as well
as the VND deployed to improve their solutions.

3.1. The Proposed Deterministic Simulation Algorithm

Given the set of ships Qn with their demands and types; the set of berths Qb; the set
of stockyards Qp with their capacities; the set of conveyor belts Qe with their routes; the
lengths, speed, and daily capacities; and the configuration of stockyards and berths CPB
(stockyards available to stack and reclaim, and types of ships that can be moored in each
berth), the DSA outputs the routes for transporting iron ore, the positions for the ore piles in
the stockyard, the moment the stacking starts, the moment the ship berths, the beginning of
the ship’s reclaiming, and the departure of the ship such that all ship demands are satisfied
and the conveyor belts’ and stockyards’ capacities and availability are respected.

The sequence of ships’ demands Dm(Qn) defines the amount of ore ordered by each
vessel. The amount of ore ordered also defines the vessel type. If an order has 390,000 tons
of ores, it is a Valemax type ship, referred to as string “Va”. If an order contains 180,000 tons
of ore, it is a Capesize type vessel, referred to as string “Ca”. The same reasoning goes for
the Panamax type ship, referred to as string “Pa”. The algorithm handles the demands in
an arbitrary order given by the input file; that is, the algorithm builds a queue of ships
according to how the set of ships appears in the input file instance. The algorithm applies
the queue First In–First Out (FIFO) method, where the first ship’s demand in the queue
is the first to be loaded. For each ship, the algorithm runs when assigning the routes
for transporting the iron ore demanded, the positions to place the iron ore piles in the
stockyard, the moment the stacking starts, the moment the ship berths, the beginning of
the ship reclaiming, and the moment ship departs. The configuration and restrictions of the
conveyor belts and stockyards define the transportation routes, stockyard positions, and
the moment of stacking. The moment of ship berths is set immediately after all the iron
ore of a ship is allocated in the stockyard. After ship mooring, the reclaiming is allowed
to begin, and the operation performs until the shipment is finished. A ship can depart
immediately after the last pile is recovered.

In the DSA, a fixed and constant number of five car-dumpers is used in the unloading
terminal, which receives the wagons of the train one at a time, unloading them on a
conveyor belt. The discharge follows the order of the stockpile as defined by the algorithm.
The algorithm also considers a fixed capacity of 10,000 tons for stockpiles. Each train carries
a number of wagons equivalent to 1 stockpile, that is, 10,000 tons.

The other physical means to be taken into account for the port system are conveyor
belts. The conveyor belts connect the car-dumpers with the stockyards and the stockyards
with the berths, forming routes for the traffic of the stockpiles. Therefore, we create a
graph representing physical means and distances between paths. In the graph, the turners,
stockyards, and berths are the vertices, and the edges are the conveyor belts. Due to the
scarcity of information, the lengths of the conveyor belts in the input instances are calculated
randomly through a normal distribution with an average of 1000 m and standard deviation
of 500 m. For the belts, we stipulate an average speed of around 32 Km/h. Thus, the
transportation time (T) is calculated by dividing the length (S) by the speed (V). Knowing
the length of the conveyor belts and their speed, the DSA creates a weighted adjacency
matrix filled with the transportation times in hours (h) from a stockpile for each conveyor
belt, as shown in Table 2. Table 2 shows an example of the above-mentioned matrix,
considering a terminal with one set of CD, 11 stockyards (see Figure 1) represented by the
letters A, B, C, D, E, F, G, H, I, J, and K, and 3 berths denoted as SB1, SB2, and SB3.
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Table 2. Weighted matrix of stacking and reclaiming times (h).

