Does Environmental Policy with Veto Power Lead to Heterogeneous Emission? Evidence from China
Abstract
:1. Introduction
2. Literature Review and Research Hypotheses
2.1. The Impact Effect of Officials’ Characteristic on Pollutant Emission
2.2. Moderating Effect of Target Assessment between Officials’ Characteristics and Pollutant Emissions
3. Methodology and Data
3.1. Data Description and Source
3.2. Specification of Variables
3.2.1. Explained Variable
3.2.2. Explanatory Variable
3.2.3. Control Variable
3.3. Model Specification
4. Results and Discussions
4.1. Baseline Results
4.2. The Potential Mechanism of Official Characteristics on Emission
4.3. The Heterogeneous Effect of Official Characteristics before and after the Policy
4.4. Further Discussions
4.4.1. Power and Restriction of Environmental Targets
4.4.2. Changes in Incentives by One-Vote Veto
5. Conclusions and Implications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ahmad, M.; Jabeen, G.; Wu, Y. Heterogeneity of pollution haven/halo hypothesis and environmental kuznets curve hypothesis across development levels of Chinese provinces. J. Clean. Prod. 2021, 285, 124898. [Google Scholar] [CrossRef]
- Wu, M.; Cao, X. Greening the career incentive structure for local officials in China: Does less pollution increase the chances of promotion for Chinese local leaders? J. Environ. Econ. Manag. 2021, 107, 102440. [Google Scholar] [CrossRef]
- Latham, G.P.; Borgogni, L.; Petitta, L. Goal Setting and Performance Management in the Public Sector. Int. Public Manag. J. 2008, 11, 385–403. [Google Scholar] [CrossRef]
- Gao, J. Pernicious Manipulation of Performance Measures in China’s Cadre Evaluation System. China Q. 2015, 223, 618–637. [Google Scholar] [CrossRef]
- Zhang, P.; Wu, J. Impact of mandatory targets on PM2.5 concentration control in Chinese cities. J. Clean. Prod. 2018, 197, 323–331. [Google Scholar] [CrossRef]
- Yang, T.; Liao, H.; Wei, Y.-M. Local government competition on setting emission reduction goals. Sci. Total Environ. 2020, 745, 141002. [Google Scholar] [CrossRef]
- Chen, Y.; Li, H.; Zhou, L. Relative performance evaluation and the turnover of provincial leaders in China. Econ. Lett. 2005, 88, 421–425. [Google Scholar] [CrossRef]
- Hu, K.; Shi, D. The impact of government-enterprise collusion on environmental pollution in China. J. Environ. Manag. 2021, 292, 112744. [Google Scholar] [CrossRef]
- Li, H.; Zhou, L.-A. Political turnover and economic performance: The incentive role of personnel control in China. J. Public Econ. 2005, 89, 1743–1762. [Google Scholar] [CrossRef]
- Jiang, S.-S.; Li, J.-M. Do political promotion incentive and fiscal incentive of local governments matter for the marine environmental pollution? Evidence from China’s coastal areas. Mar. Policy 2021, 128, 104505. [Google Scholar] [CrossRef]
- Guo, Y.; Zeng, H.; Zheng, R.; Li, S.; Barnett, A.; Zhang, S.; Zou, X.; Huxley, R.; Chen, W.; Williams, G. The association between lung cancer incidence and ambient air pollution in China: A spatiotemporal analysis. Environ. Res. 2016, 144, 60–65. [Google Scholar] [CrossRef] [PubMed]
- Requia, W.J.; Amini, H.; Mukherjee, R.; Gold, D.R.; Schwartz, J.D. Health impacts of wildfire-related air pollution in Brazil: A nationwide study of more than 2 million hospital admissions between 2008 and 2018. Nat. Commun. 2021, 12, 6555. [Google Scholar] [CrossRef] [PubMed]
- Al-Kindi, S.G.; Brook, R.D.; Biswal, S.; Rajagopalan, S. Environmental determinants of cardiovascular disease: Lessons learned from air pollution. Nat. Rev. Cardiol. 2020, 17, 656–672. [Google Scholar] [CrossRef]
