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Abstract: Due to its widespread occurrence in practically all environmental sectors, including the
terrestrial, marine, and atmospheric, microplastics (MP) have transitioned from an emerging pollutant
to a chronic contaminant. Studies on the prevalence and hazardous effects on marine creatures have
been conducted all over the world, but only in coastal environments. Microplastic pollution has
emerged as a global concern in marine environments and a danger to animals, predators, and humans
because it has been discovered in the marine environment all over the world. This review examines
the quantity of MP samples around the world and their colonization by marine microorganisms,
as well as the detection, features, origins, and ecological implications of paint fragments and resins
in our oceans and ports. These polymers are derived from paints and the fiber reinforced plastic
(FRP) matrix used in shipbuilding. Microplastics should be regarded as coming from synthetic
polymers found in ship coatings. For assessing microplastic pollution, choosing an appropriate
sample technique is essential. Additionally, this review offers an overview of MP investigation
methods, concentrating on sampling techniques, laboratory procedures, and the identification of MPs
found in seawater, as well as assessing how well they apply to the seaport environment. Because of
the widespread discovery of MP pollution, particularly in Africa, Asia, India, South Africa, North
America, and Europe, it is clear that monitoring is crucial for determining the efficacy of mitigation
efforts to limit the quantity of waste plastic entering the environment, especially through sensors and
real-time information transfer systems (e.g., smart digital seawater monitoring).

Keywords: microplastics; marine debris; marine pollution; port environment; monitoring;
meta-analysis

1. Introduction

Microplastics and other inert anthropogenic stressors in aquatic media are contributing
to an ever-growing amount of environmental contamination. More and more plastic
particles are entering the water as primary microplastics as a result of the widespread
usage of plastic products in daily life. The issue of microplastic contamination is one that
the public is becoming more concerned about because it has become a severe threat to
both human and ecological health on a worldwide scale [1,2]. In general, fragments of
any type of plastic smaller than 5.0 mm can be classified in the category of Microplastics,
according to the U.S. National Oceanic and Atmospheric Administration (NOAA) [3,4].
Although the bottom limit (size) of the microplastics is not specified, it is customary to
utilize the neuston nets’ mesh size (333 µm or 0.33 mm), which was employed to gather the
samples [5]. Primary and secondary microplastics are the two main ways that microplastics
are created and released into a body of water [3,5]. There are many sources of microplastics,
as well as many different characteristics:

Microplastic waste in freshwater and marine ecosystems has grown in importance
during the past ten years [6]. Given how poorly understood the effects of microplastics on
aquatic species are, there is a growing interest in learning more about them. Spherules in
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plankton tows off the coast of New England were the first signs of microplastics in North
America in the 1970s, for example [7,8]. Microplastics were since discovered in the majority
of significant bodies of water (oceans, seas, lakes, and rivers) [5].

The weathering process is thought to be the primary cause of plastic fragmentation,
much like photodegradation caused by sunshine. Sunlight’s ultraviolet rays cause the
polymer matrix to oxidize, which causes chemical bonds to be broken. In comparison to
beach or land environments, the lower temperature of the marine environment reduces the
pace of plastic decomposition [9–11].

Furthermore, abrasion, wave action, and turbulence are some of the mechanical
factors that can cause plastic debris to fragment. Because certain biodegradable plastics
contain conventional synthetic polymers, which are not biodegradable, the inappropriate
disposal of biodegradable plastics may result in secondary microplastic accumulation in
the marine environment. Moreover, seawater lacks the anaerobic conditions necessary for
biodegradable polymers to break down [12,13].

The polymers created to be microscopic are referred to as primary microplastics [14].
The majority of the principal microplastics found in the marine environment are produced
by commercial and home cleaning products. Exfoliants are the principal microplastic kinds
that are reported the most frequently [15]. For instance, a lot of microplastics can be found
in personal care items such as toothpaste and hand or facial cleaners [16]. Microplastics
used in cosmetics and personal care products (PCP) and small plastic fragments produced
by the breakdown of macroplastics are causing growing environmental concern [17]. There
are many potential contaminants that can be identified in wastewater treatment plants
(WWTPs), but there are also newly emerging pollutants such as personal care products
(PCPs) [18]. A scientific interest in microplastics has revealed that these contaminants
are pervasive and ubiquitous in the marine environment and have the potential to harm
biota [10,19]. The discovery of microscopic plastic particles in the open ocean occurred
in the 1970s [20]. Microplastics are thought to be accessible to organisms at all levels of
the food chain due to their microscopic size. Due to their relatively wide surface area,
they are vulnerable to hazardous plasticizers leaking and attaching waterborne organic
contaminants. Therefore, ingesting microplastics may be delivering toxins to the base of
the food chain where there is a chance that they will bioaccumulate [14,21].

Moreover, microplastic particles are produced by industrial processes, particularly in
the oil and gas sector where they are used as drilling fluids and abrasives. In order to clean
engines and remove paint from metal surfaces, microplastics are utilized as air-blasting
media [22]. Khasawneh et al. claimed that due to their potential or established negative
effects on human health and the aquatic environment, pharmaceutical chemicals, such
as antibiotics, nonsteroidal anti-inflammatory medications, etc., that could be regarded
as sources of microplastics have arisen as new groups of water pollutants. The concen-
trations of medications vary significantly between different geographical areas. Twelve
of the monitored medications were found to offer a significant potential risk to aquatic
ecosystems, according to an environmental risk assessment based on the risk quotient
(RQ) [23]. Additional industrial processes that produce primary microplastics include the
manufacture of plastic products, which uses plastic resin pellets or flakes as well as plastic
powder or fluff [24]. Microplastics are utilized as carriers to transport active medication
agents in medical applications, such as dental cleaning [22]. Another significant source of
microplastic might come from washing household textiles. Moreover, the degradation of
cigarette butts and fragmentation of maritime equipment may be linked to the presence of
fiber in the marine environment and ports (e.g., ropes and nets) [13,14]. During production
or transit, these microplastics were unintentionally released into the ocean [13,16]. Primary
microplastics are created raw plastic materials that enter the ocean through runoff from
land, such as virgin plastic pellets, scrubbers, and microbeads [3].

When bigger plastic items (meso- and macroplastics) reach a beach or ocean and
degrade mechanically, chemically, or biologically, secondary microplastic introductions
take place [6–8]. The larger bits are reduced by this degradation into progressively smaller
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plastic fragments that are eventually invisible to the human eye [5,6,10]. Hence, it is
possible to link the massive plastic waste from both terrestrial and aquatic sources to
secondary marine microplastics. According to estimates, the proportion of plastic in the
marine environment that comes from land-based and ocean-based sources, respectively,
is 75–90% and 10–25% [8,25]. Many plastics can stay in the environment for months to
millennia, but the lifetime of many of them is still debatable. Large plastic waste can break
up into smaller pieces after entering the marine environment due to physical, biological, or
chemical weathering processes, which reduce the structural integrity [9,13,26].

Many studies have shown that marine creatures are capable of ingesting microplastics,
frequently with serious repercussions since they can collect in tissues, act as carriers of
infections, and absorb and deposit hazardous chemicals. Microplastics can have a wide
range of negative effects, including cancer, poor immunological function, malformation,
and impaired reproductive function in both people and animals. Microplastic pollution
of the marine environment poses a risk to both human health and the economy. Due to
these particles’ small size and difficulty in visualization, hand removal of these particles is
exceedingly difficult, if not impossible, which poses a problem for prevention and control
methods. Microplastics will become more persistent with time. According to reports, there
will be more microplastic in our oceans than fish by the year 2050 (World Economic Forum,
2016) [27].

Microplastic pollution of the marine environment is believed to represent a severe
hazard to the survival of marine life. Numerous studies have shown that many species
have issues with plastic ingestion or entanglement. Due to its light weight, high strength-to-
weight ratio, thermal and biodegradation resistance, among other characteristics, plastic is
utilized in a number of applications, including packaging, personal and household cleaning
products, and industrial construction materials, as mentioned above [13].

Assigning a name and address to a source of pollution can be challenging because
microplastics that end up in the water typically come from a variety of distinct sources,
originate in various regions, and are released at various periods. In order to suggest
potential solutions to reduce the entry of microplastics into the aquatic environment, it
will be helpful to identify the original sources and classifications of both plastics and
microplastics [27]. Microparticles can be both zooplankton and phytoplankton in size, the
former of which is the primary source of food for the latter. Hence, filter-feeders or more
powerful predators are likely to consume microplastic, which will have detrimental effects
at the base of the marine food chain. Due to the consequences of floating debris in the
marine environment at oceanographic convergences, where floating particles aggregate
naturally and high rates of contact between live animals and micro-debris are anticipated,
worry is on the rise [8,28].

As was mentioned before, worry is growing because of the effects floating debris has
on the marine ecosystem at oceanographic convergences, where floating particles naturally
collect and high rates of contact between live species and micro-debris are anticipated [29].
Because of the fact that harbor sediments have long served as sinks for pollutants from
nearby industry and urbanization, the historical contamination of ports and harbors contin-
ues to be a severe danger. The restoration of productive uses for waterways and protection
of human health and the environment depend on prompt and efficient treatment of con-
taminated sediments. Ports all over the world use maintenance dredging to keep berths
and waterways at a safe operational depth. Several rules and procedures exist to test the
dredged silt for recognized pollutants due to the high pollutant levels in an industrial port
environment [30]. Hence, a deeper comprehension of microplastic abundance, distribution,
and accumulation is necessary to reduce future dangers.

However, this presents difficulties for timely monitoring of the dissemination of trends
across time and place of microplastic pollution at global, regional, and national levels due to
the limitations in the detection technology [31]. The fact is, numerous different techniques
are employed to check for microplastics in maritime sediment, and as a result, the results
are sometimes incomparable, which is a general issue in microplastics research. As a result,
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accurate information regarding MP’s existence, distribution, and ecotoxicological effects in
the (marine) environment is currently scarce [32].

