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Abstract: The evaluation of the habitat quality dynamics is important to conservation management
and sustainable development. Forecasting future habitat quality changes depends on reliable projec-
tions of future land uses that align with government’s future land-use planning. Additionally, the
spatial heterogeneity problem cannot be dismissed in spatial modelling and the uneven distribution
of urban development should be considered in the land use simulation and prediction. To address
these issues, we established a bidirectional framework: from the top-down side, we impose land use
and land cover (LULC) quantity constraints considering the goals of government land use planning;
from the bottom-up side, we adopt zoning methods to consider the spatial heterogeneity of land use
transition rules for improving the accuracy of land use prediction. We applied this approach to project
habitat quality of Beijing in 2035 under different development scenarios. Firstly, we constructed multi-
ple future scenarios (natural development, ND; economic development, ED; ecological protection, EP;
livable city, LC) and computed the quantities of various land uses under those scenarios. Secondly,
we addressed the spatial heterogeneity issue by adopting the zoning methods to improve the land
use simulation accuracy of the PLUS model. Finally, based on the predicted LULC data, we analyzed
the future habitat quality patterns in Beijing under different scenarios using InVEST model. We found
that the zoning method can improve the simulation accuracy of LULC. Furthermore, significant
spatial differences can be found in the habitat quality under different land use scenarios, which
represent various government land use strategies. Among the four scenarios, the LC scenario is the
most conducive one due to its ability to achieve a good balance between economic and ecological
benefits. This study provides evidence for justifying the feasibility of Beijing’s development plan to
become a livable city.

Keywords: LULC prediction; habitat quality; livable city; government planning; spatial heterogeneity

1. Introduction

Forecasting future habitat quality changes can facilitate strategic planning to balance
the needs of ecosystem conservation and socioeconomic development [1–4]. And the
habitat quality dynamics of Beijing in 2035 are important to the sustainable development of
this megacity. Beijing Municipal Government proposes a goal that builds Beijing into an
“international first-class harmonious and livable city” by 2035 requires a forest coverage
rate of 45%, an ecological land scale of 75%, a population of less than 23 million, and a
construction land scale of 2760 km2. To achieve this goal, the habitat quality dynamics
in Beijing need to be explored by simulating future land use, a key determinant both
in ecological and economic development [5–7]. Many studies utilized multi-scenario
simulation to achieve reliable prediction of future land use [8,9]. Through multi-scenario
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simulation, evaluation, comparison, and selection among different development pathways
can be explicitly presented. The Markov chain, Grey model, and linear interpolation
quantitative models are widely adopted to establish demand for land use and are capable
of ‘top-down’ prediction of land demand [10,11]. However, the current study set the
future scenarios subjectively without considering future government planning [12–15]. The
multi-objective programming (MOP) model can address well the influence of government
planning on land use changes and has good potential in scenario design [16]. Therefore, this
study collected government planning data to set the overall land-use amount constraints
quantitatively and gathered statistical data to build scenarios suitable for characterizing
future regional development.

The above ‘top-down’ prediction by setting the total land use demand should be
coupled with a ‘bottom-up’ prediction of land use, which can contribute to spatial land
use simulation from cell to zoning area automatically. At present, the mainstream land
use simulation models include Cellular Automata (CA) [17,18], CLUE-S [19], Future Land
Use Simulation (FLUS) [20,21], and Patch-generating Land Use Simulation (PLUS) [22].
PLUS model takes the inherent nonlinear relationship in the change of LULC patches
into account and can lead to higher accuracy of LULC simulation [23]. Mining land
use transition rules is an important part of the PLUS model, and solving the spatial
heterogeneity in land use conversion rules will help improve the simulation accuracy
of land use, and thus improve the prediction quality of predicting future habitats [8,24–26].
Spatial heterogeneity is a geographical phenomenon that should not be ignored in LULC
simulation for characterizing the inconsistency of development level and expansion rate of
urban areas in different subregions [27]. Another challenge is that the interaction of LULC
does not follow the same change function: the expansion rate of urban areas may be very
high in some regions with booming economies or populations, but it may be relatively slow
in developed or underdeveloped regions [28]. Therefore, using the same LULC transition
rule and ignoring its spatial heterogeneity throughout the study area can be biased across
different sub-regions and can result in poor performance in terms of LULC simulation
accuracy [29,30]. This affects the spatial distribution pattern of LULC [31], thus affecting
the accuracy of habitat quality assessment. To solve these problems, the partition method
is adopted to solve the problem of spatial heterogeneity of land use transition rules to
improve the accuracy of LULC prediction.