- Pandey, A.; Brauer, M.; Cropper, M.L.; Balakrishnan, K.; Mathur, P.; Dey, S.; Dandona, L. Health and economic impact of air pollution in the states of India: The Global Burden of Disease Study 2019. Lancet Planet. Health 2021, 5, e25–e38. [Google Scholar] [CrossRef]
- Jarvis, I.; Davis, Z.; Sbihi, H.; Brauer, M.; Czekajlo, A.; Davies, H.W.; van den Bosch, M. Assessing the association between lifetime exposure to greenspace and early childhood development and the mediation effects of air pollution and noise in Canada: A population-based birth cohort study. Lancet Planet. Health 2021, 5, e709–e717. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Shao, S.; Tian, Z.; Xie, Z.; Yin, P. Impacts of air pollution and its spatial spillover effect on public health based on China’s big data sample. J. Clean. Prod. 2017, 142, 915–925. [Google Scholar] [CrossRef]
- Mao, X.; Zhou, J.; Corsetti, G. How well have China’s recent five-year plans been implemented for energy conservation and air pollution control? Environ. Sci. Technol. 2014, 48, 10036–10044. [Google Scholar] [CrossRef]
- Zheng, W.; Chen, P. The political economy of air pollution: Local development, sustainability, and political incentives in China. Energy Res. Soc. Sci. 2020, 69, 101707. [Google Scholar] [CrossRef]
- Liang, J.; Langbein, L. Performance Management, High-Powered Incentives, and Environmental Policies in China. Int. Public Manag. J. 2015, 18, 346–385. [Google Scholar] [CrossRef]
- Zhang, P. Target Interactions and Target Aspiration Level Adaptation: How Do Government Leaders Tackle the “Environment-Economy” Nexus? Public Adm. Rev. 2021, 81, 220–230. [Google Scholar] [CrossRef]
- Tian, Z.; Tian, Y. Political incentives, Party Congress, and pollution cycle: Empirical evidence from China. Environ. Dev. Econ. 2020, 26, 188–204. [Google Scholar] [CrossRef]
- Wang, J.; Lei, P. The tournament of Chinese environmental protection: Strong or weak competition? Ecol. Econ. 2021, 181, 106888. [Google Scholar] [CrossRef]
- Jiang, Q.; Yang, S.; Tang, P.; Bao, L. Promoting the polluters? The competing objectives of energy efficiency, pollutant emissions, and economic performance in Chinese municipalities. Energy Res. Soc. Sci. 2020, 61, 101365. [Google Scholar] [CrossRef]
- Feng, Y.; Wang, X.; Hu, S. Accountability audit of natural resource, air pollution reduction and political promotion in China: Empirical evidence from a quasi-natural experiment. J. Clean. Prod. 2020, 287, 125002. [Google Scholar] [CrossRef]
- Tang, P.; Jiang, Q.; Mi, L. One-vote veto: The threshold effect of environmental pollution in China’s economic promotion tournament. Ecol. Econ. 2021, 185, 107069. [Google Scholar] [CrossRef]
- Lee, D.S.; Schuler, P. Testing the “China Model” of meritocratic promotions: Do democracies reward less competent ministers than autocracies? Comp. Politi Stud. 2020, 53, 531–566. [Google Scholar] [CrossRef]
- Kahn, M.E.; Li, P.; Zhao, D. Water pollution progress at borders: The role of changes in China’s political promotion incentives. Am. Econ. J. Econ. Policy 2015, 7, 223–242. [Google Scholar] [CrossRef] [Green Version]
- Cao, X.; Kostka, G.; Xu, X. Environmental political business cycles: The case of PM2.5 air pollution in Chinese prefectures. Environ. Sci. Policy 2019, 93, 92–100. [Google Scholar] [CrossRef]
- Tian, Z.; Hu, A.; Chen, Y.; Shao, S. Local officials’ tenure and CO2 emissions in China. Energy Policy 2023, 173, 113394. [Google Scholar] [CrossRef]
- Kung, J.K.-S.; Chen, S. The tragedy of the nomenklatura: Career incentives and political radicalism during China’s great leap famine. Am. Politi Sci. Rev. 2011, 105, 27–45. [Google Scholar] [CrossRef]