CD A B C D E F G H I J K SB1 SB2 SB3

CD 0 0.025 0.046 0.025 0.024 0.045 0.02 0.046 0.046 0.045 0.046 0.038 0 0 0
A 0.025 0 0 0 0 0 0 0 0 0 0 0 0.024 0.024 0.024
B 0.046 0 0 0 0 0 0 0 0 0 0 0 0.027 0.027 0.027
C 0.025 0 0 0 0 0 0 0 0 0 0 0 0.050 0.050 0.050
D 0.024 0 0 0 0 0 0 0 0 0 0 0 0.031 0.031 0.031
E 0.045 0 0 0 0 0 0 0 0 0 0 0 0.030 0.030 0.030
F 0.02 0 0 0 0 0 0 0 0 0 0 0 0.034 0.034 0.034
G 0.046 0 0 0 0 0 0 0 0 0 0 0 0.053 0.053 0.053
H 0.046 0 0 0 0 0 0 0 0 0 0 0 0.022 0.022 0.022
I 0.045 0 0 0 0 0 0 0 0 0 0 0 0.016 0.016 0.016
J 0.046 0 0 0 0 0 0 0 0 0 0 0 0.051 0.051 0.051
K 0.038 0 0 0 0 0 0 0 0 0 0 0 0.025 0.025 0.025

SB1 0 0.024 0.027 0.050 0.031 0.030 0.034 0.053 0.022 0.016 0.051 0.025 0 0 0
SB2 0 0.024 0.027 0.050 0.031 0.030 0.034 0.053 0.022 0.016 0.051 0.025 0 0 0
SB3 0 0.024 0.027 0.050 0.031 0.030 0.034 0.053 0.022 0.016 0.051 0.025 0 0 0

At port terminals, conveyor belts differ in terms of daily work capacities. In the
proposed algorithm, the conveyor belt that reaches its limit is disabled. As an illustrative
example, we can consider a case in which conveyor belts support 8000 tons per hour and
others 16,000. The conveyor belts with a capacity of 8000 tons per hour support an amount
of 80,000 tons of ore, with 10 h of work per day. In the input instances files, capacities are
distributed at random due to a lack of related information. Knowing the conveyor belt
parameters, the DSA defines the routes for stacking and reclaiming the stockpiles. Stackers
allocate stockpiles one at a time according to the order of the queue of ships, respecting the
conveyor belt’s daily capacity and the stockpile capacity. Through the variables described
above, the times related to the operations of the conveyor belts from the car-dumpers to
the stockyards and from the stockyards to the berths are well defined. Consequently, we
can plan the total time spent in the terminal, from the first ship to the last.

After all ships’ stockpiles are formed in the stockyard, the ship docks at the berth and
begins reclaiming from the related initial stockpile as placed in the stockyard. The stockpile
is loaded onto the ship immediately after being reclaimed, regardless of the loading method.
The ship is unberthed immediately after the last pile is recovered. In the DSA, there are
some rules for the end of the day, as described in Table 3, where: “NA” means not available,
“c” means continue with the planning, and “r/e” stands for ending the day and updating
the positions in the matrix of the reclaiming and stacking belts’ capacities to the values at
the beginning of the system.

The rules consider several situations regarding the capacity of conveyor belts and
ships to carry out the planning. For example, the end of the working day (r/e) occurs when
a ship is able to enter the berth (Ships = 1), the conveyor belts from the car-dumpers to the
stockyards are disabled (CR/SY = 0), conveyor belts from stockyards to berths are available
(SY/SB = 1), and berths cannot receive ships (berths = 0). In this example, an impasse is
reached, being unable to stack or reclaim. Thus, the working day is over.

The strategy used to implement the minimization of the objective function is to
systematically change configurations of the stockyards and berths using the proposed VND
metaheuristic. These configurations affect how the deterministic simulation algorithm
assembles the solution to the problem and, consequently, changes the value of the objective
function. Therefore, the DSA requires one more input, with the configuration settings
of the current stockyards and berths represented as a vector named CPB. The CPB is
obtained by joining a stockyard configuration vector and a berth configuration vector.
The stockyard configuration vector indicates which stockyards are available to stack and
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reclaim stockpiles. The berth configuration vector defines which type of ship can be moored
in each berth.

Table 3. Daily rules.