To fulfill our work, a regional habitat quality assessment framework is presented under
different future development modes, which integrates future scenario setting modules,
land use simulation modules, and habitat quality assessment modules. We then applied
this framework to assess the habitat dynamics under different scenarios in Beijing City.
Specifically, the objectives of this study are threefold. First, we considered the spatial
heterogeneity of transition rules to improve the accuracy of LULC prediction. Second, we
consider the future land use change under four scenarios that are built up using MOP
methods to integrate statistical data and government planning data to ensure their reliability.
Third, we evaluate the future habitat quality changes in Beijing under different scenarios
with the LULC map derived from the former step. The framework proposed in this study
is conducive to regional sustainable development in the future.

2. Materials and Methods
2.1. Study Area

Beijing is located between 115◦25′–117◦30′ E and 39◦28′–41◦05′ N, with a total area
of about 160,000 square kilometers (Figure 1). Beijing has a typical temperate monsoon
climate, with hot and rainy summers and cold and dry winters [32]. Beijing includes four
functional zones, namely the Capital Core Functional Area (CCFA), including Dongcheng,
and Xicheng districts, the Urban Function Extension Area (UFEA) including Haidian,
Chaoyang, Fengtai, Shijingshan districts, the Urban Development New Area (UDNA)
including Changping, Daxing, Tongzhou, and Shunyi districts, as well as the Ecological
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Conservation Area (ECA) which include Mentougou, Fangshan, Huairou, Pinggu, Yanqing,
and Miyun districts.
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Figure 1. The location of the study area.

Beijing has experienced rapid urbanization. The increase in urban land use has brought
great pressure on ecosystems. The decline of ecosystem functions in some regions has
become the bottleneck of sustainable economic and social development [33]. To build
Beijing into a world-class livable city and the implementation of the Fourteenth Five-Year
Plan for Beijing’s National Economic and Social Development and the Outline of the Long-
term Goals for 2035 by the governments, Beijing’s urban development has ushered in new
opportunities and its ecological environment will also face new challenges. To improve
the quality of residents’ life, Beijing has put forward the goal of building a “world-class
livable city”. According to this goal, setting a livable city scenario, simulating the land use
change in Beijing, and evaluating its potential impact on the ecological environment can
lay a foundation for optimizing land uses and improving habitat quality.

2.2. Data Sources

Government planning data for Beijing in 2035 comes from the Beijing Land and Space
Ecological Restoration Plan (2021–2035), the Beijing Urban Master Plan (2035), and the 14th
Five-Year Plan for Beijing’s National Economic and Social Development and the Outline of
the 2035 Vision Goals. The statistical data is from Beijing Statistical Yearbook (2011–2020).

Geographical data are gathered according to the research purpose and regional land-
scape characteristics are grouped into 6 categories: cultivated land, forest, grassland, water
body, construction land, and others. The change in LULC is affected by many social, eco-
nomic, and natural factors [34,35], and this is why we obtained a variety of driving factors
related to the LULC changes from the natural and socio-economic aspects. Table 1 lists the
spatial data used in this study.

All data are preprocessed through projection transformation, Euclidean distance,
resampling, and clipping. The data is converted to grid data with the same projection
coordinate system, with a spatial resolution of 30 m.
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Table 1. Data source.

Category Data Resolution Data Resource

Land Land Cover 30 m https://www.resdc.cn/,
accessed on 6 June 2021.

Socioeconomic Factors

Population
1000 m

https://www.resdc.cn/,
accessed on 10 June 2021.GDP

Proximity to railway

30 m
https://www.webmap.cn/,

accessed on 2 July 2021.

Proximity to highway
Proximity to road

Proximity to District
Proximity to Towns

Nature Factors

DEM
90 m

http://www.gscloud.cn/,
accessed on 26 May 2021.Slope

Annual Mean Temperature
1000 m

https://www.resdc.cn/,
accessed on 26 May 2021.Annual Precipitation

Soil type

Proximity to open water 30 m https://www.webmap.cn/,
accessed on 26 May 2021.