- Chen, Y.J.; Li, P.; Lu, Y. Career concerns and multitasking local bureaucrats: Evidence of a target-based performance evaluation system in China. J. Dev. Econ. 2018, 133, 84–101. [Google Scholar] [CrossRef]
- Lee, Y.-S.F.; Lo, C.W.-H.; Lee, A.K.-Y. Strategy Misguided: The weak links between urban emission control measures, vehicular emissions, and public health in Guangzhou. J. Contemp. China 2010, 19, 37–54. [Google Scholar] [CrossRef]
- Zhang, P.; Wu, J. Performance-based or politic-related decomposition of environmental targets: A multilevel analysis in China. Sustainability 2018, 10, 3410. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.; Xu, M.; Zhang, P. The impacts of governmental performance assessment policy and citizen participation on improving environmental performance across Chinese provinces. J. Clean. Prod. 2018, 184, 227–238. [Google Scholar] [CrossRef]
- Zhang, T.; Zou, H.-F. Fiscal decentralization, public spending, and economic growth in China. J. Public Econ. 1998, 67, 221–240. [Google Scholar] [CrossRef] [Green Version]
- Liang, L.; Wang, Z.; Li, J. The effect of urbanization on environmental pollution in rapidly developing urban agglomerations. J. Clean. Prod. 2019, 237, 117649. [Google Scholar] [CrossRef]
- Yan, D.; Kong, Y.; Jiang, P.; Huang, R.; Ye, B. How do socioeconomic factors influence urban PM2.5 pollution in China? Empirical analysis from the perspective of spatiotemporal disequilibrium. Sci. Total Environ. 2021, 761, 143266. [Google Scholar] [CrossRef]
- Qian, Y.; Cao, H.; Huang, S. Decoupling and decomposition analysis of industrial sulfur dioxide emissions from the industrial economy in 30 Chinese provinces. J. Environ. Manag. 2020, 260, 110142. [Google Scholar] [CrossRef]
- Lu, J.; Li, B.; Li, H.; Al-Barakani, A. Expansion of city scale, traffic modes, traffic congestion, and air pollution. Cities 2021, 108, 102974. [Google Scholar] [CrossRef]
- Cheng, Z.; Li, L.; Liu, J. Identifying the spatial effects and driving factors of urban PM2.5 pollution in China. Ecol. Indic. 2017, 82, 61–75. [Google Scholar] [CrossRef]
- Xu, F.; Huang, Q.; Yue, H.; He, C.; Wang, C.; Zhang, H. Reexamining the relationship between urbanization and pollutant emissions in China based on the STIRPAT model. J. Environ. Manag. 2020, 273, 111134. [Google Scholar] [CrossRef] [PubMed]
- Xiong, L.; de Jong, M.; Wang, F.; Cheng, B.; Yu, C. Spatial spillover effects of environmental pollution in China’s central plains urban agglomeration. Sustainability 2018, 10, 994. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Song, Y.; Zhang, L. Pollution control in urban China: A multi-level analysis on household and industrial pollution. Sci. Total Environ. 2020, 749, 141478. [Google Scholar] [CrossRef]
- Chen, Z.; Tang, J.; Wan, J.; Chen, Y. Promotion incentives for local officials and the expansion of urban construction land in China: Using the Yangtze River Delta as a case study. Land Use Policy 2017, 63, 214–225. [Google Scholar] [CrossRef]
- Yi, H.; Berry, F.S.; Chen, W. Management innovation and policy diffusion through leadership transfer networks: An agent network diffusion model. J. Public Adm. Res. Theory 2018, 28, 457–474. [Google Scholar] [CrossRef]
- Lu, S.; Yao, Y.; Wang, H. Testing the Relationship between Land Approval and Promotion Incentives of Provincial Top Leaders in China. J. Chin. Politi. Sci. 2021, 27, 105–131. [Google Scholar] [CrossRef]
- Wang, X.; Hawkins, C.V.; Lebredo, N.; Berman, E.M. Capacity to Sustain Sustainability: A Study of U.S. Cities. Public Adm. Rev. 2012, 72, 841–853. [Google Scholar] [CrossRef]