The objectives of this study were (1) to briefly analyze the selected review papers
(meta-analysis) published since 2000 based on general interest data (e.g., years, journal
of publication, etc.) and provide a detailed analysis based on different categories of
environmental issues; (2) to review the types, properties, and distribution of microplastics
in marine, harbor, and coastal environments; (3) to summarize the different kinds of
microplastics by mapping the globe marine/harbor and coastal environments based on the
results from a literature review; (4) to discuss the necessity of monitoring the microplastics
in marine sediments, as this paper proposes the monitoring of potential input sites and
accumulation zones within harbors; and (5) to briefly discuss the gaps in the literature,
as well as potential future actions or goals. The importance of monitoring and the meta-
analysis of the published review papers are also the innovation of this paper.

2. Research Methodology

Interventionary studies involving animals or humans, and other studies that require
ethical approval, must list the authority that provided approval and the corresponding
ethical approval code.

The ideal reference criteria for systematic reviews and meta-analyses set by Moher
et al. were used in this review paper’s research approach. Systematic reviews make up the
first section. They offer unbiased summaries of what has been written and discovered about
the study subjects with the aim of giving a complete overview of all research conducted in
a certain field to date [33]. The second step is the meta-analysis, which involves integrating
the results statistically using a variety of statistical techniques and aggregate data. The
main goal of the PRISMA approach is to assist researchers and practitioners in producing
a well-organized literature review report [34]. Several of the earlier review studies have
reportedly employed the PRISMA approach, according to the study for this paper. As a
result, the three primary PRISMA steps—literature review, selection of published papers
that qualify, data export, and finalization—were used. Scheme 1 depicts the comprehensive
workflow of the research project.
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3. Data Collection/Bibliometric Analysis for the Meta-Analysis

The Scopus and Google Scholar databases were chosen as a starting point for the
initial phase of the search for pertinent material. The purpose of this selection was to
look for publications in a very broad context, and the literature search was conducted
by looking for papers with literature reviews based on keywords such as “microplastics”
or “marine environment” or “marine” or “marine debris” or “marine litter” or “coastal
environment” or “pollution” or “plastics”, as well as combining keywords related to marine
and microplastics factors. Considering the time periods, the search was limited to articles
from 2000 to 2023. After conducting the proper searches in the relevant databases, all of
the results in Scopus and Google Scholar were exhausted, and we stopped when there
were many pages of results with no pertinent publications. Case studies, book chapters,
conference papers, postgraduate and doctoral theses, and papers written in a language
other than English were all eliminated from the search because it was specifically looking
for publications containing literature reviews. Review papers were, therefore, screened
by title, keywords, and abstract while keeping in mind the aforementioned criteria, and
the pertinent publications were listed in our list. We looked over each paper’s main body,
paying close attention to the abstract and conclusion sections in particular.

The acquired papers were then subjected to a bibliometric analysis, with the analysis
findings displayed in Figures 1 and 2. It can be seen that the number of relevant papers is
on the rise annually (As shown in Figure 1). Since 2016, there have been a lot more papers
that are connected, which shows that this issue is receiving more and more attention.
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Figure 1. Number of relevant review papers annually.

These papers frequently used the terms “microplastics”, “marine environment”, “ma-
rine”, “marine debris”, and “coastal environment” as keywords (As shown in Figure 2).
This showed that throughout the previous ten years, research on microplastic pollution
in the maritime environment was very active. Furthermore, the significant buildup of
microplastics in marine sediments caused researchers to become generally concerned.
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Figure 2. Most frequently (and top 10) used keywords.

For the past years, scientists from all over the world have contributed to the advance-
ment of knowledge in the field of study on microplastics in the marine environment. In
addition to several other smaller groups in other regions of the world, the major spa-
tial clusters of institutions/universities working in this topic are dispersed throughout
21 nations, including the United States, Europe, and Asia. China has provided the most
review researchers overall, by far. The nations with the most review publications published
on microplastic pollution in marine environments over the previous years, according to
Table 1, were China, Germany, the UK, Brazil, and Nigeria. These studies were conducted
both in economically and non-economically developed countries, as well as in heavily
populated locations, demonstrating that these regions place a high value on addressing the
environmental issues brought on by microplastic contamination in seawaters.

Table 1. The nations with the most review publications published on microplastics.

Country %

China 41
Germany 27.3

UK 22.7
Brazil 18.8

Nigeria, USA 13.6

Many of the journals that have published studies on microplastics in the marine
environment are regarded as high-impact journals. Many papers over the previous ten
years were discovered in ten major journals. Figure 3 revealed that “Marine Pollution
Bulletin”, a journal that specializes on marine pollution first, and second, the “Science of
the Total Environment”, have the most articles published on microplastics in harbors and
coasts over the previous years. The journals that follow are “Environmental Science and
Pollution Research” and “Environmental Pollution”, together with “African Journal of
Marine Science”.
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4. Analysis of Review Papers

In this section, only review papers published on microplastics in marine environments
are analyzed.

Cole et al., in 2011, published a review to summarize the characteristics, nomenclature,
and the sources of microplastics, as well as to talk about the ways in which they enter the
marine environment, to assess the techniques used to find them there, to determine the
spatial and temporal trends of their abundance, and finally, to talk about their effects on the
environment. The marine environment is full of microplastics, which are both numerous
and pervasive. They are most prevalent around coastlines and in mid-ocean gyres. He
highlights that many marine creatures are shown to ingest microplastics, which may make
it easier to transfer hydrophobic waterborne pollutants or chemical additives to biota, and
outlines the importance of the future study areas for academics and decision-makers [14].

On the basis of the laboratory findings that were described in the literature and data
from environmental monitoring, Guo and Wang summarized the interactions of organic
contaminants and metals with microplastics and made a brief assessment of the effects of
microplastics on marine creatures. First, they examined the types, characteristics, and how
the distribution of microplastics in the environment occurred. Second, they discussed how
microplastics’ properties changed once they degraded. Finally, they presented the pollu-
tant concentrations on microplastics in various global habitats, and the impact of several
variables (such as microplastic kinds and characteristics, different types of pollutants, and
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environmental conditions) on the sorption behaviors of microplastics was then thoroughly
explored [35].

More research from Kavya et al. shows that microplastics pose a greater danger
than previously believed; they are an environmental hazard that has recently gained
relevance. In their study, scientists from all over the world have employed a wide range
of methodologies and have made adjustments in response to the unique characteristics
of the studies they have conducted. The historical evolution of the microplastic threat,
the creation of research tools and methodologies, as well as the difficulties that must
be overcome for continuing progress, are all covered in this article. The article covers
microplastic characterization, isolation, extraction, and sources as well [36]. The detection,
features, sources, and ecological implications of paint fragments in our oceans is another
topic covered in a paper from Gaylarde et al., who also examines the prevalence of paint
fragments in microplastic samples from around the globe and how this differs from the
colonization of non-paint microplastics by marine microbes. Road markings, outside
building surfaces, and watercraft and shipping operations all produce paint pollutants.
Antifouling paints used on commercial ships and recreational boats produce a lot of paint
fragments, which can be considered a special kind of pollutant because they not only
contain heavy metals and biocides but also leach them [37].

An extensive literature review conducted by Yin focused on the research of microplas-
tic pollution in sediments between 2013 and 2022. The findings indicated that microplastic
pollution in sediments posed a possible hazard to marine ecology and the world’s food
supply. Furthermore, in the current ecological risk assessment of microplastics in sedi-
ments, the pollutant load index, polymer risk index, and potential ecological risk index
of microplastics were widely used. These ecological risk assessment indicators can be
improved with a lot of monitoring and simulation data, and thus, it is proven that it is
possible to further enhance the current microplastic pollution source analysis system, as
well as to manage the discharge of microplastics in the pollution source by developing
more precise detection and analysis technologies [38].

In addition, Auta et al. examined the origins, global dispersion, fate, and effects of
microplastics on marine biota, particularly the food chain. According to them, microplastics
have a significant negative influence on many marine animals because they are known to
infiltrate the marine environment through land-based and terrestrial activities, particularly
through runoffs. National and international environmental groups have also explored and
outlined a variety of control strategies to address the effects of microplastics, and at the
same time, in order to improve comprehension of the effects on the marine environment,
the corresponding behavioral mechanisms were also mentioned [27].

Prior to discussing specifics about textile fibers as microplastics, broad information
about marine debris and plastics was presented by Cesa et al. Following that, fiber sources
for microplastic pollution were reviewed, with a particular emphasis on household wash-
ings that are processed at WWTPs. Domestic washing was identified as a source of mi-
croplastics, and there is a severe lack of methodological uniformity and the inclusion of
textile considerations in experimental design. The properties of textile products (such as
yarn type and fabric structure) and laundry parameters (such as water temperature and
chemical use) that are controlled by consumer preference are examples of areas where
knowledge gaps exist. Another obstacle to a comprehensive understanding of such sources
is the lack of information on the effectiveness and coverage of sewage treatment facilities
for removing textile fibers [39].

Wang et al. made a similar review that examined studies on seawater, sediment, and
biota, as well as the information that is currently available on microplastics in the China
Sea. The status and restrictions of sample techniques, including their sampling instruments,
volume, and depth, were outlined. There was a description of the analytical techniques
used by microplastics, including sieving, density separation, purification, filtration, and
visual sorting. Finally an extensive analysis was performed on microplastic properties such
as abundances, sizes, forms, types of polymers, origins, and fates [40]. Despite the pollution
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caused by microplastics being acknowledged on a global scale, the knowledge of how they
behave in the marine environment is still limited. The maritime environment is awash
with microplastics, which have the potential to disrupt the marine ecology. Because of the
above, Wang et al. categorized the behaviors of microplastics as physical (i.e., migration,
sedimentation, and accumulation), chemical (i.e., degradation and adsorption), and bio-
logical (i.e., ingestion, translocation, and biodegradation), and a more detailed analysis on
their behavioral mechanisms was presented from them to better understand their impacts
for the marine environment [41].

Ivar do Sul and Costa were directed towards the first comprehensive examination
of how microplastics affect the marine environment and biota. In reaction to the current
and anticipated plastic usage and waste trends, there will be a rise in the quantity of
scholarly publications. As a result, they suggest fresh ideas and crucial strategies for
future research from their study as well [42]. Another review was conducted by Cutroneo
et al., which provided an overview of MP investigation approaches, concentrating on
sample methodology, MP identification in seawater, and evaluating their suitability for the
maritime port environment [43].