2.3. Methodology

The framework for the prediction of habitat quality based on LULC includes three parts
(Figure 2). In the part of setting scenarios and quantity demand planning, we designed four
future development scenarios and calculated the quantity requirements for each scenario using
Markov and MOP models. Then, the PLUS model is adopted to simulate the spatial distribution
of LULC in these scenarios. Finally, we use the simulated LULC data to analyze the temporal
and spatial dynamics of habitat quality under each scenario using InVEST model.

2.3.1. Setting Future Development Scenario and Quantity of Land Demand
Scenario Definitions

To evaluate the changing pattern of land use and habitat quality in Beijing from the
perspective of environmental protection and economic policy changes, this study set up
four scenarios.

The natural development (ND) scenario is set based on the current trend of LULC
changes. In the ND scenario, the land development status maintains the current trend and
is not affected by anything. We use the Markov model to calculate the area of each LULC
type in 2035, according to the transfer probability matrix of LULC from 2015 to 2020.

The economic development (ED) scenario is featured by rapid economic development.
In the ED scenario, the economic development of cities is at the cost of certain ecological
environment development. Therefore, we increased the transfer probability of cultivated
land, forest land, grassland, and water to construction land by 20% compared to that in
the ND scenario. Similarly, we reduced the transfer probability of construction land to
cultivated land, forest land, grassland and water by 20%.

The ecological protection (EP) scenario is featured by the implementation of strict en-
vironmental protection. In the EP scenario, the development of the ecological environment
needs to sacrifice economic interests. In this scenario, we reduced the transfer probability of
cultivated land, forest land, grassland and water to construction land to by 10% compared
to that in the ND scenario. Similarly, we increased the transfer probability of construction
land to cultivated land, forest land, grassland and water by 15%.

The livable city scenario (LC) is set according to the 2035 urban development goals of
Beijing. In the LC scenario, we have affiliated the planning data of future urban develop-
ment, and set the objective function of MOP constrained by the balance of economic and
ecological benefits.

https://www.resdc.cn/
https://www.resdc.cn/
https://www.webmap.cn/
http://www.gscloud.cn/
https://www.resdc.cn/
https://www.webmap.cn/
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Multi-Objective Programming

The MOP model is an important branch of mathematical programming, which can
be flexibly incorporated into various ecological or macroeconomic policies. It optimizes
the quantitative structure of land use/cover data based on objective rules and data. MOP
consists of two parts: (1) the objective function, which refers to the mathematical expression
of model optimization objective and is expressed as a function of decision variables; (2) the
constraint condition, which specifies the value range of the decision variable under the
objective function and is represented by a set of equations or inequalities about the decision
variable [36,37]. The MOP model can be expressed by the below formula:

unction_Fk(X) =
n

∑
i=1

KiXi, (k = 1, 2, · · · , r) (1)

s.t. =


n
∑

i=1
CijXi = (≤,≥)di, (j = 1, 2, · · · , m)

Xi ≥ 0, (i = 1, 2, · · · , n)
(2)
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where r is the number of objective functions; function_Fk(X) represents the objective
function; Xi is the ith decision variable, Ki is the coefficient of the ith decision variable in
the objective function; Cij represents the coefficient corresponding to the decision variable
in the j constraint; di is the constraint value.

1© Objective function

To balance the coordinated development of economy and ecology in urban planning,
and pursue the maximization of total benefits. This study constructed an objective function
from both economic and ecological perspectives, using the following method:

max{F1(x), F2(x)} (3)

F1(x) = max(
6

∑
i=1

Ecoi × xi) (4)

F2(x) = max(
6

∑
i=1

Esvi × xi) (5)

where F1(x) is the economic benefit, F2(x) stands for ecological benefits, Ecoi is the eco-
nomic benefit per unit area, Esvi is the ecological benefit per unit area, xi represents
cultivated land, forest, grassland, water, built-up land, and unused land respectively.

For economic benefits, the gross production value of agriculture, forestry, animal
husbandry, and fishery is taken as the economic benefits of cultivated land, forest land,
grassland, and water body respectively. The economic benefits of construction land are
replaced by the GDP of the secondary and tertiary industries. According to the statistical
yearbook, the economic benefits of various ground features are represented by the ratio
of the gross product of various ground features to the area, respectively 294, 131, 360, 97,
101,400, and 0 (unit: 104 yuan/km2).