- Krause, R.M.; Hawkins, C.V.; Angela, Y.S.; Park, A.Y.S.; Feiock, R.C. Drivers of Policy Instrument Selection for Environmental Management by Local Governments. Public Adm. Rev. 2019, 79, 477–487. [Google Scholar] [CrossRef]
- Sun, X.; Chen, Z.; Shi, T.; Yang, G.; Yang, X. Influence of digital economy on industrial wastewater discharge: Evidence from 281 Chinese prefecture-level cities. J. Water Clim. Chang. 2022, 13, 593–606. [Google Scholar] [CrossRef]
- Jia, R.; Kudamatsu, M.; Seim, D. Political selection in China: The complementary roles of connections and performance. J. Eur. Econ. Assoc. 2015, 13, 631–668. [Google Scholar] [CrossRef]
- Florida, R. Cities and the creative class. City Community 2003, 2, 3–19. [Google Scholar] [CrossRef]
Variables | Definition | Type | Unit | Source |
---|---|---|---|---|
SO2 | SO2 emissions in different provinces | Numerical variable | Ton | China Environmental Statistical Yearbook |
PM2.5 | PM2.5 emissions in different provinces | Numerical variable | Ug/m3 | Atmospheric Composition Analysis Group at Dalhousie University |
Term | The length of an official’s term | Numerical variable | Year | China Baidu Encyclopedia Public Data |
Age | 65 minus the age of the official in the year of the upcoming National People’s Congress | Numerical variable | Year | China Baidu Encyclopedia Public Data |
OP | official position Official position, whether it is a member of the CPC Central Committee | Dummy variable | / | China Baidu Encyclopedia Public Data |
TA | Target assessment, it was 0 before 2008 and 1 after 2008 | Dummy variable | / | / |
LFR | Local government revenue | Numerical variable | 100 million CNY | China Statistical Yearbook |
PSI | Proportion of secondary industry in GDP | Numerical variable | / | China Statistical Yearbook |
RP | Regional population | Numerical variable | 10,000 people | China Statistical Yearbook |
IWD | Industry waste water discharge | Numerical variable | 10,000 tonnes | China Statistical Yearbook |
IIG | Investment in industrial governance | Numerical variable | 100 million CNY | China Statistical Yearbook |
N | Mean | SD | Min | Max | p25 | p50 | p75 | |
---|---|---|---|---|---|---|---|---|
SO2 | 389 | 4.0470 | 0.8748 | 0.7768 | 5.2998 | 3.7586 | 4.1537 | 4.6776 |
PM2.5 | 389 | 15.6331 | 1.0965 | 12.1129 | 18.2531 | 15.2007 | 15.8429 | 16.1411 |
Term | 389 | 3.0334 | 1.8918 | 1.0000 | 10.0000 | 2.0000 | 3.0000 | 4.0000 |
Age | 389 | 6.9254 | 3.9405 | 0.0000 | 20.0000 | 4.0000 | 6.0000 | 9.0000 |
OP | 389 | 0.8817 | 0.3233 | 0.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
TA | 389 | 0.6144 | 0.4874 | 0.0000 | 1.0000 | 0.0000 | 1.0000 | 1.0000 |
LFR | 389 | 6.6547 | 1.1342 | 3.1797 | 9.1449 | 5.8388 | 6.7462 | 7.4995 |
PSI | 389 | 47.6035 | 7.6121 | 21.3000 | 61.5000 | 44.3247 | 49.1000 | 52.8000 |
RP | 389 | 3.5446 | 0.3283 | 2.7275 | 4.0674 | 3.3906 | 3.5824 | 3.7860 |
IWD | 389 | 11.8191 | 0.9161 | 8.1470 | 13.7229 | 11.3141 | 11.8877 | 12.4695 |
IIG | 389 | 11.6506 | 1.0725 | 7.5606 | 14.1637 | 11.0731 | 11.7926 | 12.3218 |
(1) | (2) | (3) | (4) | |
---|---|---|---|---|
SO2 | PM2.5 | |||
× | 0.156 ** | −0.022 | ||
(2.34) | (−0.93) | |||
Term × | −0.003 | |||
(−0.30) | ||||
Age × | 0.002 | |||
(0.32) | ||||
−0.088 * | −0.009 | −0.009 | 0.009 | |
(−1.82) | (−0.19) | (−0.18) | (0.56) | |
Term | 0.004 | 0.009 | 0.007 | −0.003 |
(0.50) | (1.04) | (1.00) | (−0.73) | |
Age | 0.003 | 0.003 | 0.001 | 0.001 |
(0.59) | (0.64) | (0.16) | (0.38) | |
LFR | 0.259 | 0.266 | 0.269 | −0.015 |
(1.43) | (1.43) | (1.44) | (−0.31) | |
