The Role of Antitranspirants in Mitigating Drought Stress in Plants of the Grass Family (Poaceae)—A Review
Abstract
:1. Introduction
2. Drought
3. Film-Forming Antitranspirants
3.1. Vapor Gard
3.2. Silicon
Morphological Parameters | Physiological Parameters | Biochemical Parameters | Yield and Yield Components | |||||
---|---|---|---|---|---|---|---|---|
Vapor Gard (di-1-p-Menthene) | Silicon | Vapor Gard (di-1-p-Menthene) | Silicon | Vapor Gard (di-1-p-Menthene) | Silicon | Vapor Gard (di-1-p-Menthene) | Silicon | |
Barley | [30] | |||||||
Forage grasses | [50] | [50] | [50] | [50] | ||||
Maize | [32] | [44,46,51] | [34,45,46,51,52] | [44,45,46,51] | [32] | [45,46,52] | ||
Pearl millet | [53] | [53] | [53] | |||||
Rice | [36,49] | [36,49] | [36] | [36,49] | ||||
Sorghum | [48] | [48] | [48] | |||||
Sugarcane | [54] | |||||||
Wheat | [35,37,55] | [26,29,30,56] | [35,37,38,55,57] | [27,56] | [37,38,47,55,57] | [35,37,55] |
4. Metabolic (Stomata-Closing) Antitranspirants
4.1. Chitosan
4.2. Fulvic Acid (FA)
4.3. Salicylic Acid (SA)
Morphological Parameters | Physiological Parameters | Biochemical Parameters | Yield and Yield Components | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Chitosan | FA | SA | Chitosan | FA | SA | Chitosan | FA | SA | Chitosan | FA | SA | |
Barley | [72,73] | [84] | [72,73] | [82,83,85] | [72,73] | [82,83,84,85] | [72,73] | |||||
Bermudagrass | [107] | [107] | ||||||||||
Creeping bentgrass | [71] | [71] | ||||||||||
Lemongrass | [104] | [104] | [104] | |||||||||
Lolium grass | [106] | |||||||||||
Maize | [51,60,75,108,109] | [78,79] | [32,100,102,110,111] | [51,60,74,75,109] | [76,78,79,80,81] | [101,102,103,110,112] | [51,60,74] | [76,78,79,80,81] | [101,102,103,110] | [60,109] | [76,78,80,81] | [32,100,110,111] |
Pearl millet | [70] | [113] | [70] | [113] | [70] | [113] | [70] | [113] | ||||
Rice | [67,69] | [86,114,115,116,117,118] | [67,119] | [86,114,115,118,120,121] | [67,119] | [86,114,115,116,117,118,121,122,123] | [67,119] | [116,117,118,121,123] | ||||
Sorghum | [124] | [98,99] | [124] | [97] | [124] | [98,99] | [124] | [98,99] | ||||
Wheat | [55,61,62,64,77] | [125] | [88,89,90,91,92,93,95,96,113,126,127,128,129] | [55,63,65,66] | [87,88,92,113,126,127,128,129] | [55,61,63,65,66,77] | [125] | [87,88,90,92,93,94,95,96,113,126,128,129,130,131] | [55,61,62,63,64,66] | [125] | [87,88,89,90,91,92,113,126,128,130,131] | |
Zoysiagrass | [105] | [105] | [105] |
5. Reflective Antitranspirants
5.1. Kaolin
5.2. Magnesium Carbonate MgCO3
Morphological Parameters | Physiological Parameters | Biochemical Parameters | Yield and Yield Components | |||||
---|---|---|---|---|---|---|---|---|
Kaolin | MgCO3 | Kaolin | MgCO3 | Kaolin | MgCO3 | Kaolin | MgCO3 | |
Barley | [137,138] | [82,138] | [82,137] | [137,138] | ||||
Maize | [32,133] | [133,139] | [139] | [32,133,139] | [139] | |||
Rice | [140] | [141] | [141] | [134,140] | [141] | |||
Wheat | [125,135] | [125,136] | [125,135] | [125] | [125,135] | [125,136] |
6. Risks, Uncertainties, and Future Perspectives for the Use of Antitranspirants
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Peterson, P.M. Poaceae (Gramineae). In Encyclopedia of Life Sciences; John Wiley & Sons, Ltd.: Chichester, UK, 2013. [Google Scholar] [CrossRef]
- Soreng, R.J.; Peterson, P.M.; Zuloaga, F.O.; Romaschenko, K.; Clark, L.G.; Teisher, J.K.; Gillespie, L.J.; Barberá, P.; Welker, C.A.D.; Kellogg, E.A.; et al. A worldwide phylogenetic classification of the Poaceae (Gramineae) III: An update. J. Syst. Evol. 2022, 60, 476–521. [Google Scholar] [CrossRef]
- Hodkinson, T.R. Evolution and taxonomy of the grasses (Poaceae): A model family for the study of species-rich groups. Annu. Plant Rev. Online 2018, 1, 255–294. [Google Scholar] [CrossRef]
- Grass Phylogeny Working Group II. New grass phylogeny resolves deep evolutionary relationships and discovers C4 origins. New Phytol. 2012, 193, 304–312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gull, A.; Lone, A.; Wani, N. Biotic and abiotic stresses in plants. In Abiotic and Biotic Stress in Plants; Oliveira, A., Ed.; Intech. Open: Rijeka, Croatia, 2019; Chapther 1. [Google Scholar] [CrossRef] [Green Version]
- Gietler, M.; Fidler, J.; Labudda, M.; Nykiel, M. Abscisic Acid—Enemy or Savior in the Response of Cereals to Abiotic and Biotic Stresses? Int. J. Mol. Sci. 2020, 21, 4607. [Google Scholar] [CrossRef]
- Calanca, P.P.; Ahmed, M. Effects of Abiotic Stress in Crop Production, Quantification of Climate Variability, Adaptation and Mitigation for Agricultural Sustainability; Ahmed, M., Stockle, C.O., Eds.; Springer: Cham, Switzerland, 2017; pp. 165–180. [Google Scholar]
- He, C.; Liu, Z.; Wu, J.; Pan, X.; Fang, Z.; Li, J.; Bryan, B.A. Future global urban water scarcity and potential solutions. Nat. Commun. 2021, 12, 4667. [Google Scholar] [CrossRef]