Ships CB (CR to SY) CB (SY to SB) Berths Output

0 0 0 0 NA
0 0 0 1 r/e
0 0 1 0 NA
0 0 1 1 c
0 1 0 0 NA
0 1 0 1 r/e
0 1 1 0 c
0 1 1 1 c
1 0 0 0 r/e
1 0 0 1 r/e
1 0 1 0 r/e
1 0 1 1 c
1 1 0 0 c
1 1 0 1 c
1 1 1 0 c
1 1 1 1 c

The stockyard configuration vector indicates which stockyards are available to be
occupied by the iron ore stockpiles. As an example, consider a terminal with 11 stockyards
(see Figure 1) represented by the letters A, B, C, D, E, F, G, H, I, J, and K, as shown in
Table 4. The first position of this vector represents stockyard A, the second one represents
stockyard B, and so on. Each element of this vector can be set with a binary value. It is set
to 0 to indicate that the respective stockyard is not available to be used in the planning;
otherwise, it is set to 1. In Table 4, stockyards A, B, D, E, F, H, and K are available to be
used. Stockyards C, G, I, and J are unavailable, which means that no stacking or reclaiming
operations will be carried out in these stockyards.

Table 4. Stockyard configuration.

A B C D E F G H I J K

1 1 0 1 1 1 0 1 0 0 1

The berth configuration vector defines which type of ship can be moored in each berth.
The algorithm considers that more than one type of ship can be moored in each berth. The
berth occupation is represented by a sequence of 3 binary digits characterizing 3 types
of ships, the combination of which results in 8 mooring possibilities. Table 5 shows the
configuration for a berth. If a given berth has the bit configuration “001”, only Panamax
vessels are allowed to dock. If the configuration of the same berth is “111”, docking is
allowed for Panamax, Capesize, and Valemax vessels, and so on. It can be seen from Table 5
that Capesize vessels are allowed to dock in berth 1, Panamax vessels in berth 2, and
Capesize and Valemax vessels in berth 3. Once the stockyard and berth configurations are
defined, the stockyard vector and berth configurations are obtained, as shown in Table 6.
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Table 5. Berth configuration.

0 0 0 maintenance
0 0 1 “Pa”
0 1 0 “Ca”
0 1 1 “Va”
1 0 0 “Pa” and “Ca”
1 0 1 “Pa” and “Va”
1 1 0 “Va” and “Ca”
1 1 1 “Pa”, “Ca”, and “Va”

Table 6. Stockyard and berth configuration.

A B C D E F G H I J K SB 1 SB 2 SB 3

1 1 0 1 1 1 0 1 0 0 1 0 1 0 0 0 1 1 1 0

3.2. Pseudocode of the Deterministic Simulation Algorithm

The DSA presented in Algorithm 1 takes as inputs Qn, Qb, Qp, and Qe, as well as
lengths, speed, daily capacities, and the configuration of CPB. All used input instances
ensure that the total capacity of the stockyards is sufficient to meet all demands. However,
during the planning process, a specific stockyard or the conveyor belts that serve it may
have their capacity exhausted at a given moment. The nomenclatures of the DSA are
presented in Table 7.

Table 7. Variables and parameters of the Algorithm.

Nomenclature Description

Qn set of ships and their attributes
Dm(Qn) demand of each ship
Qb set of berths
Qp set of stockyards and their attributes
Qe set of conveyor belts and their attributes
CPB binary set with the availability configuration of stockyards and berths
CEs binary set with the availability configuration of stacking conveyor belts
CEr binary set with the availability configuration of reclaiming conveyor belts
MW weighted matrix of stacking and reclaiming times
CD current demand
CS current stockyard
TimeS time involved in the current stacking operation
TimeD time involved in the current docking operation
TimeR time involved in the current reclaiming operation
TimeU time involved in the current unberthing operation
H planning time (objective function)

Algorithm 1 creates the weighted matrix MW of stacking and reclaiming times in
line 1. It also creates the auxiliary data structures CEs and CEr (line 2) as a vector of ones
to monitor the availability of the stacking and reclaiming conveyor belts, respectively. Each
conveyor belt has its position in the vector as 1 if available and 0 otherwise. In line 3, the
status of the set of variables DailyRules (see Table 2) is set to initial valid states, i.e, no ship
is able to enter the berth (Ships = 0). It is worth mentioning that, at this stage, there is at
least one enabled conveyor belt from the car-dumpers to the stockyards (CB_CRSY = 1),
one available conveyor belt from the stockyards to the berths (CB_SYSB = 1), and at least
one berth to receive ships (Berths = 1). In line 4, the objective function H is initialized as 0.