Due to the fact that coastal lagoons provide important ecosystem services that are
crucial for society and the economy worldwide, microplastic contamination is one of the
many anthropogenic pressures on these delicate ecosystems. Hence, another review had the
objective to discover and compile recent developments in the study of MP contamination
in coastal lagoons around the globe [44]. The rise in marine plastic pollution was also
reviewed by Alimba et al., with an emphasis on the most recent toxicological repercussions.
Additionally, this is because polymers seldom biodegrade but instead fragment into mi-
croplastics and nanoplastics, which are identified as pervasive contaminants in all marine
habitats throughout the world, through various mechanisms [45]. Another relevant study
made by Torre et al. concentrated on the state of a better understanding of antifouling
paint particle quantity, distribution, and ecotoxicological effects in the marine environment.
Paint particles with harmful biocidal chemicals are known as antifouling paint particles.
Their presence in boatyards and port locations is mostly related to boat repair. Recent
ecotoxicological investigations have also shown that paint particle concentrations in the
environment cause the death of macroinvertebrates and sediment dwellers [46].

One of the current reviews on this topic was developed by Llorca et al. The Mediter-
ranean Sea is the subject of this assessment because it is a semi-enclosed sea with a high
number of plastic-marine-litter-generating activities, making it one of the world’s hotspots
for microplastic pollution. They summarized the main issues and shortcomings related to
microplastic analyses, such as their identification and quantification or the requirement of
standardized protocols. They also shed light on various European legislation initiatives
that were launched in recent years in order to prevent contamination and to deal with the
derived problems [47]. Moreover, other researchers such as Chatziparaskva et al. examine
microplastic accumulation, marine contamination, and abundance in Eastern and Western
Mediterranean nations. The projected microplastic inputs into the Mediterranean Coastal
Belt, repercussions on the economic and environmental sectors, and effects of marine
pollution on human health and marine life are all provided. It is also discussed if current
monitoring technologies are effective and why developing a strategy to stop marine plastic
pollution is essential [48].

To evaluate the claim that particle density is a crucial element in explaining the sinking
behavior and vertical distribution of microplastics and to take into account the uptake and
trophic transfer of microplastics, a thorough literature analysis was conducted by Coyle
et al. [49]. Ryan et al. were interested in providing a summary of the baseline information
currently available that can be used to track changes in marine plastics in South Africa and
recommend preferred methods for tracking changes in marine debris in the area in relation
to some of the most urgent concerns about marine macro- and microplastics [17,50]. At
the same time, Syakti emphasizes the need for future spatiotemporal comparisons of the
presence of microplastics across the marine ecosystem, through standard procedures for
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sampling and analyzing microplastics in the seawater, beach and seabed sand, and marine
organisms [51].

Regarding the approaches utilized for the identification and quantification of mi-
croplastics from the marine environment, a review by Hidalgo-Ruz et al. describes all the
details. The major goal of the current research was to evaluate the various approaches
used for the detection and measurement of microplastics in marine settings. In light of
the findings, they suggest fundamental standards and methods to guarantee that future
quantitative estimates are similar and provide consistent data on the presence of microplas-
tics in the marine environment [52]. Kane et al., via their review study, seek to combine
existing knowledge on the distribution of seabed microplastics with a process-based com-
prehension of how particles are transported, as well as with the established sedimentology
of deep-marine systems. We do this in order to share fresh perspectives from the current
research and to pinpoint problems for the future studies [53].

In order to determine what steps should be taken to best preserve world health, Hale
et al. wished to strike a balance between the benefits and drawbacks of plastics. Given
that the majority of researchers studying microplastics in the environment have mostly
worked within their own fields of expertise, such as polymer chemistry, waste management,
atmospheric, terrestrial, freshwater, and marine science, they completed their review by
identifying the main obstacles that must be overcome in order to accomplish these goals,
which is meant to ease that shift [54]. Solomon et al. focused on extracting and measuring
microplastics from marine matrices using both traditional and cutting-edge methods.
Although addressing the issues of microplastics in the water is a complex and enormous
endeavor, some of the methods to minimize them are highlighted. They summarized
the biological and ecological effects of microplastics on marine life and the environment,
reviewed the solutions to reduce the disposal and occurrence of microplastics and stop
the threat of microplastics in the ocean, and reviewed various microplastic assessment
methodologies for various marine matrices [55]. The main goal of another study from
the same author was to review some of the current, advanced strategies in reducing the
occurrence and menace of microplastics in the environment [56].

Diaz-Mendoza et al. gathered the various categories of plastics that can be found in
coastal marine debris, including information on the classification of microplastics according
to various studies. The various methodologies used to estimate the quantity and abundance
of microplastics that may have an impact on human health and coastal marine ecosystems
are also described [57]. Yang et al. investigated the origins and fates of MPs in the marine
environment, the effects of microplastics on marine animals, and the microorganisms for
microplastic degradation in the marine environment. They also address the issues with
microplastics’ impact on the environment and highlight the necessity of future studies and
management plans for marine microplastics [58]. Similarly, See et al. reviewed the sources,
motions, and concentration of microplastics in the marine environment in addition to the
findings of this investigation and sought to comprehend the strategies for sampling and
laboratory testing for the presence of microplastics, as well as their shortcomings [59].

Over the previous years of research, the interest in tackling various topics was sparked
by the publications published in these journals. In a nutshell, the research focused on
the effects of microplastics on the marine environment, their capacity to interact (sorp-
tion/desorption) with other environmental contaminants, the transport routes of microplas-
tic debris and potential sites for their deposition, the consumption of microplastics by
marine organisms, and the quantification and characterization of these plastic microparti-
cles in marine and coastal environments.

As it appears in Figure 4, the dominant analyzed topic from the reviews is related to the
type, properties, and distribution of microplastics, comprising 14 review papers, occupying
almost 70% of all review papers. The next category is the sources of microplastics, with
13 review papers and a 65%, followed by the environmental impact of microplastics, with
12 review papers. Some other popular topics were the trends in microplastics abundance,
the detection methods, the degradation, the strategies, etc. However, very few studies
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focused on the legislation regarding the microplastics, the ecological risk, the mechanisms,
the advances, etc. In general, it could be argued that there are a variety of topics that
concern microplastics, but at the same time, there are gaps and lack of information for some
other relevant topics.
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Studies on microplastics in ports and coasts have become more prevalent over the
past 20 years, according to the annual production of publications on microplastics in the
maritime environment. This tendency became more apparent starting in 2010, when the
publications’ yearly growth rate began to rise. These studies sought to determine the
relationship between marine pollution and human activity in ports and harbors.

5. Bibliometric Analysis of All Articles for Microplastics in Ports and Coasts

In this section, an analysis is carried out regarding all articles published on microplas-
tics in ports and coasts, not only reviews, as was the subject of Section 4. Regarding the
review that aims to summarize the data and the results gathering information from different
ports and coasts and to map the situation around the world, the method that we used was
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the same method by Moher et al. as in the first part of this paper [34]. The initial step of the
search for applicable content was launched from the Scopus and Google Scholar databases.
This selection was made with a fairly broad context in mind, and the literature search
was conducted by looking for papers that contained studies on microplastics, mostly in
ports and then secondarily in beaches. The study used keywords such as “microplastics”,
“marine environment”, “marine”, “marine debris”, “marine litter”, “coasts”, “harbors”,
and “ports”, as well as a combination of marine- and microplastics-related phrases. The
search was restricted to items from 2010 to 2023 due to the time frames. After doing the
appropriate searches in the pertinent databases, we exhausted all of the Scopus and Google
Scholar results, and we stopped when there were several pages of results with no relevant
publications, as we did with the meta-analysis. The following were excluded from the
search: book chapters, conference papers, master’s and doctoral theses, and anything
written in a language other than English. In light of the aforementioned criteria, the papers
were subsequently checked by title, keywords, and abstract and the relevant publications
were noted in our list. We read the main body of each document, paying particular attention
to the abstract and conclusions sections.

The obtained papers were then put through a bibliometric analysis, and Figures 5 and 6
show the results of the analysis. The quantity of pertinent papers is increasing yearly, as
may be shown (as shown in Figure 5). Among the 78 documents acquired, 57 were exam-
ined and further categorized because they dealt with incidents that occurred in ports and
along the coast, while the remaining 21 examined the significance of keeping an eye on the
waters. There were a significant number of studies since 2014 that discussed microplastics
in harbors and on the shore, indicating that this problem is gaining more and more atten-
tion. These papers frequently used the terms “microplastics”, “(coastal) (harbour) (surface)
sediment”, “ Water, marine, coastal, ocean pollution”, “ (marine) (plastic) (Floating) debris”,
and “monitoring” as keywords (as shown in Figure 6). This showed that throughout the
previous ten years, research on microplastic pollution in the ports was very active.
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Over the past few years, researchers studying microplastics in the marine environment
from all over the world have advanced our knowledge in this area. The largest spatial
clusters of institutions/universities researching on this topic are scattered throughout
26 countries, including the United States, Europe, and Asia, in addition to numerous
additional smaller groupings in other parts of the world. China has, by far, contributed
the most reviewers overall. According to Table 2, China, Germany, the UK, Brazil, and
Italy had the most review articles published on microplastic pollution in harbors in the
previous years. For one more time, as with the results of the meta-analysis before, these
studies show that these areas place a high emphasis on addressing the environmental
challenges caused by microplastic contamination in seawaters because they were carried
out in both economically and less economically developed nations, as well as in densely
populated areas.

Table 2. The nations with the most publications on microplastics in ports and coasts.