- Nikolaou, G.; Neocleous, D.; Christou, A.; Kitta, E.; Katsoulas, N. Implementing Sustainable Irrigation in Water-Scarce Regions under the Impact of Climate Change. Agronomy 2020, 10, 1120. [Google Scholar] [CrossRef]
- Gondim, R.S.; De Castro, M.A.H.; Maia, A.d.H.N.; Evangelista, S.R.M.; Fuck, S.C.d.F. Climate Change Impacts on Irrigation Water Needs in the Jaguaribe River Basin. J. Am. Water Resour. Assoc. 2012, 49, 247. [Google Scholar]
- Moroni, F.J.; Gascon-Aldana, P.J.; Rogiers, S.Y. Characterizing the Efficacy of a Film-Forming Antitranspirant on Raspberry Foliar and Fruit Transpiration. Biology 2020, 9, 255. [Google Scholar] [CrossRef]
- AbdAllah, A.M.; Burkey, K.O.; Mashaheet, A.M. Reduction of plant water consumption through anti-transpirants foliar application in tomato plants (Solanum lycopersicum L.). Sci. Hortic. 2018, 235, 373–381. [Google Scholar] [CrossRef]
- Palliotti, A.; Panara, F.; Famiani, F.; Sabbatini, P.; Howell, G.S.; Silvestroni, O.; Poni, S. Postveraison application of antitranspirant di-1-p-menthene to control sugar accumulation in Sangiovese grapevines. Am. J. Enol. Vitic. 2013, 64, 378–385. [Google Scholar] [CrossRef] [Green Version]
- Mphande, W.; Kettlewell, P.S.; Grove, I.G.; Farrell, A.D. The potential of antitranspirants in drought management of arable crops: A review. Agric. Water Manag. 2020, 236, 106143. [Google Scholar] [CrossRef]
- Das, V.S.R.; Raghavendra, A.S. Antitranspirants for improvement of water use efficiency of crops. Outlook Agric. 1979, 10, 92–98. [Google Scholar] [CrossRef]
- Pandey, P.P.; Sharma, R.; Neelkanthe, S.S. Climate change: Combating drought with antitranspirants and super absorbent. Plant Arch. 2017, 17, 1146–1156. [Google Scholar]
- Brillante, L.; Belfiore, N.; Gaiotti, F.; Lovat, L.; Sansone, L.; Poni, S.; Tomasi, D. Comparing kaolin and pinolene to improve sustainable grapevine production during drought. PLoS ONE 2016, 11, e0156631. [Google Scholar] [CrossRef] [PubMed]
- Rohinin, N.; Sathiyamurthy, V.A.; Arumugam, T. 9 Use of antitranspirants. J. Agric. Sci. 2016, 2, 145–147. [Google Scholar]
- Guleria, V.; Shweta. Antitranspirants: An Effective Approach to Mitigate the Stress in Field Crops. Int. J. Curr. Microbiol. App. Sci. 2020, 9, 1671–1678. [Google Scholar] [CrossRef]
- World Health Organization (WHO). 2023. Available online: https://www.who.int/health-topics/drought (accessed on 3 May 2023).
- Yang, X.; Lu, M.; Wang, Y.; Wang, Y.; Liu, Z.; Chen, S. Response Mechanism of Plants to Drought Stress. Horticulturae 2021, 7, 50. [Google Scholar] [CrossRef]
- Farooq, M.; Wahid, A.; Kobayashi, N.; Fujita, D.; Basra, S.M.A. Plant Drought Stress: Effects, Mechanisms and Management. In Sustainable Agriculture; Springer: Dordrecht, The Netherlands, 2009; pp. 153–188. [Google Scholar] [CrossRef] [Green Version]
- Dar, M.H.; Waza, S.A.; Shukla, S.; Zaidi, N.W.; Nayak, S.; Hossain, M.; Kumar, A.; Ismail, A.M.; Singh, U.S. Drought Tolerant Rice for Ensuring Food Security in Eastern India. Sustainability 2020, 12, 2214. [Google Scholar] [CrossRef] [Green Version]
- Wossen, T.; Abdoulaye, T.; Alene, A.; Feleke, S.; Menkir, A.; Manyong, V. Measuring the impacts of adaptation strategies to drought stress: The case of drought tolerant maize varieties. J. Environ. Manag. 2017, 203, 106–113. [Google Scholar] [CrossRef]
- Anjum, S.A.; Xie, X.; Wang, L.C.; Saleem, M.F.; Man, C.; Lei, W. Morphological, physiological and biochemical responses of plants to drought stress. Afr. J. Agric. Res. 2011, 6, 2026–2032. [Google Scholar]
- Abdullah, A.S.; Aziz, M.M.; Siddique, K.H.M.; Flower, K.C. Film antitranspirants increase yield in drought stressed wheat plants by maintaining high grain number. Agric. Water Manag. 2015, 159, 11–18. [Google Scholar] [CrossRef]
- Mphande, W.; Farrell, A.D.; Grove, I.G.; Vickers, L.H.; Kettlewell, P.S. Yield improvement by antitranspirant application in droughted wheat is associated with reduced endogenous abscisic acid concentration. Agric. Water Manag. 2021, 244, 106528. [Google Scholar] [CrossRef]
- Kettlewell, P.S.; Heath, W.L.; Haigh, I.M. Yield enhancement of droughted wheat by film antitranspirant application: Rationale and evidence. Agric. Sci. 2010, 1, 143. [Google Scholar] [CrossRef] [Green Version]
- Weerasinghe, M.M.; Kettlewell, P.S.; Grove, I.G.; Hare, M.C. Evidence for improved pollen viability as the mechanism for film antitranspirant mitigation of drought damage to wheat yield. Crop Pasture Sci. 2016, 67, 137–146. [Google Scholar] [CrossRef] [Green Version]
- Ouerghi, F.; Ben-Hammouda, M.; Teixeira Da Silva, J.A.; Albouchi, A.; Bouzaien, G.; Aloui, S.; Cheikh-m’hamed, H.; Nasraoui, B. The effects of Vapor Gard on some physiological traits of durum wheat and barley leaves under water stress. Agric. Conspec. Sci. 2014, 79, 261–267. [Google Scholar]