The simulation must attend to all requirements, which means that the algorithm enters
a loop to check each available stockyard regarding the sequence of their demands Dm(Qn)
(loop from line 5 to 18), verifying which operation (stacking, docking, unberthing, and
reclaiming) can be performed at that moment, given the current situation of all resources
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(stockyards, conveyor belts, berths, and ships) and the stockyard being checked (CS). For
example, an empty stockyard cannot perform reclaiming but can perform stacking, and
the docking operation can only be performed immediately after all the iron ore of a ship is
allocated in the stockyard. The reclaiming operation can only be performed if the stockpile
in the current stockyard has its respective ship moored, and a ship can only be unberthed
immediately after the last pile is recovered.

Algorithm 1: DSA(Qn, Qb, Qp, Qe, CPB)

1 MW ←− BuildRoutingTimes(Qe)
2 CEs, CEr ←− 1

3 DailyRules←− Set(Qn, Qb, Qp, Qe, CPB)
4 H ←− 0
5 while Dm(Qn) 6= ∅ do
6 CD ←− Pop(Dm(Qn))
7 CS←− NextAvailable(Qp, CPB, CS)
8 DailyRules, CEs, CPB, TimeS←− Stacking(CD, CS, CEs, MW)
9 DailyRules, Qn, Qb, TimeD ←− Docking(CS, Qn, Qb, CPB)

10 DailyRules, Qn, Qb, CEr, CPB, TimeR←− Reclaiming(CS, Qn, Qb, CEr, MW)
11 DailyRule, Qn, Qb, TimeU ←− Unberthing(Qn, Qb)
12 H ←− Update(H, TimeS, TimeD, TimeR, TimeU))
13 if FinishDay(DailyRules) == TRUE then
14 H ←− Update(H, nightshi f t)
15 CEs, CEr ←− 1

16 DailyRules←− Reset(Qn, Qb, Qp, Qe, CPB, DailyRules)
17 end if
18 end while
19 Return H

In line 6, the next demand from the sequence of demands Dm(Qn) is assigned if the
current is removed from Dm(Qn) using the Pop() function. Given the set of stockyards
Qp, the set with the configuration of available stockyards CPB, and the current stockyard
CS, the function NextAvailable() defines the next available stockyard CS to be processed
(line 7). In line 8, the function Stacking() executes all the stacking operations in the
current stockyard to attend current demand CD, considering the stacking conveyor belts’
restrictions (CEs) and stacking times (MW). It returns the changes in DailyRules, conveyor
belt restrictions (CEs), the availability of the current stockyard (if CS capacity has reached its
limit, it must be disabled), and the times involved. In line 9, the function Docking() checks
if there is any Qn ship that can be docked in any available berth (given by examination of
Qb and CPB) to retrieve some stockpile from the current stock CS. If a docking operation
is performed, it affects the DailyRules, the ships (Qn), and berth (Qb) status, and it is then
necessary to compute the involved time (TimeD).

The functions Reclaiming() (line 10) and Unberthing() (line 11) execute, respectively,
reclaiming and unberthing by checking all possible situations and returning the result of
changes in DailyRules, involved times, resources capacities, availability, and status. The
objective function H is then updated with the times involved in the previous operations in
line 12. In line 13, the rules in the Table 3 are checked and, if true, the DSA ends the day
updating, in line 14, the objective function with the time interval between the end of the
day and the start of operations of the next day. Since the current day is over, the conveyor
belt daily capacity (line 15) and the DailyRules (line 16) are reset for the next day. The final
planning time is returned in line 19.