For ecological benefits, this paper uses the “China’s terrestrial ecosystem unit area eco-
logical service value coefficient table” constructed by Xie et al. [38] and Zhao [39] research
to quantify the monetary value based on the current year’s grain value. The ecological
benefits of each category are 1368, 24,083, 1614, 15,292, 0, and 11 (unit: 104 yuan/km2).

2© Constraint conditions

According to the planning data of Beijing, we set constraints for the total area, forest
coverage, population, ecological land vacancy rate, and the area of various land features.
The specific constraints are as follows:

(1) Total area constraint

From the perspective of keeping the total land area unchanged, the total land area S is
set by the formula below:

6

∑
i=1

xi = S (6)

(2) Forest coverage constraints

According to the policy planning, the forest coverage rate in Beijing is required to
reach 45% of the total area, and the share of the forest coverage rate is calculated according
to the “ecological green equivalent”. In the land system, the types of land use conforming
to “green equivalent” include farmland, forest land, and grassland, with coefficients of 0.46,
1.00, and 0.49 respectively [40]. Therefore, the constraints of forest coverage are:

0.46x1 + x2 + 0.49x3 ≥ 45%× S (7)
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(3) Population constraints

According to the policy planning, the population of Beijing in 2035 is required to be
less than 23 million. According to Liang [41], the population density of ecological land is
200 people/km2, and the population density of construction land is 5800 people/km2. The
population constraints are:

200× (x1 + x2 + x3) + 5800x5 ≤ 23, 000, 000 (8)

(4) Constraints on ecological land use

According to the policy requirements, the area of ecological land in Beijing reaches
75% of the total area, namely:

x1 + x2 + x3 + x4 ≥ S× 75% (9)

(5) Area constraint of cultivated land/forest land/grassland/water body/unused land

We take the area of cultivated land/forest land/grassland/water body under ED and
EP scenarios as the upper and lower limits respectively, to achieve the restriction on the
area of various surface features:

3437.49 ≤ x1 ≤ 3600.03 (10)

7979.10 ≤ x2 ≤ 8010.38 (11)

1595.05 ≤ x3 ≤ 1621.03 (12)

569.97 ≤ x4 ≤ 588.40 (13)

29.07 ≤ x6 ≤ 29.13 (14)

(6) Constraint on construction land area

It is stipulated in the policy that the construction land in Beijing will be restricted to
2760 km2 in 2035. Therefore, the constraint of construction land area is set as:

x5 = 2760 (15)

2.3.2. Land Use Simulation

PLUS model integrates a rule training framework based on a land expansion analysis
strategy (LEAS) and a CA based on multi-type random patch seeds (CARS) [22]. LEAS can
explore the driving factors, and use random forest classification to obtain the applicable
probability of various types of LULC expansion. CARS retains the advantages of adaptive
inertial competition and roulette competition mechanism of the FLUS model and adds an
innovative multi-type random patch seeding mechanism based on threshold reduction. In
general, the PLUS model is more helpful to understand the internal mechanism of LULC
changes from the perspective of complex mechanisms [36] and it helps in the acquisition of
higher simulation accuracy.

In addition, the transition rules of land use are also an important factor affecting the
simulation accuracy. Due to the uneven expansion of built-up land, the same transition rules
are insufficient in simulating the spatial pattern of LULC in the entire region. Therefore,
in this study, the conversion rules of land use in each region were excavated based on the
functional areas of Beijing.
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2.3.3. Habitat Quality Assessment

We used the Habitat Quality module in the InVEST model to evaluate the habitat
quality in Beijing. The InVEST model is widely used for ecological environment quality
assessment at various regional scales. The advantage of the InVEST model is that it ignores
detailed data on species and summarizes the relationship between species and habitats at a
higher level. It requires fewer data, allows for visualization of evaluation results, and can
clarify habitat quality scores and degree of degradation.

According to the actual situation of the study area and in alignment with relevant lit-
erature [42,43], cultivated land, construction land, and unused land are selected as factors
threatening habitat quality. The relative weight, maximum impact distance, spatial decline
category and habitat suitability of each category to threat factors are presented in Tables 2 and 3.

Table 2. Threat source, its weight, and maximum influence distance.

Threat Factor Weight Maximum Impact
Distance/km Decay Type

Cultivated land 0.6 8 linear
Built-up land 0.9 10 exponential
Unused land 0.2 4 linear

Table 3. Habitat suitability and its relative sensitivity to threats.