- Kettlewell, P.S. Waterproofing Wheat—A Re-Evaluation of Film Antitranspirants in the Context of Reproductive Drought Physiology. Outlook Agric. 2014, 43, 25–29. [Google Scholar] [CrossRef]
- Ulameer, O.Q.A.; Ahmed, S.A.A. Anti-transpirant role in improving the morphological growth traits of maize plants subjected to water stress. Res. Crops 2018, 19, 593–603. [Google Scholar]
- Sow, S.; Ranjan, S. Antitranspirants: A novel tool for combating water stress under climate change scenario. Food Sci. Rep. 2021, 2, 29–31. [Google Scholar]
- Gao, X.; Zou, C.; Wang, L.; Zhang, F. Silicon decreases transpiration rate and conductance from stomata of maize plants. J. Plant Nutr. 2006, 29, 1637–1647. [Google Scholar] [CrossRef]
- Gong, H.; Chen, K.; Chen, G.; Wang, S.; Zhang, C. Effects of Silicon on Growth of Wheat Under Drought. J. Plant Nutr. 2003, 26, 1055–1063. [Google Scholar] [CrossRef]
- Chen, W.; Yao, X.; Cai, K.; Chen, J. Silicon Alleviates Drought Stress of Rice Plants by Improving Plant Water Status, Photosynthesis and Mineral Nutrient Absorption. Biol. Trace Elem. Res. 2011, 142, 67–76. [Google Scholar] [CrossRef] [PubMed]
- Alzahrani, Y.; Kuşvuran, A.; Alharby, H.F.; Kuşvuran, S.; Rady, M.M. The defensive role of silicon in wheat against stress conditions induced by drought, salinity or cadmium. Ecotoxicol. Environ. Saf. 2018, 154, 187–196. [Google Scholar] [CrossRef] [PubMed]
- Gong, H.; Chen, K. The regulatory role of silicon on water relations, photosynthetic gas exchange, and carboxylation activities of wheat leaves in field drought conditions. Acta Physiol. Plant. 2012, 34, 1589–1594. [Google Scholar] [CrossRef]
- Rizwan, M.; Ali, S.; Ibrahim, M.; Farid, M.; Adrees, M.; Bharwana, S.A.; Zia-ur-Rehman, M.; Qayyum, M.F.; Abbas, F. Mechanisms of silicon-mediated alleviation of drought and salt stress in plants: A review. Environ. Sci. Pollut. Res. 2015, 22, 15416–15431. [Google Scholar] [CrossRef] [PubMed]
- Malik, M.A.; Wani, A.H.; Mir, S.H.; Rehman, I.U.; Tahir, I.; Ahmad, P.; Rashid, I. Elucidating the role of silicon in drought stress tolerance in plants. Plant Physiol. Biochem. 2021, 165, 187–195. [Google Scholar] [CrossRef]
- Bhardwaj, S.; Kapoor, D. Fascinating regulatory mechanism of silicon for alleviating drought stress in plants. Plant Physiol. Biochem. 2021, 166, 1044–1053. [Google Scholar] [CrossRef]
- Tripathi, D.K.; Singh, S.; Singh, S.; Chauhan, D.K.; Dubey, N.K.; Prasad, R. Silicon as a beneficial element to combat the adverse effect of drought in agricultural crops. In Water Stress and Crop Plants; John Wiley & Sons: New York, NY, USA, 2016; pp. 682–694. [Google Scholar] [CrossRef]
- Wang, M.; Wang, R.; Mur, L.A.J.; Ruan, J.; Shen, Q.; Guo, S. Functions of silicon in plant drought stress responses. Hortic. Res. 2021, 8, 254. [Google Scholar] [CrossRef] [PubMed]
- Parveen, A.; Liu, W.; Hussain, S.; Asghar, J.; Perveen, S.; Xiong, Y. Silicon Priming Regulates Morpho-Physiological Growth and Oxidative Metabolism in Maize under Drought Stress. Plants 2019, 8, 431. [Google Scholar] [CrossRef] [Green Version]
- Kaya, C.; Tuna, L.; Higgs, D. Effect of silicon on plant growth and mineral nutrition of maize grown under water-stress conditions. J. Plant Nutr. 2006, 29, 1469–1480. [Google Scholar] [CrossRef]
- Abd El-Mageed, T.A.; Shaaban, A.; Abd El-Mageed, S.A.; Semida, W.M.; Rady, M.O.A. Silicon Defensive Role in Maize (Zea mays L.) against Drought Stress and Metals-Contaminated Irrigation Water. Silicon 2021, 13, 2165–2176. [Google Scholar] [CrossRef]
- Gong, H.J.; Chen, K.M.; Zhao, Z.G.; Chen, G.C.; Zhou, W. J Effects of silicon on defense of wheat against oxidative stress under drought at different developmental stages. Biol. Plant. 2008, 52, 592–596. [Google Scholar] [CrossRef]
- Hattori, T.; Inanaga, S.; Araki, H.; An, P.; Morita, S.; Luxová, M.; Lux, A. Application of silicon enhanced drought tolerance in Sorghum bicolor. Physiol. Plant. 2005, 123, 459–466. [Google Scholar] [CrossRef]
- Ibrahim, M.A.; Merwad, A.R.M.; Elnaka, E.A. Rice (Oryza Sativa L.) tolerance to drought can be improved by silicon application. Commun. Soil Sci. Plant Anal. 2018, 49, 945–957. [Google Scholar] [CrossRef]
- Mastalerczuk, G.; Borawska-Jarmułowicz, B.; Darkalt, A. Changes in the Physiological and Morphometric Characteristics and Biomass Distribution of Forage Grasses Growing under Conditions of Drought and Silicon Application. Plants 2023, 12, 16. [Google Scholar] [CrossRef] [PubMed]
- Younas, H.S.; Abid, M.; Ashraf, M. Amelioration of detrimental effects of water deficit stress on maize by foliar applied silicon and chitosan. Pak. J. Bot. 2022, 54, 393–400. [Google Scholar] [CrossRef]