Considering n as the number of ships in Qn, b the number of berths in Qb, p the
number of stockyards in Qp, and e the number of conveyor belts in Qe, the DSA provides
a main loop with time complexity in O(n) (all demands meet). Inside the main loop,
the function NextAvailable() runs in O(p), function Stacking() runs in O(e2), function
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Docking() runs in O(n× b), function Reclaiming() runs in O(e2), and function Unberth()
runs in O(n). All other functions and instructions run O(1). Thus, Algorithm 1 runs with a
time complexity given by

CT = O(n)× [O(p) + O(e2) + O(n× b) + O(e2) + O(n)]

= O(np) + O(ne2) + O(n2b) + O(ne2) + O(n2) (1)

= O(np) + O(ne2) + O(n2b) + O(n2) + O(nb).

4. The Proposed VND Metaheuristic

Metaheuristics are convenient for NP-complete optimization problems for which there
are no polynomial time solution algorithms or methods. To solve NP-complete problems
efficiently, the following characteristics of the metaheuristic are adopted:

• Strategies to achieve an optimal solution through “efficient” search spaces with neigh-
borhood structures;

• Usage of solutions found during the optimum search to generate other solutions;
• Intensification that seeks to find a great location and diversification that aims to leave

the great location (disturbance).

The Variable Neighborhood Descent is a metaheuristic proposed by Mladenovic in
1997 [31]. It is designed to find approximate solutions and can be applied to large problems
of linear programming, entire programming, non-linear programming, and others. VND is
based on systematic changes in the neighborhood of the solutions to solve combinatorial
optimization problems; whenever there is improvement in a certain neighborhood, it
returns to the less distant neighbor [31]. The neighborhoods N = {N1, N2, . . . , Nkmax }
are parameterized by the k index, k = 1, . . . , kmax, where the elements represent the pre-
selected neighborhood structures, and Nk(x) represents the solutions in kth neighborhood
of the current solution x. The idea is to explore the x neighborhood looking for a great
location. Given a current solution x, we explore the neighboring solutions belonging to
Nk(x). Whenever a neighboring solution x’ ∈ Nk(x) rather than x is found, the current
solution is updated to x′. If there is no solution improvement within this neighborhood
structure N k, the structure change will be made, increasing the index k← k + 1 [36].

Therefore, in order to improve the solution obtained by the proposed DSA, the VND
metaheuristic is applied. The neighbors used in the search are generated by modifying
the vector of stockyards and berths. For example, in our research problem, neighborhood
structures can be defined as follows:

• K = 1→ change of a bit in the vector of the stockyards and berths configuration (see
Table 6);

• K = 2→ change of two bits in the vector of the stockyards and berths configuration
(see Table 6).

After finding a neighbor in a neighborhood structure (new configuration of stockyards
and berths), a new planning time is calculated using the DSA (Algorithm 1). The solutions
are chosen through two types of local search algorithms, i.e., Best Improvement and First
Improvement. In the Best Improvement local search, the algorithm tests all neighboring
solutions to arrive at the best solution so that the current solution always changes to the
best of all neighboring solutions. A local search is of the First Improvement type, if the
current solution change the first improved neighbor solution was found.

Algorithm 2 shows the pseudocode implemented to solve the research problem. It
takes as inputs the variables Qn, Qb, Qp, and Qe, with their related demands, types,
capacities, and routes, as well as lengths, speeds, and daily capacities.
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Algorithm 2: VND(Qn, Qb, Qp, Qe)

1 CPB←− 1

2 H, Hls ←− DSA(Qn, Qb, Qp, Qe, CPB)
3 k←− 1
4 kmax ←− 2
5 while k ≤ kmax do
6 while not the end of the local search do
7 CPB←− NeighborhoodChange(CPB, k)
8 H′ ←− DSA(Qn, Qb, Qp, Qe, CPB)
9 if H′ < Hls then

10 Hls ←− H′

11 end if
12 end while
13 if Hls < H then
14 H ←− Hls k←− 1
15 else
16 k←− k + 1
17 end if
18 end while
19 Return H

Algorithm 2 begins setting in line 1 the first stockyard and berth configuration vector
CPB as a vector of ones, which means that all stockyards available to be used and all
types of ships can be moored in any berth (see Table 5). The DSA is called in line 2 for
the calculation of the incumbent solution H and the auxiliary local search solution Hls.
In lines 3 and 4, we set, respectively, the initial neighborhood k = 1 and the use of two
neighborhoods to improve the current solution kmax = 2. The loop from line 5 to 18 runs
while a local minimum with respect to all kmax neighborhoods is not found. The loop from
line 6 to 12 stops when the local search finishes, depending on the applied strategy: Best or
First Improvement. In line 7, given the current stockyards and berths configuration CPB
and the current neighborhood structure k, function NeighborhoodChange() builds a new
stockyards and berths configuration CPB not yet used in the current local search loop.