Country Publications on Microplastics in
Ports and Coasts (%)

China 17.2
Brazil 15.5
Italy 13.8
UK 12.0

Germany 10.3
Japan, India, Norway, Australia 8.6

New Zealand, South Korea 7.0
South Africa, USA, Netherlands 6.9

Indonesia, Spain, France, Iran 5.2
Russia, Kenya, Croatia, Peru, Malaysia, Portugal, Egypt 3.5

Studies on microplastics in the marine environment are published in numerous publi-
cations, many of which are recognized as having high impact factors. In eleven leading
journals, many papers from the past ten years were found. According to Figure 7, the
journals “Marine Pollution Bulletin”, which focuses on marine pollution, and “Science
of the Total Environment” have published the most studies on microplastics in marine
environments during the past few years. The following periodicals are Environmental Pol-
lution, Marine Environmental Research, and Case Studies in Chemical and Environmental
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Engineering. This supported the claim that pollution in the maritime environment was one
of the study’s expanding focal areas.
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In Table 3, all the results are gathered and the data for the microplastics are classified
according to special criteria such as polymer type, shape, size of materials, pollution source,
method of detection, and the studied location.
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Table 3. Classification of microplastic (MP) samples in recent studies (abbreviations: PA: polyamide, PE: polyethylene, PET: poly(ethylene terephthalate), PMMA:
poly(methyl methacrylate), PP: polypropylene, PS: polystyrene, PU: polyurethane, PVC: poly(vinyl chloride), LDPE: low-density polyethylene).

Polymer Types Shape Size Color/Texture Pollution Source Method of Detection Location/Area Ref.

polyesters, PS, PA,
PVC, PP, and PE

Fragments and
filaments 5 mm black or grey color anthropogenic

activities ATR-FTIR analysis Kuala Nerus coast and
Kuantan port (Malaysia) [60]

nylon, PU, PE, and
PET

Filaments, fragments,
and films 1–5 mm range of colors multiple sources FTIR port of Piombino, port of

Portoferraio (Italy) [61]

Polyester, PE, alkyd
resins, and PS

Fibers, hard plastic,
and paint particles (<2 mm) - industrial facilities FTIR Southeastern coast Sea (Korea) [28]

PP, LDPE, PE, PS, PA,
PMMA, cellophane,

and acrylonitrile

Granular shape and
fibrous 125 µm–1.82 mm -

anthropogenic
activities, oil-rig
installations, and

shipping operations

ATR-FTIR Qatar’s Exclusive Economic
Zone coast [62]

resins Fragments and foams 4–5 mm -
industrial,

commercial, and
fishing activities

stereomicroscopy Portuguese coast, fishing ports [63]

rayon, PE, PP, PA,
PET, PS, PMMA, and

PU

Fibers, films,
fragments, and pellet <500 µm -

river and sewage
discharge and

maritime activities,
shipping

µ-FTIR Sishili Bay, North Yellow Sea
coast, China [64]

PE, PP, and PET Particles, pigments 200–34,900 µm - -
Raman spectroscopy,

energy-dispersive X-ray
spectroscopy (EDX)

Malaysian coasts [65]

PP, PE, PS, and nylon Filaments and
fragments blue, white, and red anthropogenic

activities Raman spectroscopy Kuwait coastal areas [66]

Nylon, acrylic, and
ionomer surlyn

Fibers, fragments,
and pellets >251 µm -

anthropogenic
activities, maritime

activities
ATR-FTIR Port Blair Bay, Andaman

Islands, India [67]

PE Microcapsules and
fragments 2–3 mm various colors fertilizers FTIR and SEM Japanese coast [68]

PE, PP, alkyd resin
polyester, polyolefins,
polyester, PS, and PA

Fibers and fragments 5000 µm - - FTIR Vietnam coast [69]
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Table 3. Cont.

Polymer Types Shape Size Color/Texture Pollution Source Method of Detection Location/Area Ref.

PE, PP, PS, and PET Particles 5 mm - maritime activities ATR-FTIR particle size
analysis PSA Port of Durban, South Africa [30]

PE, HDPE, and PP
Microfibers and
particles (mostly

fragments and films)
- transparent and blue

swimming, walking,
playing with sand,

seaside camping, and
fishing

binocular microscope Busher port coastline. Persian
Gulf, Iran [70]

PP, PE, and polyester
Fibers, fragments,
spheres, films, and

foams
0.25–5.0 mm

transparent, blue,
yellow, black, and

green

port activities and
tourism economic

activities
Raman

tropical bays (Manzanillo,
Santiago, Navidad and

Cuastecomates) of the central
Mexican Pacific

[71]

Rayon and PET Fibers, fragments,
and films

5 mm, 1 mm,
300 µm, and

45 µm.

white, green, black,
yellow, and red

human activities, fish
and port activities

FTIR-ALPHBROKER-
Platinum-ATR
spectrometer

Damietta and Port Said, Red
and Mediterranean seas,

Egypt
[72]

alkyds, epoxy resins,
poly(acrylate-
styrene), and

PU

Foams, hard plastic
fragments, paint
fragments, and

pellets

1–5 mm yellow, gray, and
pink

urban and port
activities, boat and

ship coatings
optical stereomicroscope Paranagua Estuarine port and

coast, South Brazil [73]

PE, PP, PET,
polyester, nylon, PU,

and resins

Filaments, fragments,
granules, and

spheres
63–1000 µm white, black, blue,

grey, and brown
fish and port

activities
X-ray diffraction (XRD),
µ-Raman spectroscopy

Genoa port and a fishpond,
Italy [74]

HDPE, PS, PP, and
PET.

Lines, fragments,
pellets, foams, and

fibers
<5 mm -

tourism,
anthropogenic, and
maritime activities

FTIR
Port Blair, coast of the

Andaman and Nicobar Islands,
India

[75]

PET, PP, and PE Films <300 µm white human activities Stereomicroscope, FTIR Vava’u archipelago coast,
Tonga [76]

Polyether PU, PE, PP,
and PS

Foams, pellets,
fragments, flakes,
fibers, films, and

sponges

<1 mm transparent, white,
and yellow

high-intensity
human activities,

mariculture, tourism,
and port construction

ATR-FTIR, SEM coastline in Shandong
province, east China [77]

PP, PE, and PET Fibers and fragments 25–150 µm black, red, and blue port activities Stereomicroscope, laser
infrared imaging spectrometer

fishery port city in southern
China [78]
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Table 3. Cont.

Polymer Types Shape Size Color/Texture Pollution Source Method of Detection Location/Area Ref.

PP, PE paint, and
epoxies Fibers and fragments 100 µm–5 cm yellow and blue

Marine coating
(boat paint and

epoxy)
stereo zoom microscope coast of South Andaman

Island, India [79]

PET and nylon Fibers and spherules 0.1–1 mm white and black

fishing and fish
processing activities
along with intensive
anthropogenic and
industrial activities

FTIR

seaports (Port Jackson, Botany,
Kembla, Newcastle, Yamba,

and Eden) of New South
Wales, Australia

[80]

PS and cellulose Fibers, fragments,
and films ~1 mm black/grey and blue

anthropogenic
influence, fisheries,
industrial, and port

activities

Raman spectroscopy Ushuaia Bay, Argentina [81]

PA, PE, PET, PP, and
cellulose Fibers and fragments ~1 mm blue and transparent

industry—tourism,
fishing, and shipping

ports
FTIR South Australian coastline [82]

Nylon Fibers >1000 µm black landfill leachate micro-Raman analysis Bushehr port, Iran [83]

PVC, PP, PE, PS, and
PA Fibers and fragments 100–500 µm - human activities µ-FTIR port of Rimini Adriatic Sea,

Italy [84]

PET, PP, PP-co-PE,
alkyd, cellophane,
PU, PA, and rayon

Lines and fragments <1 mm black and white

harbor, industrial,
activity and

populated, tourist,
residential, and

aquaculture area

FTIR Tanmen Port, China [85]

PP, PS, PET, PVC,
and PE

Fibers, fragments,
films, and beads 195–4780 µm

red, blue,
black/brown, and
transparent/white

Packaging, human
activities, port and
industrial, activity

ATR-FTIR and Micro-Raman
spectroscopy

7 port Cities in China, Japan,
South Korea, Sri Lanka,
Taiwan, Thailand, and

Vietnam

[86]

Polyester, PP, PE,
PET, PS, PVC, nylon,

and PU

Fibers, fragments,
films, foams, and

pellets
0.3–5 mm white, transparent,

and yellow

Fishing, human
activities,

construction of ships,
insulating materials,
fabrics. packaging

FTIR Goa coast, India [87]
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Table 3. Cont.

Polymer Types Shape Size Color/Texture Pollution Source Method of Detection Location/Area Ref.

PP, PS, PET, and PE - 63–500 µm -
tourism,

anthropogenic, and
maritime activities

- New Zealand coasts [88]

LDPE Pellets and fragments ≤1 mm white and
transparent Harbor activities ATR-FTIR

Deep Bay, coast, Tolo Harbour,
Tsing Yi coast and Victoria

Harbour, Hong Kong, Japan
[89]

PE and PP
Fragments, fibers,

foams, and
micro-beads

~250 µm

transparent, opaque,
white, black, blue,

green, red, yellow, or
multi-colored

Harbor activities (FTIR) Kingston Harbour, Jamaica [90]

PE, PP, PS, PET, PA,
and PVC

Fibers, fragments,
spherules, and

granules
0.1–0.5 mm black, transparent,

yellow, red, and blue Harbor activities
Scanning electron

microscopy/energy dispersive
spectroscopy

Sanggou Bay, China [91]

- - 1–5 mm -
tourism,

anthropogenic, and
maritime activities

- Sile Port, Black Sea Coast,
Istanbul, Turkey [92]

- Fibers, fragments,
and micro-beads -

brown, grey,
semitransparent, and

green

anthropogenic
pollution optical microscopy Fishing port, coast of Peru and

Chile [93]

- Pellets -
white, yellowish,

orange, brown, and
pigmented

Loading in harbor
areas and transport

by ships
Visual classification Port of Santos, Brazil [94]

- Fibers, fragments,
and films - - human activities FTIR Fishing Ports in Java Island,

Indonesia [95]

PE, PVC, PET, PS,
and PP -

<200 µm,
200–500 µm, and

>500 µm
- anthropogenic

pollution
laser direct infrared (LDIR)

technique
Mediterranean marine

samples [96]

Rayon, PET, PS, PE,
and PP

Fibers, fragments,
granules, and films <1 mm

transparent, purple,
brown, white, black,

blue, and red
human activities m-ATR-FTIR and SEM-EDS Qingdao and Dongying, China [97]
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Table 3. Cont.

Polymer Types Shape Size Color/Texture Pollution Source Method of Detection Location/Area Ref.