- Alkhafagi, H.H.A.; Alnuaimi, J.J.J. Response of Cultivars of Maize (Zea mays L.) to Silicon under the Influence of Water Stress. IOP Conf. Ser. Earth Environ. Sci. 2023, 1158, 062036. [Google Scholar] [CrossRef]
- Hassanein, R.A.; El Khawas, S.A.; Khafaga, H.S.; Abd El-Nabe, A.S.; Abd Elrady, A.S. Amelioration of drought stress on physiological performance of pearl millet (Pennisetum americanum) plant grown under saline condition using potassium humate and silicon source. Egypt J. Exp. Biol. 2017, 13, 57–68. [Google Scholar] [CrossRef]
- Verma, K.K.; Singh, R.K.; Song, Q.Q.; Singh, P.; Zhang, B.Q.; Song, X.P.; Chen, G.L.; Li, Y.R. Silicon alleviates drought stress of sugarcane plants by improving antioxidant responses. Biomed. J. Sci. Tech. Res. 2019, 17, 12580–12586. [Google Scholar] [CrossRef]
- Farouk, S.; EL-Metwally, I.M. Synergistic responses of drip-irrigated wheat crop to chitosan and/or silicon under different irrigation regimes. Agric. Water Manag. 2019, 226, 105807. [Google Scholar] [CrossRef]
- Mphande, W.; Farrell, A.D.; Grove, I.G.; Vickers, L.H.; Kettlewell, P.S. Metabolic and film antitranspirants both reduce drought damage to wheat yield despite having contrasting effects on leaf ABA. J. Agron. Crop Sci. 2022, 208, 143–157. [Google Scholar] [CrossRef]
- Gong, H.; Zhu, X.; Chen, K.; Wang, S.; Zhang, C. Silicon alleviates oxidative damage of wheat plants in pots under drought. Plant Sci. 2005, 169, 313–321. [Google Scholar] [CrossRef]
- Kocięcka, J.; Liberacki, D. The Potential of Using Chitosan on Cereal Crops in the Face of Climate Change. Plants 2021, 10, 1160. [Google Scholar] [CrossRef] [PubMed]
- Hidangmayum, A.; Dwivedi, P.; Katiyar, D. Application of chitosan on plant responses with special reference to abiotic stress. Physiol. Mol. Biol. Plants 2019, 25, 313–326. [Google Scholar] [CrossRef] [PubMed]
- Almeida, L.G.; Magalhães, P.C.; Karam, D.; Silva, E.M.D.; Alvarenga, A.A. Chitosan application in the induction of water deficit tolerance in maize plants. Acta Sci. Agron. 2020, 42, e42463. [Google Scholar] [CrossRef] [Green Version]
- Zeng, D.; Luo, X. Physiological Effects of Chitosan Coating on Wheat Growth and Activities of Protective Enzyme with Drought Tolerance. Open J. Soil Sci. 2012, 2, 282–288. [Google Scholar] [CrossRef] [Green Version]
- Masjedi, M.H.; Roozbahani, A.; Baghi, M. Assessment Effect of Chitosan Foliar Application on Total Chlorophyll and Seed Yield of Wheat (Triticum aestivum L.) Under Water Stress Conditions. J. Crop Nutr. Sci. 2017, 3, 14–26. [Google Scholar]
- Babu, T.V.K.; Sharma, R.; Pallekonda, V.K. Efficacy of hydrogel and chitosan on wheat (Triticum aestivum L.) physio-biochemical and economical yield parameters under deficit irrigation level. J. Pharmacogn. Phytochem. 2018, 7, 2244–2247. [Google Scholar]
- Burondkar, S.S.; Sharma, R.; Singh, A.S.; Akshay, S.M. Efficacy of pusa hydrogel and chitosan on wheat (Triticum aestivum L.) growth and yield under water deficit condition. J. Pharmacogn. Phytochem. 2018, 7, 501–505. [Google Scholar]
- Singh, A.S.; Sharma, R.; Dubey, S.; Kumar, V. Efficacy of pusa hydrogel and chitosan on wheat (Triticum aestivum L.) physiological and biochemical parameters under water deficit condition. J. Pharmacogn. Phytochem. 2018, 7, 1589–1591. [Google Scholar]
- Behboudi, F.; Tahmasebi-Sarvestani, Z.; Kassaee, M.Z.; Modarres-Sanavy, S.A.M.; Sorooshzadeh, A.; Mokhtassi-Bidgoli, A. Evaluation of chitosan nanoparticles effects with two application methods on wheat under drought stress. J. Plant Nutr. 2019, 42, 1439–1451. [Google Scholar] [CrossRef]
- Moolphuerk, N.; Pattanagul, W. Pretreatment with different molecular weight chitosans encourages drought tolerance in rice (Oryza sativa L.) seedling. Not. Bot. Horti Agrobot. Cluj-Napoca 2020, 48, 2072–2084. [Google Scholar] [CrossRef]
- Seang-Ngam, S.; Limruengroj, K.; Pichyangkura, R.; Chadchawan, S.; Buaboocha, T. Chitosan potentially induces drought resistance in rice Oryza sativa L. via calmodulin. J. Chitin Chitosan Sci. 2014, 2, 117–122. [Google Scholar] [CrossRef]
- Boonlertnirun, S.; Sarobol, E.D.; Meechoui, S.; Sooksathan, I. Drought recovery and grain yield potential of rice after chitosan application. Agric. Nat. Resour. 2007, 41, 1–6. [Google Scholar]
- Priyaadharshini, M.; Sritharan, N.; Senthil, A.; Marimuthu, S. Physiological studies on effect of chitosan nanoemulsion in pearl millet under drought condition. J. Pharmacogn. Phytochem. 2019, 8, 3304–3307. [Google Scholar]
- Liu, Z.; Liu, T.; Liang, L. Enhanced photosynthesis, carbohydrates, and energy metabolism associated with chitosan-induced drought tolerance in creeping bentgrass. Crop Sci. 2020, 60, 1064–1076. [Google Scholar] [CrossRef]
- Behboudi, F.; Tahmasebi Sarvestani, Z.; Zaman Kassaee, M.; Modares Sanavi, S.A.M.; Sorooshzadeh, A.; Ahmadi, S.B. Evaluation of Chitosan Nanoparticles Effects on Yield and Yield Components of Barley (Hordeum vulgare L.) under Late Season Drought Stress. J. Water Environ. Nanotechnol. 2018, 3, 22–39. [Google Scholar] [CrossRef]