Land Use Type Habitat
Suitability

Threat Factors

Cultivated Land Built-Up Land Unused Land

Cultivated land 0.4 0.1 0.7 0.5
Forest 1 1 0.8 0.5

Grassland 0.8 0.7 0.85 0.6
Water 0.9 0.5 0.4 0.2

Built-up land 0 0 0 0
Unused land 0.3 0.6 0.4 0.1

3. Results
3.1. Transition Rules and Accuracy Verification of LULC

Extracting transition rules for LULC is an important component of the PLUS model.
However, due to the different degrees of urbanization, the transition rules for LULC
changes in different regions are inconsistent. Different urban functional areas in Beijing
show different levels of urbanization. Then, we have selected the percentage of built-up
land in Beijing in 2015 and the rate of change in built-up land from 2015 to 2020 as two
indicators to characterize the differences in the degree of urbanization (Figure 3). Because
the coverage of built-up land can reflect the level of urban development, the rate of change
in built-up land reflects the speed of future urban development in different regions. CCFA
has a very high proportion of construction land, and its rate of change is almost zero.
UFEA has a relatively high proportion of construction land, but the rate of change is low.
Although UDNA and ECA have different proportions and rates of change of construction
land, both exhibit a low coverage-high change pattern. Therefore, when simulating LULC,
it is necessary to consider the difference in urbanization degree and use different rules to
improve the simulation accuracy. At the same time, due to the small area of CCFA and its
construction land, we have merged the area of CCFA into UFEA.
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To verify the rationality of the zoning strategy, we used the PLUS model to simulate
the land use in 2020, with 2015 as the starting year and 2020 as the ending year. To simulate
land use by adopting the PLUS model, the parameters that need to be set include “patch
generate”, “expansion coefficient”, and “neighborhood size”, which represent the degree
of difficulty for land use type conversion, the degree of generating new patches, and the
range of effect, respectively. In this study, the parameters were adjusted and set through an
iterative procedure which tested different combinations of the parameters for achieving the
best simulation accuracy as measured by the kappa and FOM indicators. The simulation
results of zoning and non-zoning are compared with the real 2020 land use map, and the
simulation accuracy was evaluated with Kappa, overall accuracy, and FOM coefficients.
The accuracy evaluation results are as Table 4.

Table 4. Accuracy evaluation.

Index Kappa OA FOM

Non-zoning 0.8418 87.2% 0.0596
Zoning 0.8633 89.7% 0.0636

The Kappa, OA, and FOM indicators show that the method with consideration of zoning
improved the simulation accuracy as compared with the results without considering the zoning.
The difference is most evident in FOM, with an increase of 6.7%. Therefore, the simulation
accuracy using the partition method is better than that of the non-partition approach.

3.2. Spatiotemporal Evolution of LULC

By setting four different scenarios, the number of various land cover features is input
into the PLUS model, and we obtain the area of various ground features in 2035 (Table 5)
and the spatial distribution of future LULC (Figure 4). From 2015 to 2035, cultivated
land and built-up land showed a decreasing trend. In particular, the change in built-up
land was the most significant. Compared with 2020, the change in built-up land was
particularly significant. The area of built-up land decreased by 26.01, 21.59, 28.28, and
22.48% respectively. Forestland, grassland, and water bodies showed an increasing trend,
and the area of these three types of ground objects increased the most significantly under
the ED scenario, increasing by 7.05, 29.16, and 39.30%, respectively.
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Table 5. The area of LULC in Beijing under different scenarios in the future.

Type
History 2035

2015 2020 ND ED EP LC

Cultivated land 3630.47 3664.3 3545.22 3437.49 3600.03 3437.49
Forest 7302.65 7482.83 7999.39 7979.1 8010.38 7981.05

Grassland 1109.91 1255.08 1611.75 1595.05 1621.03 1611.75
Water 328.31 422.39 582.59 569.97 588.4 582.59

Built-up land 4028.5 3560.23 2634.12 2791.52 2553.24 2760
Unused land 1.68 16.71 29.11 29.07 29.13 29.07
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3.3.1. Temporal Variations in Habitat Quality

From 2015 to 2035, the habitat quality in Beijing has shown a trend of improvement
(Table 6). The average habitat quality of the whole study area increased from 0.459 in 2015
to 0.506–0.511 in 2035. Comparison of habitat quality under different scenarios in 2035
shows that the average value of habitat quality in EP scenario (0.511) is the highest. The
average value of habitat quality in LC scenario is slightly lower than that in EP, while the
average value of habitat quality in the ED scenario is the worst. This means that in the
process of urban development, environmental protection factors have been considered,
which can improve the quality of urban habitat.
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Table 6. The mean value of habitat quality.