The new solution is calculated in line 8 using Algorithm 1. In line 9, it is verified whether
the new solution H′ is better than the current local search solution Hls, which is updated in
line 10 if an improvement is obtained. When the local search finishes, the algorithm compares
the incumbent value H with the new value Hls obtained from the kth neighborhood (line 13).
If an improvement is obtained, the incumbent is updated (line 14), and k is returned to its
initial value (line 14). Otherwise, the next neighborhood is considered (line 16). The output
consists of the best solution found (line 19). Since the function NeighborhoodChange() runs,
in the worst case (k = 2 and Best Improvement), in O((p + b)2) and uses Algorithm 1 to
calculate the objective function, the complete local search is done in O((p + b)2)× [O(np) +
O(ne2) + O(n2b) + O(n2) + O(nb)] time complexity.

5. Results and Discussion

In all experiments we carried out, the First Improvement local search proved to be
more efficient than the Best Improvement local search. Therefore, we analyzed only the
results considering the proposed algorithm with the First Improvement local search. All
experiments were performed on a personal computer with Windows 10 Pro, Intel® Core™
i7-7700K CPU @ 4.20GHz, 16.0 GB RAM and a 64-bit operating system type with an x64-
based processor. The solver used to implement the algorithms was Pycharm Professional
2018.3, and the code was programmed in the Python programming language.

In this paper, we consider two different scenarios. The first one has a stockyard–port
system configured with 11 stockyards, 3 berths, and 10 h of conveyor belt operation per
day. The second scenario addressed represents a stockyard–port system with even more
participants. It is configured for 15 stockyards, 5 berths, and the same 10 h of conveyor
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belt operation per day. For each scenario, a number of ships ranging from 10 to 1000 are
considered in the planning period. Each experiment was run 5 times to calculate the mean,
standard deviation, and the relative planning time error of the entire planning furnished
by the best solutions (relative error of best solutions), i.e., the time spent between the order
of the first vessel and the unberthing of the last vessel after algorithm convergence.

5.1. Experiments for the First Scenario (11 Stockyards, 3 Berths, and 10 h of Conveyor Belt
Operation per Day)

Table 8 shows, for each ship demand, the best total planning times and their respective
averages provided by both initial and best solutions. It also shows the relative errors
obtained with the best solutions and the averages of the computational times. From the
initial solutions with 10 ships, the shortest total planning time is 58.95 h, and the largest
total planning time is 155.28 h. The shortest planning time is due to the better distribution of
stockyards and berths, the shorter stacking and reclaiming times, and the greater resources
of the conveyor belts. It can be observed in Table 8 that, for 1000 served ships, the VND
algorithm converged to the average planning time equal to 5338.05 h, with an average
computational time of 64.59 s.

Table 8. Total planning time (11 stockyards, 3 berths, and 10 h).

11 Stockyards/3 Berths/10 h/VND

Ships Best Time
Initial Solution (h)

Best Time
Best Solution (h)

Average Time
Initial Solution (h)

Average Time
Best Solution (h)

Relative Error
Best Solution (%)

Average
Computational Time (s)

10 58.95 54.97 92.43 65.14 17.63 0.99
50 302.14 260.22 481.30 275.30 4.09 4.19

100 555.49 479.27 1178.46 519.79 8.10 6.29
500 4461.22 2485.64 5863.22 2658.96 5.81 40.28
1000 6819.10 4730.70 10,399.56 5338.05 6.33 64.59

It can be verified in the results shown in Figure 2 that the total planning and com-
putational times provided by the proposed optimization algorithm based on the VND
metaheuristic have a linear tendency in relation to the number of ships served.