- Hafez, Y.; Attia, K.; Alamery, S.; Ghazy, A.; Al-Doss, A.; Ibrahim, E.; Rashwan, E.; El-Maghraby, L.; Awad, A.; Abdelaal, K. Beneficial Effects of Biochar and Chitosan on Antioxidative Capacity, Osmolytes Accumulation, and Anatomical Characters of Water-Stressed Barley Plants. Agronomy 2020, 10, 630. [Google Scholar] [CrossRef]
- dos Reis, C.O.; Magalhães, P.C.; Avila, R.G. Action of N-Succinyl and N,O-Dicarboxymethyl Chitosan Derivatives on Chlorophyll Photosynthesis and Fluorescence in Drought-Sensitive Maize. J. Plant Growth Regul. 2019, 38, 619–630. [Google Scholar] [CrossRef] [Green Version]
- Martins, M.; Carvalho, M.; Carvalho, D.T.; Barbarosa, S.; Doriguetto, A.C.; Magalhaes, P.C.; Riberio, C. Physicochemical characterization of chitosan and its efects on early growth, cell cycle and root anatomy of transgenic and non-transgenic maize hybrids. Aust. J. Crop Sci. 2018, 12, 56–66. [Google Scholar] [CrossRef]
- Li, M.S.; Li, S.; Zhang, S.Y.; Chi, B.L. Physiological Effect of New FA Antitranspirant Application on Winter Wheat at Ear Filling Stage. Agric. Sci. China 2005, 4, 820–825. [Google Scholar]
- Pukalchik, M.; Kydralieva, K.; Yakimenko, O.; Terekhova, V. Effect of organic substances on wheat (Triticum spp.) productivity and soil enzyme functional stability under drought stress conditions. Res. Crops 2020, 21, 210–214. [Google Scholar] [CrossRef]
- Anjum, S.A.; Wang, L.; Farooq, M.; Xue, L.; Ali, S. Fulvic Acid Application Improves the Maize Performance under Well-watered and Drought Conditions. J. Agron. Crop Sci. 2011, 197, 409–417. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, Z.; Xiemuxiding, A.; Zhang, X.; Duan, L.; Li, R. Fulvic Acid, Brassinolide, and Uniconazole Mediated Regulation of Morphological and Physiological Traits in Maize Seedlings Under Water Stress. J. Plant Growth Regul. 2022, 42, 1762–1774. [Google Scholar] [CrossRef]
- Yang, W.; Li, P.; Guo, S.; Fan, B.; Song, R.; Zhang, J.; Yu, J. Compensating effect of fulvic acid and super-absorbent polymer on leaf gas exchange and water use efficiency of maize under moderate water deficit conditions. Plant Growth Regul. 2017, 83, 351–360. [Google Scholar] [CrossRef]
- Yang, W.; Li, P.; Guo, S.; Song, R.; Yu, J. Co-application of soil superabsorbent polymer and foliar fulvic acid to increase tolerance to water deficit maize: Photosynthesis, water parameters, and proline. Chil. J. Agric. Res. 2019, 79, 435–446. [Google Scholar] [CrossRef] [Green Version]
- Hellal, F.; El-Sayed, S.; Gad, A.A.; Karim, G.A.; Abdelly, C. Antitranspirants application for improving the biochemical changes of barley under water stress. Iraqi J. Agric. Sci. 2020, 51, 287–298. [Google Scholar] [CrossRef] [Green Version]
- Habibi, G. Exogenous salicylic acid alleviates oxidative damage of barley plants under drought stress. Acta Biol. Szeged. 2012, 56, 57–63. [Google Scholar]
- Fayez, K.A.; Bazaid, S.A. Improving drought and salinity tolerance in barley by application of salicylic acid and potassium nitrate. J. Saudi Soc. Agric. Sci. 2014, 13, 45–55. [Google Scholar] [CrossRef] [Green Version]
- Bandurska, H.; Stroiński, A. The effect of salicylic acid on barley response to water deficit. Acta Physiol. Plant. 2005, 27, 379–386. [Google Scholar] [CrossRef]
- Farooq, M.; Wahid, A.; Lee, D.J.; Cheema, S.A.; Aziz, T. Drought stress: Comparative time course action of the foliar applied glycinebetaine, salicylic acid, nitrous oxide, brassinosteroids and spermine in improving drought resistance of rice. J. Agron. Crop Sci. 2010, 196, 336–345. [Google Scholar] [CrossRef]
- Singh, B.; Usha, K. Salicylic acid induced physiological and biochemical changes in wheat seedlings under water stress. Plant Growth Regul. 2003, 39, 137–141. [Google Scholar] [CrossRef]
- Yavas, I.; Unay, A. Effects of zinc and salicylic acid on wheat under drought stress. J. Anim. Plant Sci. 2016, 26, 1012–1101. [Google Scholar]
- Azimi, M.S.; Daneshian, J.; Sayfzadeh, S.; Zare, S. Evaluation of amino acid and salicylic acid application on yield and growth of wheat under water deficit. Int. J. Agric. Crop Sci. 2013, 5, 816. [Google Scholar]
- Kang, G.; Li, G.; Xu, W.; Peng, X.; Han, Q.; Zhu, Y.; Guo, T. Proteomics reveals the effects of salicylic acid on growth and tolerance to subsequent drought stress in wheat. J. Proteome Res. 2012, 11, 6066–6079. [Google Scholar] [CrossRef] [PubMed]
- Maghsoudi, K.; Arvin, M.J. Salicylic acid and osmotic stress effects on seed germination and seedling growth of wheat (Triticum aestivum L.) cultivars. Plant Ecophysiol. 2010, 2, 7–11. [Google Scholar]