Time 2015 2020 2035 ND 2035 ED 2035 EP 2035 LC

Mean 0.459 0.461 0.508 0.506 0.511 0.510

3.3.2. Spatiotemporal Evolution of Habitat Quality

To compare and explain the impact of land use change on habitat quality in Beijing
under different scenarios, we classified the habitat quality index values between 2015–2020
into five intervals: 0–0.16, 0.16–0.45, 0.45–0.69, 0.69–0.88, 0.88–1. Those intervals were
generated using the natural breakpoint classification method based on the habitat quality
result in 2020 (Figure 5), which correspond to excellent, good, medium, poor, and poor.
The area of each quality level was presented in Table 7.
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Table 7. Area of each grade of habitat quality.

Time 2015 2020 2035 ND 2035 ED 2035 EP 2035 LC

Worst 4048.22 3575.15 2639.45 2795.09 2558.24 2753.90
Poor 3918.53 4152.92 4539.96 4492.89 4156.57 4359.54

Medium 897.79 825.16 913.90 847.31 932.70 882.96
Good 2270.08 2175.44 1956.58 1936.36 2002.68 1993.33

Excellent 5270.24 5676.05 6354.82 6330.09 6451.65 6414.97
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The habitat quality in the western part of Beijing is higher than in the east. This is
because Yanqing District is isolated from the main urban area. A patch of poor habitat
quality has formed in the northeast. The habitat quality value in areas with intensive
human production and living activities is relatively low, mainly in areas with poor and
worst levels. In the west and northwest, due to the large area of forest coverage, the quality
of habitat is high. The area of excellent habitat quality is projected to increase. In 2035,
the largest area of excellent habitat is in the EP scenario, and the smallest area is in the
ED scenario. The results show that the reduction of construction land and the increase of
natural surface contribute to the improvement of habitat quality.

To study the change in habitat quality, we subtracted the habitat quality map in the
later study period (2035) from the previous study period (2015) to obtain the habitat quality
change map of Beijing from 2015 to 2035 (Figure 6) and calculated the changing area
(Figure 7). Most of the habitat quality in Beijing has not changed, and the improved areas
are mainly concentrated in the surrounding areas of the urban center, which is caused by the
transformation from built-up land to grassland. The regional distribution of deterioration is
scattered. The scenario with the largest habitat quality improvement is the EP scenario, and
the area that exhibited habitat quality improvement from 2020 to 2035 accounts for 19.3%
of the total. The second is the 2035 LC scenario, with the proportion of improved areas
reaching 18.5%. This shows that ecological protection can improve the quality of habitats.
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four future development scenarios.

We compared the average habitat quality of various functional zones in Beijing in 2035
(Table 8) and found the value habitat quality in CCFA is 0.150 under different scenarios.
This is because all land in this region is built-up land area. So the habitat quality will not
change. In UFEA and UDNA, the highest habitat quality is in the EP scenario, followed
by ND and LC scenarios, and the lowest is in the ED scenario. In ECA, the highest habitat
quality is in the EP scenario, followed by LC and EP scenarios, and the lowest is in the ED
scenario. Overall, the habitat quality gradually increases from the central urban area to the
outside, and the average habitat quality ranging from low to high is CCFA, UFEA, UDNA,
and ECA.

Table 8. Mean habitat quality of different functional zones in Beijing.