-
Fragments, foams,

fibers, films, pellets,
and filaments

1.6 ± 1.4 mm -
human activities:

packaging materials,
and resins

- Baseco Port Manila Bay,
Philippines [98]

Polychlorobiphenyls
and PU

Fibers, fragments,
Styrofoam, and

pellets
<5 mm yellow-brown, black,

blue, red, and green
fishing and harbor

activities
visual identification under a

stereomicroscope
Guanabara Bay, Southeast

Brazil [99]

PP, PE, PS, PVC, PET,
and PMMA Fibers ~125 µm - Offshore, industries,

and ports activities

pyrolysis–gas
chromatography–mass spec-
trometry/thermochemolysis

(Py-GC/MS)

German Bight North Sea,
Germany [100]

Nylon, PET, and PP Fibers, filaments, and
fragments <5 mm - port, industries, and

residents activities light microscope Dumai Port, Indonesia [101]

-
Foam and Styrofoam
pieces, rope pieces,

and fibers
2 mm to 40 cm -

Fishing, shipping,
and touristic

activities
visual sorting

Port of Cristo and Port of
Colonia de Sant Jordi of the

Island of Mallorca, Spain
[102]

- Fibers, fragments,
and films 500–5000 µm

black, green, red,
purple, blue,

transparent, and
brown

Anthropogenic
activities: shipping,
plastic production,
port activities, and
sewage treatment

- Tudor, Port Reitz, and Mida
creeks, Kenya [103]

- Fibers, fragments,
and films - - Tourism and

industry activities Stereo Microscope Kendari Archipelago Harbor,
Indonesia [104]

PVC and PET Fibers, fragments,
and nurdles 63–5000 µm black and grey Human activity and

port activity
Bestscope dissecting

microscope
Richard’s Bay Harbour,

Durban Harbour, South Africa [105]

- Fibers <5 mm

red, yellow, black,
pink, orange, purple,

green, blue, and
transparent

Human activities dissecting microscope Tudor, Port Reitz, and Mida
creeks, Kenya [106]

PP, PE, phenoxy
resin, PS, polyester,

and synthetic rubber

Fragments, spherules,
and fibers <1 mm white, blue, green,

and red
Harbor activities and

ship paint resin FTIR Jinhae Bay, o southern coast of
Korea [107]
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Table 3. Cont.

Polymer Types Shape Size Color/Texture Pollution Source Method of Detection Location/Area Ref.

- Fragments and
pellets <1 mm white, blue, brown,

and green Port facilities stereomicroscope Northeast coast of Brazil [108]

PCBs Filaments <5 mm - Port activities stereomicroscope Grand Harbour Valletta, Malta [109]

PVC, rayon, PE,
polyester, PS, and

cellulose

Fibers, pellets, and
plastic fragments - black, blue, or white fishers and maritime

ports activities FTIR coast of Asturias, Spain [110]

alkyds and
poly(acrylate-

styrene)

Fragments, spherules,
and fibers <1 mm green, blue, and

white

Harbor activities,
ship paint resin, and

ship coatings
FTIR southern coast of Korea [111]

PS, PE, and PP Microbeads and
pellets

<1 mm; 1–2 mm;
or 2–5 mm

white, transparent,
red, blue, and green

estuarine and harbor
environments

optical/fluorescence imaging
and micro-Raman

spectroscopy

coastlines in the Canterbury
region of New Zealand [112]

PE and PP Fragments and
pellets 1–5 mm - human activities FTIR Bristol Channel, UK [113]

PP-co-PE, PA, PE,
PET, PP, and PVC

Fibers, thin films,
and fragments <0.5 mm

blue, black, red,
yellow, green, and

white

marine fishery and
port transportation FTIR Tianjin coastal waters, China [114]
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6. Results and Discussion
6.1. Sources, Fate, and Route, Transfer

Marine litter is the outcome of careless garbage dumping that is carried either directly
or indirectly to our seas and oceans. We examine many sources of plastic waste and talk
about both direct and indirect ways that plastic might reach the marine environment in
this part. Although the focus of this review is on microplastics, in this section, we also
take into account the careless disposal of macroplastics because, over time, they may break
down into secondary microplastics [17,115]. Similar to this, synthetic garment fibers cause
shedding in microplastics, which are washed into wastewater or water treatment facilities
as effluents [27].

Some notable amount of the plastics in marine litter comes from terrestrial sources.
These plastics include the major microplastics used in cosmetics and air-blasting, as well
as “user” plastics that were incorrectly disposed of and plastic leachates from landfills.
Certain types of plastic have a significant potential to infiltrate the marine environment
through rivers and wastewater systems or by being blown off-shore because over half of
the world’s population lives within fifty miles of the coast [14,16,116].

In oxidation ponds or sewage sludge, waste-water treatment facilities will catch
macroplastics and some small plastic debris; however, a considerable amount of microplas-
tics will slip through these filtration systems. This transport of terrestrial waste from land
to water can be made worse by extreme weather events such as hurricanes or flash flood-
ing [7]. After the original debris that entered the ocean lost its structural integrity, physical
forces such as surface waves, turbulence of the water currents, etc., are also thought to
be important drivers of fragmentation [7,9]. Road marking paints degrade and release
chemicals depending on their composition, where they are placed (in the middle of the
road or on the edge), how much traffic they receive, and finally, the climatology of the
area [22].

Coastal tourism, commercial and recreational fishing, marine boats, and marine indus-
tries are all sources of plastic that can enter the marine environment directly and end up as
secondary microplastics after long-term degradation, endangering the biota. While it is
important to note that marine debris visible on beaches also results from the beaching of
materials carried on in-shore- and ocean currents, tourism and recreational activities are
responsible for a variety of plastics being thrown along beaches and coastal resorts [19,116].

The production of plastic goods using granules and tiny resin pellets, or “nibs”, as its
basic material is another noteworthy source of plastic waste. These raw materials have the
potential to enter aquatic environments through unintentional spillage during transport—
on land as well as at sea—inappropriate usage as packing material, and direct outflow from
processing facilities [14,42]. Boats and ships are typically regarded as the main contributors
of paint shards in the waters; however, stationary buildings such as piers and oil rigs
also contribute. Synthetic polymers, such as alkyds, epoxy resins, poly(acrylate/styrene),
and polyurethane, are frequently found in protective coatings used on ship hulls and
superstructures because they are relatively durable and long-lasting. They eventually raise
the microplastic content of the water when they are abrasively removed [37]. Microplastics
may also be created during painting spills or during dry dock painting [111].

Microplastics are found in a wide variety of marine creatures, including seabirds,
fish, bivalves, mammals, and crabs, as well as on beaches, in seabed sediments, and in
surface waters. Microplastics may enter the oceans through zooplankton excrement as a
different entry point [117]. A study from Cole et al. proved that fecal pellets are a source of
microplastics in the marine environment by showing that they can be indirectly swallowed
through the eating of fecal pellets [14,118].

Moreover, sea-based sources include the deliberate or unintentional loss of plastic
products into the ecosystem, as in the instance of discarded fishing gear [8]. Microplastics
are a byproduct of packaging and single-use plastic bags, which are often used in daily
life [27]. Particularly as a result of the COVID-19 outbreak, an excessive amount of plastic
waste—including bottles for hand sanitizer, surgical gloves, and face masks—is being pro-
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duced quickly [119]. In Figure 8, the most dominant sources of microplastics are presented.
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Last but not least, the disintegration of plastics is aided by the oxidative deterioration
brought on by UV radiation and high temperatures. However, it will take hundreds or
thousands of years for the plastic particles in the environment to entirely mineralize, not
within a short period of time [120]. In general, hydrological features, such as seasonal
fluctuations in water velocity, depth, and flow, have an impact on the transportation
of microplastics in the aquatic environment [121,122]. UV light’s radiation strength can
fluctuate in addition to its spectrum of wavelengths. Location, season, time of day, and
weather on the Earth’s surface all affect how intense the radiation is. The closer a site is to
the equator, the higher the average UV radiation intensity [123,124].

In most cases, trash in any body of water will eventually reach the ocean. Microplastics
are slowly migrated and diffused across the ocean by the strength of water and wind,
eventually becoming as common as they are now, ranging from the vast ocean gyres. The
ecosystems most severely impacted by microplastic pollution include marine circulation,
estuaries, and other coastal areas where humans are involved [58,125,126].

6.2. Methods of Detection/Identification/Characterization

An appropriate analytical method is crucial for MP investigations, according to Song
et al., who pointed out that compared to Fourier transform infrared spectroscopy (FTIR)
identification, conventional stereomicroscope identification might both underestimate
and overestimate the number of MPs in a combination. Although there are alternative
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techniques such as pyrolysis GC-MS, microFTIR and microRaman spectroscopy are the
most frequently utilized. Evidently, in some studies, researchers employed the best ap-
proach, which entails using a range of strategies to overcome the limitations of individual
methodologies [36,127].

Direct light microscopy is traditionally used to examine microplastics that are taken
from the environment, choosing and categorizing particles by their form, size, and
color [42,107]. In some investigations, researchers used the most effective strategy, which
calls for utilizing a variety of tactics to surpass the constraints of unique approaches [37].

A frequently employed method for investigating the bigger particle masses is optical
microscopy. This technique enables the separation of microplastics from the contaminating
ambiguous mass and permits the analysis of surface roughness [126]. With all these
shortcomings of conventional optical microscopy, scanning electron microscopy (SEM) can
offer a considerably sharper image. We can easily distinguish between organic and plastic
particles due to the high resolution of electron microscopy [6,36].

The use of Fourier transform infrared (FTIR) spectroscopy as a tool for microplastic
characterization has also proven to be quite beneficial and was used in the majority of the
reviewed studies. Each polymer creates a distinct set of spectroscopic band signatures that
enable discrimination between plastics, as well as between plastics and organic material.
The identification of polymers is made simple by a properly constructed and comprehensive
database of available standard spectroscopic data for the various plastic polymers. The
option of microFTIR (-FTIR) may be employed when samples with very small particle sizes
are available. In order to analyze MPs, phenomena including attenuated total internal
reflectance (ATR), transmission, and reflectance modes are utilized as IR spectroscope
operational modes [36,111].