- Kareem, F.; Rihan, H.; Fuller, M. The effect of exogenous applications of salicylic acid and molybdenum on the tolerance of drought in wheat. Agric. Res. Technol. Open Access J. 2017, 9, 555768. [Google Scholar] [CrossRef]
- Abdelkader, A.F.; Hassanein, R.A.; Ali, H. Studies on effects of salicylic acid and thiourea on biochemical activities and yield production in wheat (Triticum aestivum var. Gimaza 9) plants grown under drought stress. Afr. J. Biotechnol. 2012, 11, 12728–12739. [Google Scholar] [CrossRef]
- Aldesuquy, H.; Ghanem, H. Exogenous salicylic acid and trehalose ameliorate short term drought stress in wheat cultivars by up-regulating membrane characteristics and antioxidant defense system. J. Hortic. 2015, 2, 1–10. [Google Scholar] [CrossRef]
- Aldesuquy, H.S.; Abo-Hamed, S.A.; Abbas, M.A.; Elhakem, A.H. Role of glycine betaine and salicylic acid in improving growth vigour and physiological aspects of droughted wheat cultivars. J. Stress Physiol. Biochem. 2012, 8, 149–171. [Google Scholar]
- Anosheh, H.P.; Emam, Y.; Ashraf, M.; Foolad, M.R. Exogenous application of salicylic acid and chlormequat chloride alleviates negative effects of drought stress in wheat. Adv. Stud. Biol. 2012, 4, 501–520. [Google Scholar]
- Arivalagan, M.; Somasundaram, R. Propiconazole and Salicylic acid alleviate effect of drought stress in sorghum (Sorghum bicolor L. Moench) through biochemical and some physiological characters. J. Appl. Adv. Res. 2016, 1, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Arivalagan, M.; Somasundaram, R. Effect of propiconazole and salicylic acid on the growth and photosynthetic pigments in Sorghum bicolor (L.) Moench. under drought condition. J. Ecobiotechnol. 2015, 7, 17–23. [Google Scholar]
- Nimir, N.E.A.; Lu, S.; Zhou, G.; Guo, W.; Ma, B.; Wang, Y. Comparative effects of gibberellic acid, kinetin and salicylic acid on emergence, seedling growth and the antioxidant defence system of sweet sorghum (Sorghum bicolor) under salinity and temperature stresses. Crop Pasture Sci. 2015, 66, 145–157. [Google Scholar] [CrossRef]
- Zamaninejad, M.; Khorasani, S.K.; Moeini, M.J.; Heidarian, A.R. Effect of salicylic acid on morphological characteristics, yield and yield components of corn (Zea mays L.) under drought condition. Eur. J. Exp. Biol. 2013, 3, 153–161. [Google Scholar]
- Rao, S.R.; Qayyum, A.; Razzaq, A.; Ahmad, M.; Mahmood, I.; Sher, A. Role of foliar application of salicylic acid and L-tryptophan in drought tolerance of maize. J. Anim. Plant Sci. 2012, 22, 768–772. [Google Scholar]
- Manzoor, K.; Ilyas, N.; Batool, N.; Ahmad, B.; Arshad, M. Effect of Salicylic Acid on the Growth and Physiological Characteristics of Maize under Stress Conditions. J. Chem. Soc. Pak. 2015, 37, 588–593. [Google Scholar]
- Saruhan, N.; Saglam, A.; Kadioglu, A. Salicylic acid pretreatment induces drought tolerance and delays leaf rolling by inducing antioxidant systems in maize genotypes. Acta Physiol. Plant. 2012, 34, 97–106. [Google Scholar] [CrossRef]
- Idrees, M.; Khan, M.M.A.; Aftab, T.; Naeem, M.; Hashmi, N. Salicylic acid-induced physiological and biochemical changes in lemongrass varieties under water stress. J. Plant Interact. 2010, 5, 293–303. [Google Scholar] [CrossRef]
- Chen, Z.L.; Li, X.M.; Zhang, L.H. Effect of salicylic acid pretreatment on drought stress responses of zoysiagrass (Zoysia japonica). Russ. J. Plant Physiol. 2014, 61, 619–625. [Google Scholar] [CrossRef]
- Hosseini, S.M.; Kafi, M.; Arghavani, M. The effect of salicylic acid on physiological characteristics of lolium grass (Lolium perenne cv. ‘Numan’) under drought stress. Int. J. Agron. Agric. Res. 2015, 7, 7–14. [Google Scholar]
- Hao, T.; Yang, Z.; Liang, J.; Yu, J.; Liu, J. Foliar Application of Carnosine and Chitosan Improving Drought Tolerance in Bermudagrass. Agronomy 2023, 13, 442. [Google Scholar] [CrossRef]
- Lizárraga-Paulín, E.G.; Torres-Pacheco, I.; Moreno-Martínez, E.; Miranda-Castro, S.P. Chitosan application in maize (Zea mays) to counteract the effects of abiotic stress at seedling level. Afr. J. Biotechnol. 2011, 10, 6439–6446. [Google Scholar]
- Elshamly, A.M.S.; Nassar, S.M.A. The Impacts of Applying Cobalt and Chitosan with Various Water Irrigation Schemes at Different Growth Stages of Corn on Macronutrient Uptake, Yield, and Water Use Efficiency. J. Soil Sci. Plant Nutr. 2023, 23, 2770–2785. [Google Scholar] [CrossRef]
- Shemi, R.; Wang, R.; Gheith, E.-S.M.S.; Hussain, H.A.; Cholidah, L.; Zhang, K.; Zhang, S.; Wang, L. Role of exogenous-applied salicylic acid, zinc and glycine betaine to improve drought-tolerance in wheat during reproductive growth stages. BMC Plant Biol. 2021, 21, 574. [Google Scholar] [CrossRef]
- Bayat, S.; Sepehri, A. Paclobutrazol and salicylic acid application ameliorates the negative effect of water stress on growth and yield of maize plants. J. Res. Agric. Sci. 2012, 8, 127–139. [Google Scholar]