Scenarios CCFA UFEA UDNA ECA

2035 ND 0.150 0.168 0.238 0.664
2035 ED 0.150 0.156 0.232 0.662
2035 EP 0.150 0.171 0.243 0.672
2035 LC 0.150 0.163 0.236 0.671

4. Discussion

The habitat quality dynamics of Beijing in 2035 are important to the conservation
management and sustainable development of this megacity. To fulfill this objective, we
established a bidirectional framework, which contains two models (the quantitative model
and the spatial model, adopting constraints from the “top-down” and the “bottom-up”
respectively). Setting reasonable scenarios is the key toward achieving “top-down” opti-
mization. The methods of scenario setting include modifying the land transfer probability
matrix, adjusting the cost matrix, and resetting the development law. In this study, ND,
NP, and EP scenarios are realized by setting the land transfer probability. In the study of
Gao [37] and Zhou [44], the MOP method has successfully balanced economic benefits,
ecological benefits, and other objectives. According to the requirements of building a
first-class livable city put forward in the “Fourteenth Five-Year Plan for National Economic
and Social Development of Beijing and the Outline of the Long-term Goals for 2035”, the
forest coverage rate reaches 45%, the ecological land area reaches 75%, the population
is controlled below 23 million, and the built-up land area is 2760 km2. Based on these
conditions, we apply the MOP method to the construction of the LC scenario in Beijing
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in the 2035 LC scenario, under which the forest coverage rate reached 63.1%, the area
of ecological land accounted for 82.9%, the population was 18.644 million, and the area
of built-up land was 2760 km2. These results indicate that the future land development
plan is achievable, though more constraints should be added to more accurately set the
development scenarios of future cities in future research.

The spatial heterogeneity in the LULC simulation results is mainly determined by the
land use transition rules. The land use transition rules caused by the imbalance of urban
development are established by the “bottom-up” optimization as economically developed
or populous areas are more likely to be converted into construction land, while those in
developed or underdeveloped areas are less likely to be converted. Common partition-
ing methods include using existing administrative boundaries and K-means clustering.
However, using existing administrative boundaries is subjective, while the performance of
K-means clustering decreases when faced with high-dimensional and sparse input data be-
cause it is based on Euclidean distance space partitioning [31]. More advanced methods can
automatically and effectively discover land use transition rules, such as a Self-Organizing
Map (SOFM), which has the characteristics of self-organization and competitive learning
to conduct spatial partitioning [45,46]. This study confirms that the partition method can
improve the simulation accuracy of the PLUS model. Future research may apply this
approach in other regions to further examine the spatial heterogeneity in the pattern of
habitat quality changes.

To justify Beijing’s development plan in 2035 to become a livable city, the best devel-
opment of the LC scenario is completed among the four scenarios. From the perspective of
economic and ecological benefits, the LC scenario is designed based on the government’s
planning data and takes into account the coordinated development of the economy and
ecology, and the sum of economic and ecological benefits is higher than the other three
scenarios (LC: 49,389.93, ED: 49,097.76, ND: 47,883.65, EP: 47,110.02 (unit: 104 yuan)),
which make it the urban development scenario of the highest performance in balancing the
ecological conservation and economic development. From the perspective of construction
land, the construction land area in the LC scenario is close to the natural development
construction land in the ND scenario, which suggests the LC scenario can be realized.
From the perspective of habitat quality, the LC scenario is second only to the EP scenario
and higher than ND and ED scenarios. Considering comprehensively, the LC scenario is
the most favorable development model for Beijing in 2035. To achieve more sustainable
development, more constraints, such as climate and low-carbon objectives can be included
in future analysis.

5. Conclusions

To achieve high-quality LULC prediction and evaluate the spatial and temporal pattern
of habitat quality of Beijing in 2035, the overall land demand and land use structure are
optimized in our study by adopting the bidirectional framework which contains two main
parts: the “top-down” and “bottom-up” designs. For the “top-down” design, we set
four development scenarios to satisfy the constraint conditions to achieve land demand
quantitatively. Among the four scenarios, the LC scenario is the most reasonable one for its
pursuit of maximum benefits of ecological and economic development. We highlighted the
LC scenario in our analysis because LC was built in accordance with the 2035 development
strategy plan of Beijing, which has become a guideline plan for the future development of
Beijing. For the “bottom-up” design, we use urban functional areas as the zoning units to
improve the simulation accuracy of LULC. The city’s spatial heterogeneity is considered
by adopting the zoning function to improve the performance of the LULC forecasting
model and improve the simulation accuracy of the PLUS model. Results show that the
simulation accuracy with zoning is higher than that of non-zoning. In the habitat quality of
each scenario in 2035, improvements can be observed in EP and LC scenarios, and slight
deterioration can be observed in ED scenarios, while the highest deterioration occurred
in the ND scenario. These findings provide helpful guidance for reliable projection of
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future habitat quality at the landscape scale and offer useful information to justify Beijing’s
development plan for becoming a livable city.
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