In addition to using FTIR, many of the investigations mentioned above have also
used Raman spectroscopy to identify MPs. In contrast to FTIR, which only permits the
identification of the polymer, Raman spectroscopy provides a composition of the polymers
in addition to identifying the plastic. Given the high expense of the equipment, Raman
spectroscopy also provides a comparable tool for identification to the FTIR. It is possible
to employ FTIR and Raman spectroscopy in conjunction with one another. The Raman
Spectroscope’s extremely narrow slit beam makes it feasible to characterize particles with
sizes as small as a few microns using the Raman spectroscopy methods [36,128].

However, in some studies, the identification made by the selective sampling in situ
refers to the collection of plastic trash from the sandy beach surface that can typically be
seen with the unaided/naked eye. Due to their spherical shape and relatively big sizes (up
to several millimeters), which make it easier to identify them on a sandy surface, plastic
granules are a good candidate for this technique. The likelihood of missing plastic, however,
increases if it is combined with other trash or has an odd shape [129].

Regarding their collection, microplastics from surface seawater were often gathered
for samples using trawls, nets, pumps, and stainless-steel equipment. Moreover, glass
bottles are frequently used to collect surface seawater samples. Plastic buckets are also
common collection tools. Some of the several sampling locations are coastal regions and
open sea regions. Sediments are collected using stainless steel samplers, foil bags, or glass
bottles as sampling equipment. Fish were the most often employed research target in all
of these investigations, and the sample methods used differed depending on the different
organisms [40].

In general, a number of sample processing procedures, including sieving, density
separation, purification, filtration, and visual sorting, are used in the determination of
MP abundance and type. Following these procedures, the Fourier transform infrared
spectroscopy (FTIR) or Raman quantification and identification process is carried out [40,52].
Figure 9 shows the different detection methods and how often they are used.
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Figure 9. Detection methods of microplastics.

6.3. Status of Microplastics (Size, Shape, Color, Polymer Type)
6.3.1. Polymer Type

In maritime ecosystems, microplastics mostly consist of PE, PP, PS, PVC, PA, and
PET. PE and PP are typically floating microplastics because of their lower densities than
water [8]. Because they are denser than water, PVC, PS, PET, and PA have a tendency to
sink in the water column. It is clear from the categorization of the original publications and
the review papers that microplastics are frequently found in inland lakes, estuaries, oceans,
ports, and beaches. There is evidence that surface water contains more microplastics than
the water column does. There are more small microplastics (0.02–1 mm) than large ones
(1–5 mm) [35].

The degradation of plastic polymers occurs as a result of numerous weathering/aging
processes that microplastics go through in marine and coastal environments, including
sun exposure, thermal aging, biofilm formation, and oxidation [130]. According to the
various weathering processes, degradation is defined as a series of chemical reactions
that destroy the structural integrity of plastic polymers. It is frequently divided into pho-
todegradation, thermal degradation, biodegradation, and thermos-oxidative degradation.
Degradation causes secondary microplastics to enter the environment and fragments of
macroscopic plastic debris to become garbage [131]. The key characteristics that are al-
tered by degradation are their color, surface morphology, crystallinity, particle size, and
density [35].

In this review, analyzing the polymer type of microplastics helps confirm the polymer
composition of questionable materials and confirm the precision of visual recognition.
For determining the polymer type of microplastics, infrared (IR), Fourier transform in-
frared (FTIR), and Raman spectrometers were utilized. Instrumental analysis was used to
determine the polymer type of MPs in most of the harbors. Polypropylene (PP), polyethy-
lene (PE), polystyrene (PS), and polyethylene terephthalate (PET) were the most common
polymer compositions. Specifically, PET is a significant class of synthetic polymer that is
frequently utilized in textiles and packaging. Moreover, several unusual polymers such as
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nylon, rayon, polyurethane (PU), and polyvinyl chloride (PVC), among others, could be
found. The graph below (Figure 10) gathers all the results of the classification.
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Figure 10. Different polymer types found in sediments and samples numbers show the frequency of
every type.

6.3.2. Size

The bulk of the microplastics were thought to be between 0.001 and 5 mm in diameter.
The statistics derived from our analysis show that the mesh size, sieve apertures, or filter
pore sizes utilized throughout the collection and extraction processes—which ranged from
0.001 to 0.5 mm—determined the smallest size. In general, distinct size fractions can be
identified based on the properties of the size distribution of microplastics. The maximum
length of each particle or the mesh sizes of a cascade of screens employed during MPs
extraction were also used to determine the size category [9,40,91].

6.3.3. Shape

The shapes of microplastics range from amorphous to spherical and long, thin strands,
and all of them are shown in Figure 11. Plastic pellets come in a variety of shapes, primarily
spherical to ovoid with rounded ends, but they can also be tablet-like, oblong, cylindrical,
spherical, and disk-shaped [52]. Pellets, fragments, fibers, films, granules, flakes, ropes,
microbeads, sponges, foams, lines, and particles were the most common categories for
nanoplastics [35]. The morphologies of microplastics were present in all 75 test sites and
included fibers, pieces, films, pellets, foams, sponges, lines, and particles. Regardless of the
various sampling sites, the classification results demonstrate that fibers, pieces, films, and
pellets were the predominant morphologies.
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Figure 11. Shapes of microplastics.

6.3.4. Color

Color classification of the microplastics’ source is crucial and presented in Figure 12.
In circumstances when microplastics are dispersed among numerous different pieces of
detritus, color can help with sorting. As opposed to those with dull hues, which are
readily missed and may introduce bias, eye-catching particles have a high possibility of
being isolated for later detection as microplastics. For a preliminary identification of the
chemical make-up of the most popular pellets, colors were used [52]. For instance, blue and
green fibers typically come from clothing and fishing nets. Transparent, black, white, red,
yellow, blue, green, gray, and brown were the most prevalent microplastic colors among the
75 sampling locations that examined the finds’ color. Brightly stained and pigmented MPs
can be seen and identified visually. Nonetheless, it is possible to undervalue the problem if
transparent microplastics are neglected. In addition, marine species may recognize colored
microplastics more readily than transparent ones [40,132].

6.4. Ecological Risk

Microplastics with densities greater than seawater collect in sediments, while those
with densities below seawater float on the water’s surface. Microplastics may sink due to an
increase in density brought on by biofouling by marine creatures [133,134]. As the density
of the plastic material exceeds that of seawater, which happens when biofouling develops,
the plastic material sinks to the bottom of the ocean [8]. Marine sediments are shown
to be long-term sinks for microplastics and have the capacity to accumulate small pieces
of plastic [27]. Microplastics are known to accumulate in deep sea regions, underwater
canyons, and marine coastal shallow deposits [133].
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Figure 12. Colors of microplastics.

Microplastics are becoming more bioavailable to marine life as their quantity rises.
These microscopic plastic particles’ potential bioavailability to marine animals depends
on their color, density, shape, size, charge, aggregation, and abundance. When consumed
by marine species, microplastics injure them chemically and physically [135]. The intake
of microplastics by marine species may have chemical or mechanical impacts, such as
inflammation, hepatic stress, or diminished growth. Mechanical implications include the
polymer attaching to external surfaces and impeding motility and blocking the digestive
tract [27,136].

Research has revealed the presence of compounds that are used to make plastic in
fish tissues. While hazardous substances from various sources can accumulate in the
organism, predator–prey interactions facilitate the transfer of the toxins in higher quantities.
Laboratory studies to show the effects of microplastics on marine biota were conducted
as a result of worries about the movement of microplastics and dangerous substances
between trophic levels [8,41]. Several studies were also conducted to demonstrate that fish
are at risk from ingesting microplastics since mortality occurs frequently before fish reach
maturity [27].

Although it is clear that microplastics are pervasive and widespread, the knowledge
of the biological effects of this pollution on marine organisms is still in its infancy [9,24].
The scientific worry about the prospect that microplastics, which are available to a variety
of marine species due to their small size, could be harmful to biota is growing [14].

Marine species, including zooplankton, mussels, oysters, corals, fish, etc., may con-
sume microplastics that are present in the environment. Once consumed by marine species,
microplastics pose dangers to those organisms. Microplastics cause mechanical harm to
organisms on a physical level. Microplastics, for instance, may obstruct the digestive tract,
harm the intestinal lining, and even change how organisms filter substances and engage in
phagocytosis [35].



Sustainability 2023, 15, 9079 28 of 40

Moreover, predation may cause microplastics to accumulate in the food chain. Mi-
croplastics can, therefore, accumulate in organisms through a variety of different pathways.
Microplastics in seafood, a source of protein, may also pose health hazards to people.
Chemically, contaminants would be absorbed and accumulated by microplastics in aquatic
environments. In this way, microplastics serve as carriers for hazardous contaminants.
However, there is still no conclusive proof of the link between microplastics and pollutants
in the food chain and human health. Microplastics are nevertheless significant transporters
of pollutants to marine animals, and under some circumstances, they may collect more
contaminants in the environment than other media [35,137].

The effects of paint MPs on the biota are not well studied. It is possible to anticipate
that both MP kinds acting physically have an identical impact on the impacted species.
The presence of MPs in cormorant chicks was most likely caused by transfer from fish that
the mother birds had consumed, according to one of the rare studies on MPs in animals
in which paint particles were detected. However, MPs from antifouling paints exhibit
enhanced toxicity not only when they come into touch with organisms but also when
they release their toxins into the environment. At pleasure boat harbors, where many
of the toxins found were reportedly connected to paint additives, the ecotoxicological
consequences of sediments are investigated. Romeo et al. discovered that a site near
grit-blasting activities was the most polluted with heavy metals (particularly Pb, Cu, and
Zn) and organotins in their relatively detailed investigation of microplastic pollution in the
Grand Harbour in Valetta, Malta. Since the port is near busy shipping lanes, they assumed
that this was a result of the heavy maritime traffic [37,109,138]. In other words, the toxicity
of the paint particle itself may be increased by the emission of potentially harmful metals
from boat paints, such as Cu, Zn, Sn, and Pb, which raises environmental issues in port
and maritime areas. With their mobilization into the water above and encouragement of
antifouling paint burial, deposit feeders may be able to contribute to the chemical cycle of
compounds related to antifouling paints [46].