- Németh, M.; Janda, T.; Horváth, E.; Páldi, E.; Szalai, G. Exogenous salicylic acid increases polyamine content but may decrease drought tolerance in maize. Plant Sci. 2002, 162, 569–574. [Google Scholar] [CrossRef]
- Yadav, T.; Kumar, A.; Yadav, R.K.; Yadav, G.; Kumar, R.; Kushwaha, M. Salicylic acid and thiourea mitigate the salinity and drought stress on physiological traits governing yield in pearl millet-wheat. Saudi J. Biol. Sci. 2020, 27, 2010–2017. [Google Scholar] [CrossRef]
- Sohag, A.A.M.; Tahjib-Ul-Arif, M.; Brestic, M.; Afrin, S.; Sakil, M.A.; Hossain, M.T.; Hossain, M.A.; Hossain, M.A. Exogenous salicylic acid and hydrogen peroxide attenuate drought stress in rice. Plant Soil Environ. 2020, 66, 7–13. [Google Scholar] [CrossRef] [Green Version]
- Hosain, M.T.; Rahman, M.S.; Nuruzzaman, M.; Munshi, M.H.; Bari, A.F. Morpho-physiological Responses of Rice to Salicylic Acid under Drought Stress. J. Bangladesh Agric. Univ. 2022, 20, 1–11. [Google Scholar] [CrossRef]
- Ali, L.G.; Nulit, R.; Ibrahim, M.H.; Yien, C.Y.S. Efficacy of KNO3, SiO2 and SA priming for improving emergence, seedling growth and antioxidant enzymes of rice (Oryza sativa), under drought. Sci. Rep. 2021, 11, 3864. [Google Scholar] [CrossRef]
- El Sherbiny, H.A.; El-Hashash, E.F.; Abou El-Enin, M.M.; Nofal, R.S.; Abd El-Mageed, T.A.; Bleih, E.M.; El-Saadony, M.T.; El-Tarabily, K.A.; Shaaban, A. Exogenously Applied Salicylic Acid Boosts Morpho-Physiological Traits, Yield, and Water Productivity of Lowland Rice under Normal and Deficit Irrigation. Agronomy 2022, 12, 1860. [Google Scholar] [CrossRef]
- Hussain, I.; Ashraf, M.Y.; Saleem, M.H.; Ashraf, M.A.; Ali, B.; Shereen, A.; Farid, G.; Ali, M.; Shirazi, M.U.; Saleem, A.; et al. Alleviating effects of salicylic acid spray on stage-based growth and antioxidative defense system in two drought-stressed rice (Oryza sativa L.) cultivars. Turk. J. Agric. For. 2023, 47, 9. [Google Scholar] [CrossRef]
- Reddy, A.N.; Sharma, R.; Sravani, M. Impact of Different Levels of Irrigation and Antitranspirant upon Wheat (Triticum aestivum L.) Physio-Biochemical and Economical Yield under Soil Application of Hydrogel. Int. J. Curr. Microbiol. App. Sci. 2018, 7, 3361–3368. [Google Scholar] [CrossRef]
- Sasi, M.; Awana, M.; Samota, M.K.; Tyagi, A.; Kumar, S.; Sathee, L.; Krishnan, V.; Praveen, S.; Singh, A. Plant growth regulator induced mitigation of oxidative burst helps in the management of drought stress in rice (Oryza sativa L.). Environ. Exp. Bot. 2021, 185, 104413. [Google Scholar] [CrossRef]
- Farooq, M.; Basra, S.M.A.; Wahid, A.; Ahmad, N.; Saleem, B.A. Improving the Drought Tolerance in Rice (Oryza sativa L.) by Exogenous Application of Salicylic Acid. J. Agron. Crop Sci. 2009, 195, 237–246. [Google Scholar] [CrossRef]
- Verma, P.; Azad, C.S.; Singh, P.K. Salicylic Acid-induced Biochemical Changes in Swarna (MTU 7029) Variety of Rice under Drought Stress. J. Stress Physiol. Biochem. 2022, 18, 106–114. [Google Scholar]
- Hosain, M.T.; Kamrunnahar, M.; Rahman, M.; Hossain, M.; Munshi, M.; Rahman, S. Drought stress response of rice yield (Oryza sativa L.) and role of exogenous salicylic acid. Int. J. Biosci. 2020, 16, 222–230. [Google Scholar]
- Ávila, R.G.; Magalhães, P.C.; Vitorino, L.C.; Bessa, L.A.; de Souza, K.R.D.; Queiroz, R.B.; Jakelaitis, A.; Teixeira, M.B. Chitosan Induces Sorghum Tolerance to Water Deficits by Positively Regulating Photosynthesis and the Production of Primary Metabolites, Osmoregulators, and Antioxidants. J. Soil Sci. Plant Nutr. 2023, 23, 1156–1172. [Google Scholar] [CrossRef]
- Desoky, E.S.M.; Tohamy, M.R.A.; Eisa, G.S.A.; El-Sarkassy, N.M. Effect of some antitranspirant substances on growth, yield and flag leaf structure of wheat plant (Triticum aestivum L.) grown under water stress conditions. Zagazig J. Agric. Res. 2013, 40, 223–233. [Google Scholar]
- Shemi, R.; Wang, R.; Gheith, E.S.; Hussain, H.A.; Hussain, S.; Irfan, M.; Cholidah, L.; Zhang, K.; Zhang, S.; Wang, L. Effects of salicylic acid, zinc and glycine betaine on morpho-physiological growth and yield of maize under drought stress. Sci. Rep. 2021, 11, 3195. [Google Scholar] [CrossRef]
- Waseem, M.; Athar, H.U.R.; Ashraf, M. Effect of salicylic acid applied through rooting medium on drought tolerance of wheat. Pak. J. Bot. 2006, 38, 1127–1136. [Google Scholar]
- Maswada, H.F.; Sunoj, V.S.J.; Prasad, P.V.V. A comparative Study on the Effect of Seed Pre-sowing Treatments with Microwave Radiation and Salicylic Acid in Alleviating the Drought-Induced Damage in Wheat. J. Plant Growth Regul. 2021, 40, 48–66. [Google Scholar] [CrossRef]
- Horváth, E.; Pál, M.; Szalai, G.; Paldi, E.; Jand, T. Exogenous 4-hydroxybenzoic acid and salicylic acid modulate the effect of short-term drought and freezing stress on wheat plants. Biol. Plant. 2007, 51, 480–487. [Google Scholar] [CrossRef]