Best solutions
Computational time
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Number of ships served

Figure 2. Planning and computational times of best solutions for 11 stockyards and 3 berths.

The average planning time provided by the best solutions decreased by around 50%
compared to the initial solutions, except for the case with 10 ships, as shown in Figure 3.
For 10 ships, the total average planning time provided by the best solution was reduced by
29.52% compared to the average time provided by the initial solution. For 50, 100, 500, and
1000 vessels, these reductions were 42.8%, 55.89%, 54.65%, and 48.67%, respectively.
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Number of ships served
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Figure 3. Average percentage of improvement between the initial and best solutions for 11 stockyards
and 3 berths versus number of ships served.

Figure 4 shows that the relative error of the planning time provided by the best
solutions tends to stabilize as the number of ships increases. It can be observed that the best
solutions remain almost constant after removing the solution for 10 ships in the stockyard–
port planning. This is because a large number of ships in the berths can be uniformly
distributed in the vector of stockpiles and ship types.
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without 10 ships
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Figure 4. Relative error of planning time versus number of ships served in the first scenario.

5.2. Experiments for the Second Scenario (15 Stockyards, 5 Berths, and 10 h of Conveyor Belt
Operation per Day)

Table 9 presents the calculations of the relative errors, showing the same conclusions
as Table 8, except for the computational time due to the increase in the stockyards.

Table 9. Total planning time (15 stockyards, 5 berths and 10 h).

15 Stockyards/5 Berths/10 h/VND

Ships Best Time
Initial Solution (h)

Best Time
Best Solution (h)

Average Time
Initial Solution (h)

Average Time
Best Solution (h)

Relative Error
Best Solution (%)

Average
Computational Time (s)

10 58.56 53.69 77.6293 60.18 16.61 3.71
50 293.31 195.61 353.88 202.08 4.13 11.57

100 590.532 372.82 772.56 415.79 6.30 22.58
500 3129.749 2158.54 5045.83 2268.02 5.02 103.25
1000 6131.69 3976.82 6822.69 4200.44 4.43 190.14
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Figures 5 and 6 compare the planning and computational times, respectively, consider-
ing the number of ships served for 11 stockyards and 3 berths, and for 15 stockyards and
5 berths.

15 yards and 5 berths

11 yards and 3 berths
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Figure 5. Average planning times of the best solution for all experiments in the first and second scenarios.
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Figure 6. Average computational times of the best solution for all experiments in the scenarios.

Comparing the average planning times provided by the initial and best solutions for
this scenario, we also observe a decrease, similar to that observed in the previous case
(11 stockyards and 3 berths, see Figure 3). The total average planning time for 10 ships
provided by the best solution decreased 22.48% in relation to the average planning time
provided by the initial solution. For 50, 100, 500, and 1000 ships, these reductions were
42.89%, 46.17%, 55.05%, and 38.43%, respectively.

5.3. Increasing the Capacity of Conveyor Belts

We also analyzed the effect of increasing the capacity of the conveyor belts according
to the planning times obtained through the proposed algorithm. The VND algorithm
determined a planning time of 7255.31 h for the case that considers 11 stockyards and
3 berths, with conveyor belts having a capacity of 80,000 tons per day. However, when
the conveyor belt’s capacity was increased to 160,000 and 320,000 tons, the planning times
decreased to 4252.83 h and 2764.83 h, respectively. This represents a decrease of 41.38% and
61.89%, respectively, in comparison to the solution obtained with conveyor belts having
a capacity of 80,000 tons. In the case of 15 stockyards and 5 berths, if the conveyor belt’s
capacity is 80,000 tons per day, the planning time required is 5566.89 h. However, if
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the conveyor belt’s capacity is increased to 160,000 and 320,000 tons, the planning time
decreases to 3355.80 h and 2245.63 h, respectively. This represents a decrease of 39.71% and
59.66%, respectively, in comparison to the solution obtained with conveyor belts having a
capacity of 80,000 tons.