PSI | −0.001 | −0.002 | −0.002 | −0.001 |
(−0.15) | (−0.26) | (−0.26) | (−0.78) | |
RP | −2.039 * | −2.079 * | −2.085 * | −0.564 |
(−1.79) | (−1.80) | (−1.82) | (−1.51) | |
IWD | 0.273 * | 0.285 * | 0.282 * | 0.015 |
(1.73) | (1.77) | (1.76) | (0.53) | |
IIG | 0.092 *** | 0.090 ** | 0.089 ** | −0.002 |
(2.77) | (2.59) | (2.66) | (−0.25) | |
Constant | 5.262 | 5.278 | 5.329 | 17.663 *** |
(1.15) | (1.15) | (1.17) | (13.29) | |
Observations | 389 | 389 | 389 | 389 |
Adjusted R-squared | 0.975 | 0.974 | 0.974 | 0.996 |
Province FE | √ | √ | √ | √ |
Year FE | √ | √ | √ | √ |
Cluster | Province | Province | Province | Province |
(1) | (2) | (3) | (4) | |
---|---|---|---|---|
= 1 | = 0 | = 1 | = 0 | |
Term | 0.004 | −0.021 ** | ||
(0.58) | (−2.95) | |||
Age | 0.002 | 0.021 ** | ||
(0.50) | (2.95) | |||
LFR | 0.169 | −0.133 | 0.175 | −0.133 |
(1.00) | (−0.21) | (1.07) | (−0.21) | |
PSI | 0.001 | 0.006 | 0.001 | 0.006 |
(0.09) | (0.45) | (0.10) | (0.45) | |
RP | −2.527 ** | −0.064 | −2.392 ** | −0.064 |
(−2.22) | (−0.03) | (−2.08) | (−0.03) | |
IWD | 0.228 | −0.066 | 0.224 | −0.066 |
(1.44) | (−0.53) | (1.41) | (−0.53) | |
IIG | 0.100 *** | 0.010 | 0.099 *** | 0.010 |
(3.08) | (0.27) | (2.99) | (0.27) | |
Constant | 7.960 * | 5.867 | 7.489 | 5.674 |
(1.77) | (1.05) | (1.66) | (1.01) | |
Observations | 344 | 38 | 344 | 38 |
Adjusted R-squared | 0.977 | 0.991 | 0.977 | 0.991 |
Province FE | √ | √ | √ | √ |
Year FE | √ | √ | √ | √ |
Cluster | Province | Province | Province | Province |
(1) | (2) | (3) | (4) | |
---|---|---|---|---|
Term > 3 | Term ≤ 3 | Age > 5 | Age ≤ 5 | |
× | 0.068 | 0.219 ** | 0.202 ** | −0.059 |
(1.08) | (2.24) | (2.11) | (−0.50) | |
−0.046 | −0.130 ** | −0.079 | −0.057 | |
(−0.80) | (−2.06) | (−1.04) | (−0.95) | |
Term | −0.001 | −0.006 | −0.008 | 0.011 |
(−0.09) | (−0.43) | (−0.59) | (0.76) | |
Age | 0.012 | 0.000 | 0.003 | 0.020 |
(1.38) | (0.08) | (0.48) | (1.12) | |
LFR | 0.276 ** | 0.250 | 0.310 ** | 0.193 |
(2.14) | (1.01) | (2.14) | (0.72) | |
PSI | −0.015 * | −0.000 | −0.004 | −0.008 |
(−1.88) | (−0.02) | (−0.62) | (−1.33) | |
RP | −2.593 ** | −2.516 * | −3.335 *** | 0.354 |
(−2.60) | (−1.88) | (−3.63) | (0.23) | |
IWD | 0.636 *** | 0.212 | 0.289 * | 0.334 ** |
(5.29) | (1.21) | (1.82) | (2.07) | |
IIG | 0.070 ** | 0.100 ** | 0.126 *** | 0.060 |
(2.11) | (2.71) | (3.43) | (1.57) | |
Constant | 3.664 | 7.631 | 8.912 * | −2.780 |
(0.92) | (1.32) | (1.94) | (−0.43) | |
Observations | 131 | 258 | 235 | 153 |
Adjusted R-squared | 0.985 | 0.973 | 0.980 | 0.977 |
Province FE | √ | √ | √ | √ |
Year FE | √ | √ | √ | √ |
Cluster | Province | Province | Province | Province |
Empirical p-value | 0.000 | 0.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, Y.; Cao, J.; Wu, X.; He, J.; Zhou, Z.; Zhao, Y. Does Environmental Policy with Veto Power Lead to Heterogeneous Emission? Evidence from China. Sustainability 2023, 15, 9163. https://doi.org/10.3390/su15129163
Fu Y, Cao J, Wu X, He J, Zhou Z, Zhao Y. Does Environmental Policy with Veto Power Lead to Heterogeneous Emission? Evidence from China. Sustainability. 2023; 15(12):9163. https://doi.org/10.3390/su15129163
Chicago/Turabian StyleFu, Yan, Jiaxing Cao, Xiaohui Wu, Jiale He, Zekun Zhou, and Yulin Zhao. 2023. "Does Environmental Policy with Veto Power Lead to Heterogeneous Emission? Evidence from China" Sustainability 15, no. 12: 9163. https://doi.org/10.3390/su15129163
APA StyleFu, Y., Cao, J., Wu, X., He, J., Zhou, Z., & Zhao, Y. (2023). Does Environmental Policy with Veto Power Lead to Heterogeneous Emission? Evidence from China. Sustainability, 15(12), 9163. https://doi.org/10.3390/su15129163