- Noreen, S.; Fatima, K.; Athar, H.U.R.; Ahmad, S.; Hussain, K. Enhancement of physio-biochemical parameters of wheat through exogenous application of salicylic acid under drought stress. J. Anim. Plant Sci. 2017, 27, 153–163. [Google Scholar]
- Kareem, F.; Rihan, H.; Fuller, M.P. The Effect of Exogenous Applications of Salicylic Acid on Drought Tolerance and Up-Regulation of the Drought Response Regulon of Iraqi Wheat. J. Crop Sci. Biotechnol. 2019, 22, 37–45. [Google Scholar] [CrossRef]
- Cantore, V.; Pace, B.; Albrizio, R. Kaolin-based particle film technology affects tomato physiology, yield and quality. Environ. Exp. Bot. 2009, 66, 279–288. [Google Scholar] [CrossRef]
- Youssef, E.A.; Hozayenb, A.M.A. The effect of drought stress condition combined with kaolin spraying application on growth and yield parameters of maize (Zea Mays). Plant Arch. 2019, 19, 674–683. [Google Scholar]
- Patel, R.; Raha, P.; Kundu, P.S.A. Impact of antitranspirant application on nutrient uptake and yield of rice (Oryza sativa) grown under water stress condition in inceptisol of Varanasi, Uttar Pradesh. Int. J. Chem. Stud. 2019, 7, 1327–1331. [Google Scholar]
- Abdallah, M.M.S.; El-Bassiouny, H.M.S.; AbouSeeda, M.A. Potential role of kaolin or potassium sulfate as anti-transpirant on improving physiological, biochemical aspects and yield of wheat plants under different watering regimes. Bull. Natl. Res. Cent. 2019, 43, 134. [Google Scholar] [CrossRef]
- El-Kholy, M.A.; Ouda, S.A.H.; Gaballah, M.S.; Hozayn, M. Predicitng the Interaction Between the Effect of Anti-transpirant and Climate on Productivity of Wheat Plant Grown under Water Stress. J. Agron. 2005, 4, 75–82. [Google Scholar] [CrossRef]
- El-Kholy, M.A.; Gaballah, M.S.; El-Ashry, S.; El-Bawab, A.M. Combating drought using yield stabilizing agents in barley. J. Agric. Bio. Sci. 2005, 7, 369–375. [Google Scholar]
- Ouda, S.A.; El-Mesiry, T.; Gaballah, M.S. Effect of using stabilizing agents on increasing yield and water use efficiency in barley grown under water stress. Aust. J. Basic Appl. Sci. 2007, 1, 571–577. [Google Scholar]
- Fouda, K.; El-Hadidi, E.M.; Mohammed, R.; El-Sherpiny, M.A. Role of soil addition of zeolite and foliar application of anti-transpirants in suppression water deficit impeding maize performance. Plant Cell Biotechnol. Mol. Biol. 2021, 22, 105–118. [Google Scholar]
- Patel, R.; Raha, P.; Laxmi, S.; Paul, A. Effect of antitranspirants on rice (Oryza sativa) grown under submerged and water stressed condition in an Inceptisol of Varanasi, Uttar Pradesh. J. Crop Weed 2019, 15, 100–106. [Google Scholar] [CrossRef]
- El-Hadidi, E.M.; Meleha, A.M.I.; El-Tobgy, S.M.M.; Abo El-Ezz, S.F. Response of rice (Oriza Sativa L.) to some antitranspiratiors under water stress in North Nile Delta, Egypt. Plant Arch. 2020, 20, 2210–2220. [Google Scholar]
- Brito, C.; Dinis, L.T.; Moutinho-Pereira, J.; Correia, C. Kaolin, an emerging tool to alleviate the effects of abiotic stresses on crop performance. Sci. Hortic. 2019, 250, 310–316. [Google Scholar] [CrossRef]
- Suzuki, N.; Rivero, R.M.; Shulaev, V.; Blumwald, E.; Mittler, R. Abiotic and biotic stress combinations. New Phytol. 2014, 203, 32–43. [Google Scholar] [CrossRef]
- Surówka, E.; Rapacz, M.; Janowiak, F. Climate change influences the interactive effects of simultaneous impact of abiotic and biotic stresses on plants. In Plant Ecophysiology and Adaptation under Climate Change: Mechanisms and Perspectives; Springer: Singapore, 2020; Volume 1, pp. 1–50. [Google Scholar]
- Źróbek-Sokolnik, A. Temperature Stress and Responses of Plants. In Environmental Adaptations and Stress Tolerance of Plants in the Era of Climate Change; Springer: New York, NY, USA, 2011; pp. 113–134. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kocięcka, J.; Liberacki, D.; Stróżecki, M. The Role of Antitranspirants in Mitigating Drought Stress in Plants of the Grass Family (Poaceae)—A Review. Sustainability 2023, 15, 9165. https://doi.org/10.3390/su15129165
Kocięcka J, Liberacki D, Stróżecki M. The Role of Antitranspirants in Mitigating Drought Stress in Plants of the Grass Family (Poaceae)—A Review. Sustainability. 2023; 15(12):9165. https://doi.org/10.3390/su15129165
Chicago/Turabian StyleKocięcka, Joanna, Daniel Liberacki, and Marcin Stróżecki. 2023. "The Role of Antitranspirants in Mitigating Drought Stress in Plants of the Grass Family (Poaceae)—A Review" Sustainability 15, no. 12: 9165. https://doi.org/10.3390/su15129165
APA StyleKocięcka, J., Liberacki, D., & Stróżecki, M. (2023). The Role of Antitranspirants in Mitigating Drought Stress in Plants of the Grass Family (Poaceae)—A Review. Sustainability, 15(12), 9165. https://doi.org/10.3390/su15129165