Figure 7 illustrates the relationship between the daily capacity of the conveyor belt and
the initial planning time obtained from the VND optimization algorithm. It is important
to note that there is an inverse relationship between the conveyor belt’s capacity and the
planning time required to handle the same number of ships (1000 ships). Furthermore,
an increase in the number of stockyards results in a decrease in the initial planning time,
assuming the same ship demand. This is because a larger stockyard requires more conveyor
belts and a higher flow of iron ore. Certainly, the metaheuristic should decrease the planning
time, but it depends on the stacking and reclaiming times, the capacity of the conveyor
belts, and the number of stockyards.

yBelts

T
im

e

11 yards and 3 berths
15 yards and 5 berths

Figure 7. Planning time to attend 1000 ships in the first and second scenarios versus conveyor
belt capacity.

From the experiments carried out with a demand of 1000 ships, the solution converged
within a short time of around 190 s. This was due to the metaheuristic providing intensifi-
cation in the solution search and its neighborhoods being very similar. However, there was
a lack of diversification because the local First Improvement search was more efficient in
obtaining a greater number of better solutions than the Best Improvement search. Therefore,
it would be desirable to diversify the neighborhood structures to search for better solutions
in other neighborhoods and to create neighbors that are significantly different from each
other, thus allowing the algorithm to continue searching for better solutions.

6. Conclusions

In this work, we proposed a computational algorithm to solve the stockyard–port
planning problem raised in iron ore exporting companies, considering a long planning
horizon in which a large volume of raw material arriving at the yards by trains must be
stored and transported to the ships in an efficient and sustainable way. This complex
combinatorial problem has been studied primarily using mathematical programming tech-
niques limited by the size of data instances. The proposed algorithm utilizes a deterministic
simulator, with the real stockyard–port equipment represented by a graph, and the ships
arriving as a first-input-first-output queuing process. The simulator offers great flexibility
for decision-makers to quickly analyze different scenarios of the stockyard–port, taking
into account different equipment capacities (stackers, reclaimers, and conveyor belts), route
diversity, stockyards, and berths. Moreover, it allows for the choice of an initial scenario
that meets the amount of iron ore requested by the ships, as well as the maximum transport
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time of iron ore in the stockyard–port system. Thereafter, the planning time—the time
elapsed between the first ship’s arrival at the port and the completion of the transshipment
operation of the last ship leaving the port—is minimized using the Variable Neighborhood
Descent (VND) metaheuristic.

The simulations conducted using the two types of local search revealed that the
metaheuristic solutions tended to utilize more stockyards when compared to the initial
solution generated by the deterministic simulator. Both local search methods provided an
increase in the number of conveyor belts, leading to a higher flow of iron ores to the berths.
Furthermore, it was observed that there is an inverse relationship between the capacity of
the belts and the planning time required to serve the same number of ships. Therefore, we
concluded that increasing the number of conveyor belts is an important strategy to reduce
raw material transport time in the stockyard–port system and consequently, to reduce
environmental impacts and increase productivity. This positive impact is greater in the
case of increasing the number of yards and ship berths.

The convergence time of the VND metaheuristic ranged from 1 to 190 s, with the total
number of ships served in the berths varying from 10 to 1000 units, and the number of
stockyards and berths varying from 11 to 15 and 3 to 5, respectively. The averages of the
total planning times provided by the best solutions obtained by VND increased almost
linearly in relation to the number of ships served. For each number of vessels served,
the averages of the best solutions decreased by approximately 50% in comparison to the
averages of the initial solutions. As the number of ships considered in the planning period
increased, the relative error of the best solutions tended to follow a normal distribution.

The proposed algorithm has demonstrated flexibility and speed in solving an NP-hard
combinatorial problem, making it suitable for implementation in an iron ore stockyard–port
that follows Industry 4.0 principles. It enables real-time decision-making, considering its
economic and environmental impacts. The results obtained in this study motivated us to
pursue challenges related to the development of a stochastic simulation model, considering
uncertainties to improve the evaluated VND algorithm. A performance comparison of
different solution techniques in terms of computational effort is also part of our future
work, including statistical analysis using simulation software like Arena and/or ANOVA,
among others.
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