As in other environments, the amount of MP pollution in the environmental compart-
ments (i.e., the water, sediments, and organisms) of coastal lagoons varies depending on
the proximity to and the intensity of the pollution sources, which typically include subpar
waste management techniques for both residential and industrial waste, as well as tourism,
fishing, aquaculture, port activities, and river discharges, among other things [44]. The
creature class in which MPs were most extensively researched in coastal lagoons, as well
as other marine, estuarine, and freshwater habitats, is fish. Fish from coastal lagoons had
higher MP abundances in their digestive tracts than fish from bays, estuaries, lakes, rivers,
and the open ocean [139,140].

6.5. Monitoring Microplastics

All varieties of marine species suffer from plastic garbage. Many marine animals,
such as cetaceans, seabirds, sea turtles, fish, and invertebrates, consume and accumulate
plastic waste and microplastics, or they become entangled in plastic fibers. Different studies
have now revealed that ingestion and/or entanglement are the main ways that marine
wildlife is exposed to plastic trash. This is in line with early observations that suggested a
correlation between the amount of plastic ingested by seabirds and their physical states [19].
Following that, studies revealed that scientists were using marine creatures more and more
as sentinel organisms to keep an eye on marine plastic waste. Seabirds, for instance, serve
as an effective sentinel to track the increase in marine plastic trash contamination [141].

Early in the 1990s, the emphasis of study moved from describing these effects to com-
ing up with answers to the “problem” of marine trash [142]. The effectiveness of mitigation
strategies intended to lessen the amount of waste plastic entering the environment can only
be evaluated by detecting a change in the volumes and types of debris [19]. Although there
are presently no international guidelines for levels of plastic contamination, monitoring can
also be used to assure compliance with requirements, such as those levels of microplastics
in seafood remaining below acceptable ranges [143].
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Marine spatial planning (MSP) is an effective method for observing marine litter. MSP
has gained recognition for its emphasis on the financial aspects of marine conservation
in addition to its potential to promote sustainability in the marine ecosystem. In order to
enable policy makers and strategy planners to take economic factors into account before
planning on environmental objectives, this dichotomous role ensures that MSP use is
specialized both in environmental and economic aims [48,144].

Microplastics’ quantity, distribution, and characteristics in many worldwide ecosys-
tems require statistical monitoring and evaluation based on accepted standards or criteria.
Environmental monitoring can investigate and assess the sorption characteristics of mi-
croplastics, their impact on marine species, and their interactions with other contaminants.
Environmental monitoring has recently researched the amounts of contaminants on mi-
croplastics in marine and coastal habitats around the world [35]. Standardized monitoring
is necessary to determine whether or not plastic contamination of the seafloor is rising
and whether it is having an impact on the marine ecosystem in order to better understand
plastic accumulation on the seafloor [53].

The effectiveness of implemented measures to reduce the abundance of plastic debris
must be monitored, but this is difficult due to the large spatial and temporal heterogeneity
in the amounts of plastic debris and due to our incomplete knowledge of the pathways
taken by plastic debris and its long-term fate. The majority of monitoring up to this point
has centered on beach cleanups of stranded plastic and other trash. Crude estimates of
debris kinds and abundance are provided by infrequent surveys of the standing stock of
trash on beaches, but they are biased by the varying rates at which trash is removed by
beachcombing, cleanups, and beach dynamics. Although it is expensive to do, monitoring
the buildup of stranded trash gives an index of trends in debris in nearby seas [17].

Large amounts of monitoring data and simulation data could be gathered to update
the MP abundance in sediments that were previously expected to have no influence. To
examine the biotoxicity of various polymers, further monitoring and simulation data may
also be gathered. In fact, analytical indicators must be added to increase the precision
of the study of the sources of microplastic pollution [145]. To establish a connection
between the analysis indicators and the sources of microplastic contamination, there must
be enough monitoring data. The development of a method for analyzing the sources of
microplastic contamination is crucial for preventing their pollution of sediments. To lessen
the release of microplastics from pollution sources, managers can create tailored pollution
management methods. Thus, it is necessary to perform ongoing monitoring in order to
gain a comprehensive understanding of microplastics pollution [38].

Ryan et al. suggested that monitoring is crucial for determining whether mitigation
efforts to lower the amount of waste plastic entering the environment are successful in
the context of managing marine anthropogenic debris. It is necessary to evaluate whether
mitigating strategies to lower waste plastics at sea are having an impact. The ideal place to
monitor plastic leakage from land-based sources is on land (for example, in storm drains
and river run-off). This will prevent the plastic from entering the ocean. The greatest way
to combat illegal ship dumping is to keep an eye on how port garbage reception facilities
are used. Fish and other invertebrates can serve as bioindicators for bigger microplastic
pieces in sampling plastic consumed by biota [50].

Monitoring plastic interactions with biota can be a useful strategy, especially if the
interactions take into account exposure to plastics over time and geography (such as plastic
ingestion by animals that frequently store ingested plastic for long periods of time) [146].
The percentages of biota that consume plastic, become entangled in marine trash, or use
plastic to create structures or shelters (such as seabird nests, hermit crabs, tube-building
annelids, and echinoderms) are among the parameters that can be tracked. It is also
possible to monitor plastic-related contamination levels, which may directly affect people’s
health. The large range of potential interactions is one of the difficulties in monitoring
through biota [50,147]. Monitoring interactions with biota (such as plastic ingestion by
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some species and trash in seabird nests) might be a helpful and affordable auxiliary for
tracking ecological impacts in the area [50].

Given the considerable geographical and temporal heterogeneity, at-sea sampling
requires large sample numbers in order to have statistical power to detect changes in
abundance. Another strategy is to keep an eye on the effects of plastics. A practical
technique that Ryan et al. suggest to track the amount and make-up of tiny plastic trash is
to use seabirds and other marine creatures that store plastics in their stomachs. Because
they are sensitive to changes in the population numbers of the affected species, changes in
entanglement rates are more difficult to assess. Because it identifies the primary sources
of plastic debris entering the sea and can guide mitigation measures, monitoring garbage
disposal on ships and plastic debris levels in rivers and storm-water runoff is useful [17].

Monitoring was used in different cases with positive results. A characteristic example
is that when Gorokhova et al. used monitoring in their study, they managed to demonstrate
the heterogeneity in the distribution of microplastics caused by biotic and abiotic factors
and to propose the use of samples gathered for other purposes for measuring the amount of
microplastics in the Baltic Sea, making it easier to incorporate the evaluation of microplastics
into current monitoring programs [148]. Zhang et al. suggested an alternate strategy to
routinely monitoring microplastics in all environmental media in order to gain a better
knowledge of their quantity, distribution, and accumulation to reduce potential dangers
in the future. Environmental policy-makers can use the results to monitor microplastic
pollutants while also addressing the urgent need to comprehend the spatiotemporal pattern
of microplastic pollution [31]. Another study from Valente et al. presents results from an
Italian pilot operation to examine the appropriateness of a monitoring method based on a
multispecies approach, indicating a connection between the bioavailability of microplastics
and the distance from cities and river flows. Furthermore, the eating habits of the species
under study had an impact on microplastic intake [149]. A paper from Bauerlein et al.
provided a microplastic monitoring and data analysis approach that may be employed
with the Marine Strategy Framework Directive (MSFD) and OSPAR policy framework. By
choosing areas with little microspatial variation, it offers a chance to improve the sensitivity
of trend detection in microplastic monitoring networks [32]. According to a different study,
Mytilus species are suited for monitoring MPs in coastal waters on a semi-quantitative and
qualitative basis. However, several questions remain, such as the impact of depuration
and other processes connected to fate, the size of the mussel as a confounding factor
that may affect swallowing, and this calls for additional investigation [150]. Bivalves are
beneficial bioindicators of microplastic contamination in the marine environment for a
number of reasons; therefore, a study was conducted that monitored microplastic pollution
across the whole Korean coastline. Cho et al., in their study, used filter-feeding bivalves
as bioindicators to determine the extent of national contamination and the properties of
microplastics, including oyster, mussel, and Manila clam [151]. Last but not least, three
different types of mussels were used in a study made by Staichak et al. to look into the
filtration and prevalence of microplastic in them. The soft tissues, feces, and pseudofeces of
bivalves were found to contain several types of microplastics. All three of the investigated
bivalve species have demonstrated the potential to be employed in monitoring programs
for various forms of microplastic in aquatic habitats with various salinity levels [152].

All in all, it is generally suggested that future studies on microplastic pollution in
coastal lagoons concentrate on methodological issues, pollution assessment and monitoring,
the dynamics and effects of microplastic pollution, and preventative strategies as part of
effective environmental management [44]. Many authors emphasize the necessity of routine
microplastic monitoring in order to establish reliable time series on their prevalence, traits,
and sources. Understanding how microplastics cycle in coastal lagoons and how long they
stay there—whether for a few days, many months, or decades—requires an understanding
of the differences in their composition and concentration in sediments from various sub-
environments [44]. Beach and coastal lagoons surveys can be used to learn more about
the origins of plastic waste by choosing beaches that are various distances from the main
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sources of litter. In order to gauge the amount of trash at sea, the monitoring of stranded
litter should focus on determining the rate at which debris accumulates on beaches [17]. A
Technical Group on Marine Litter (TGML) was established by the European Commission
as part of the MSFD Joint Implementation Strategy. The Guideline on Monitoring of
Marine Litter in European Waters, one of the documents created by this organization, offers
the European Union’s member states advice on how to implement the same tactics for
microplastics examination in a maritime environment [153].

6.6. Legislation

Many regional and international initiatives were created to prevent microplastics
contamination. For instance, the United Nations Environment Organization had started a
global campaign to limit the excessive use of single-use plastic by 2022 and eradicate the
main causes of marine plastic litter, such as microplastics in cosmetics [47].

The 1978 Protocol to the International Convention for the Preservation of Pollution
from Ships (MARPOL), which forbids or prohibits all vessels from disposing of their waste
of plastic origin into the marine environment, is the most significant piece of legislation in
place addressing the issue of marine pollution [154]. Moreover, the Manila Declaration was
accepted in 2012 by 64 nations, including the European Union, with the goal of putting into
practice the UN Global Program of Action for the Preservation of the Maritime Environment
from Land-based Sources. The parties to this declaration also decided to create the Global
Partnership on Marine Litter (GPML), whose major objective is to encompass sources of
marine debris that are located at sea [55,155].

To lower their environmental levels, the member states of Europe must monitor
microplastics and support research activities under the Horizon 2020 program [156,157]. In
January 2018, the EU established the European Plastics Strategy. It focuses on how plastic
goods are conceived, used, produced, and recycled in the EU and proposes innovative
life-cycle economy and life-cycle evaluation methodologies. The EU has also emphasized
the need for action to protect the Mediterranean Sea, a partially isolated body of water
with significant contamination from the land. Due mostly to resource overuse and climate
change, the Mediterranean Sea is critically contaminated [47].

The relevant regulation needs to be reinforced if marine plastic pollution is to be
solved and reduced. Internationally, the Convention on the Control of Transboundary
Movements of Hazardous Wastes and Their Disposal (also known as the Basel Convention)
was established in 1989 to control the transboundary movement of hazardous waste and to
regulate how those wastes are disposed of. In addition, the Basel Convention modifications
that were ratified in a number of nations in 2019 showed that plastic trash would be
classified as the subject of import and export restrictions, supporting the expansion of the
plastic waste recycling business globally. Japan, South Korea, the United States, Indonesia,
Canada, and Australia were the nations that drafted the relevant legislation [40,158,159].

6.7. Gaps

Many gaps still need to be filled despite the abundance of related studies, especially
those pertaining to the origin, movement, interactions, and destiny of microplastics in the
marine environment [14]. It is necessary to create more suitable indicators for assessing the
ecological risk of microplastics. Furthermore, the weight coefficients of different indicators
in the system for assessing the ecological danger of microplastics should be quantified [38].

It is crucial to use a precise and uniform size definition for microplastics, more ef-
fectively compare the findings from various study sites, and optimize and adopt routine,
high-throughput microplastic sampling procedures. Additionally, it is important to increase
the understanding of microplastic behavior and fate, especially the impact of fragmentation
and biofouling; find out how eating microplastics affects marine biota in terms of death,
illness, and/or reproduction; and comprehend how this contaminant moves up the food
chain [14].
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As we do not know enough about turnover rates in any environmental compartment
to interpret changes in input rates from standing stock assessments, monitoring should
instead estimate flows of materials rather than standing stocks. Sampling at sea or on
beaches is not the most straightforward approach to keep track of leakage from either land-
based or ship-based sources, so there is more uncertainty about the relationship between
action and response. As close to the leak as is practical should be used to monitor the
effectiveness of mitigating measures [50]. It is challenging to gain a thorough understanding
of the pollution status of microplastics in sediments due to the lack of ongoing monitoring
of microplastic pollution in the existing research. To gain a thorough understanding of
microplastic pollution in sediments over the long term, the continuous monitoring of the
situation is recommended [38].

According to Torres et al., observational and FTIR spectroscopic methods were used
to identify environmental paint particles, but a more sophisticated investigation is needed
to identify the presence of biocides. Hence, they propose microplastic investigations to
complement the examination of paint particles with XRF spectrometry or HF digestion, fol-
lowed by ICP spectrometry, as described in earlier studies, particularly in places influenced
by marinas or significant maritime traffic. It is claimed that locations with medium and
low levels of pollution with paint fragments and particles have varying degrees of toxicity.
The toxicity of environmentally friendly paint substitutes in particle form has not yet been
investigated in untargeted animals [46].

6.8. Practical Solutions/Future Suggestions

Solving the problem of growing microplastic contamination is incredibly challenging
according to Wang et al. This calls for coordinated measures, including the development
of microplastic research standards, the bolstering of relevant laws, and the implemen-
tation of doable recommendations for reducing microplastic pollution. It is important
to choose common indicator organisms while investigating the toxicity of microplastics.
Several standardized experimental techniques should be devised for various samples. The
concentration and volume of the digestive liquids, the digestion period, as well as the
use of membrane with uniform pore size, should all be controlled as part of a standard
procedure to allow for comparison of the abundances of microplastics in various species.
The measurement and identification of microplastics using a microscope, FTIR, and Raman
spectroscopy are labor- and time-intensive processes based on statistical sampling methods,
which makes it difficult to discover microplastics quickly [40]. With accuracy levels ranging
from 96.2% to 99%, the fast identification and quantification of microplastics utilizing
hyperspectral and machine learning technologies is currently gaining interest [64].

Governments, plastic manufacturers, industry users, individual consumers, waste
management companies, and scientists should all work together to address plastic pollution.
Controlling marine plastic pollution at the source is one useful suggestion for reducing
plastic pollution. The development of plastic products should be restricted, alternative
products should be encouraged, plastic waste should be recycled more often, and garbage
should be treated more humanely. To develop plastic degrading technologies and consider
alternatives, it is important to combine sustainable and cost-effective ways with technolog-
ical advancements. Furthermore, the public should be educated and encouraged to use
fewer disposable plastic items in daily life [40,158,159].

Microplastics cannot be removed from seawater or separated from sands by sieving.
Even if one could collect all of these tiny particles, it would be ineffective. Microplastics
continue to move slowly and intricately towards the ocean’s floor, where they are eventually
buried for decades in sand and muck. Scientists ought to suggest answers that can be taken
into account by industry, society, and academia. Each stakeholder group is in charge of a
variety of duties, including informing other stakeholders of results.

Several socioeconomic sectors engage in applied research, which has the potential
to develop new methodologies for evaluating microplastic contamination, as well as new
products, structures, and infrastructure that will ultimately stop plastics from entering the
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environment. According to Ivar do Sul et al., the ingestion of contaminated microplastics,
confirmation of transference/damage by histology, and chemical characterization of pelagic
and benthic microplastics to confirm its composition are some suggestions. Laboratory
tests on microplastic ingestion and necropsies for verification of physical harm are also
suggested. Future-oriented recommendations include the introduction of educational ini-
tiatives, collaboration between urban and rural facilities, and effective waste management.
Future decision-makers, who are primarily in the public sector, can create state policies to
direct the control of the sources of primary plastics and determine the environmental value
losses caused by microplastic contamination [42].

Indicator species are crucial for monitoring and assessing a marine ecosystem’s condi-
tion and the effects of human activity. They have shown to be effective and trustworthy
methods for keeping track of changes in the marine environment, particularly to evaluate
environmental and human health. A conceptual framework for choosing a collection of
indicator species for microplastic ingestion monitoring is recommended as a crucial step
toward the development of standardized biomonitoring protocols. The development of
appropriate indicator species and widely used techniques for microplastic monitoring
processes is urgently required, given the consequences on marine biota that have been
reported [160,161].

Extended producer responsibility (EPR) is an effective waste management strategy
that is gaining popularity worldwide, particularly in many developed nations such as
Europe, Canada, Japan, and South Korea. It can help increase recycling and reduce the
amount of plastic waste that is dumped in landfills. The policy makes sure that the sole
legal obligation for the collection, recycling, and end-of-life management of plastic waste
materials is placed on producers (plastic industries), manufacturers, and importers of
goods and packaging. It is intended to hold manufacturers accountable for goods such as
plastic and packaging waste that are discovered in public spaces [56]. To limit the amount
of plastics discovered in the marine environment (from sea-based sources), incentives for
appropriate disposal, collecting, and recycling have also been developed and adopted in
several advanced countries of the world. For instance, a required retailer take-back program
is in place in several locations, such as New York, California, etc., to offer customers free
and convenient ways to return single-use plastic bags for recycling [162].

7. Conclusions

This paper was organized in two parts: The first one is an overview of all published
review papers focusing on MPs, while the second one focuses on reviewing the existing
published articles on microplastics in ports and coasts. In the first part, after conducting a
thorough investigation and analysis of the previous literature reviews, the level of meta-
analysis was selected. There, it was discovered that although there were quite a few review
articles published concerning the existence of microplastics in the marine environment,
an extensive overview of the findings of the helpful review articles released since 2010
received insufficient attention. This publication could be a reference for the published
review studies of microplastics in the sea because there was interest in researching this
subject at a meta-level.

Although the authors conducted their research meticulously, there are several limita-
tions that could serve as recommendations for upcoming papers that are related. Future
research, for instance, might develop an alternative strategy to monitoring, not only in
the ocean environment but also in rivers and lakes. Furthermore, because this paper only
examined review articles in English, future research could look for pertinent publications
in other languages, even if the authors believe that because a meta-level was attained, the
likelihood of finding review articles in another language is slim. Moreover, this research
reviewed and categorized the review papers according to a number of criteria, including
year of publication, keywords, journals, predominate topics, and most common countries.

In the second part, several papers were analyzed and specific conclusions and recom-
mendations can be drawn. It was clear that during the past decades, there has been an
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increase in the study of microplastic pollution in sediments. The presence of microplastic
contamination in harbors and on coastlines seems to pose serious threats to marine biodiver-
sity and the marine carbon cycle. Higher abundances of MPs are reported in the scientific
literature on marine waters where these ecosystems are subjected to human pressures such
as urbanization, port industries, fishing, and other high intensity activities [38]. The major-
ity of studies on beaches and ports deal with environmental challenges by concentrating on
the physical and chemical aspects of microplastics, such as shape and color. Due to the re-
stricted water exchange, short depth, and heavy anthropogenic pressure, ports are typically
extremely prone to microplastic pollution. For this reason, future research and monitoring
strategies must be adopted, as they will provide a far improved understanding of the
dynamics of microplastics [44]. Moreover, managers could create specialized microplastic
pollution control strategies with the help of a thorough assessment of the ecological risk
posed by MPs. The analysis of the sources of pollution can be performed using the objects’
colors, forms, polymer types, and land-use patterns. The improvement of the current
pollution source analysis system is facilitated by the development of more precise detection
and analysis technologies for microplastics. Last but not least, road markings on land and
maritime and boating activities are the principal sources of paint fragments in the oceans.
Because of this, even though paint particles’ polymer concentration may be smaller than
that of other microplastics, they are included in audits of microplastics [37].

Finally, it can be postulated that biotechnology provides a promising and reliable
solution to the problem of plastic pollution that has become so pervasive in modern society.
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