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Abstract: It is an important direction for the sustainable development of pavement to mix the
discarded concrete blocks with gradation according to a certain proportion after crushing, cleaning
and other technological processes, partially or completely replace aggregate, and then add cement,
water, and so on to make recycled concrete for pavement paving, but the traditional evaluation model
for the compressive strength (CS) of recycled concrete cannot meet the requirements of efficient
calculation. To address such issues, the present research proposed to apply the firefly algorithm
(FA) to optimize the random forest (RF) model. The results were demonstrated by comparing the
consistency of predicted and actual values, and also by analyzing the correlation coefficient (R) and
root-mean-square error (RMSE). Higher R values (0.9756 and 0.9328) and lower RMSE values (3.0752
and 6.4369) for the training and test sets present the reliability of the FA and RF hybrid machine
learning model. To understand the influence law of input indexes on the output index, the importance
and sensitivity of variables are further analyzed. The results displayed that effective water-cement
ratio (WC) and nominal maximum recycled concrete aggregate size (NMR) have the greatest impact
on the output variable, with importance scores of 2.5947 and 2.4315, respectively, while the change in
the recycled concrete aggregate replacement rate (RCA) has a weak influence, with an importance
score of 0.4695. Introducing FA to RF for the compressive strength modeling of recycled concrete can
significantly improve the computational efficiency and accuracy.

Keywords: recycled concrete; machine learning; firefly algorithm; random forest; compressive strength

1. Introduction

Sustainability, also known as the concept of sustainable development, refers to devel-
opment that can meet the needs of the present generation without endangering the needs
of future generations [1]. With the development of society, sustainable development has
become a consensus in various industries. Hence, sustainable development is an important
development direction of the construction industry. However, with the advancement of
urban construction and the acceleration of urbanization, many old buildings have been
demolished and rebuilt, leading to a huge amount of construction waste [2–5]. The volume
of construction waste generated worldwide every year will nearly double to 2.2 billion
tons by the year 2025, according to Construction & Demolition Recycling. The treatment
of construction waste needs to consume a lot of manpower and material resources, and
the improper treatment of construction waste will cause serious environmental pollution
and waste of aggregate resources. At the same time, the exploitation of natural aggregate
also leads to the destruction of forest land, environmental damage, and serious harm to the
ecological balance. With the concept of sustainable development, researchers proposed to
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make construction waste into recycled aggregate, recycled cement, and recycled sand to
prepare recycled concrete [6]. The recycling of construction waste can solve not only the
growing shortage of cement, natural aggregate, and natural sand but also the treatment cost
of waste concrete, environmental pollution, and other problems [7–9], which is conducive
to the sustainable improvement of the city and the construction industry [10–13]. Currently,
the old cement pavement overhaul, reconstruction, and maintenance management generate
a large amount of waste cement and broken concrete, causing a certain burden on the envi-
ronment. The use of waste cement concrete panels in the construction of new pavement
bases or surface layers can not only reduce the mining of new aggregates, save natural
resources, and reduce environmental pollution, but also eliminate the environmental dam-
age and arable land occupation caused by waste aggregate accumulation [14], which has
significant economic and social benefits. The modification process is shown in Figure 1.
With the demolition of old buildings and the construction of new ones, a series of issues
concerning natural energy, resources, sustainable development, and environmental protec-
tion have been brought about. It is mainly manifested in two aspects: First, the demand
for concrete aggregate is increasing, resulting in the large-scale exploitation of resources,
consuming a lot of human and material resources. Secondly, with the establishment of new
buildings and the demolition of old buildings, a large amount of construction waste will be
generated, which is bound to cause great pollution to the environment and occupy a large
amount of landfill land. To maximize the recycling of construction waste, the exploitation
of natural resources must be minimized, which is the basis of sustainable development of
the construction industry.
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In recent years, many researchers have conducted a series of research studies on
the performance of green concrete, contributing an undeniable force to the application of
recycled concrete. Jayakody et al. [16] researched the potential connection between the
strength of concrete made of recycled aggregate over time, and the research results indicated
that the aggregate replacement rate (RCA) for coarse aggregate reached 40% and the
recycled concrete met the strength requirements of traditional low- and medium-strength
concrete. To ensure the feasibility of recycled concrete application in the harsh environment,
Koga et al. [17] studied the test method of freeze–thaw durability of recycled concrete
aggregate, and the specifications of precast concrete of recycled aggregate that can be used in
the freeze–thaw environment with deicing salt were described. Adesina et al. [18] analyzed
the effect of utilizing recycled concrete fine particles as an engineering cement composite
(ECC) material on its performance. The research results showed that replacing silica sand
in ECC with recycled concrete would increase its drying shrinkage and improve its chloride
ion permeability, permeable porosity, and water absorption to some extent. Hence, the
application of recycled concrete as an aggregate in ECC is conducive to the sustainable
improvement and progress of the construction industry. Jaawani et al. [19] studied the
impact of recycled asphalt pavement (RAP) on the flexural strength, CS, durability, and
other performance indexes of concrete to determine the possibility of RAP being applied in
structural concrete.

The construction of highways consumes a lot of resources such as natural sand and
stone which are difficult to regenerate [20–22]. The appropriate amounts of water and
cement are added to the graded crushed stone, followed by mixing, compaction, and
maintenance to produce the cement-stabilized macadam base, which is the main material
source for the semi-rigid base and also the most widely used type of highway base at
present. The specification of the compressive strength of cement-stabilized macadam base
is not very high: the general requirement is higher than 5 Mpa; based on the development
law of unconfined CS, the compressive modulus of resilience and splitting strength of
recycled concrete and cement-stabilized macadam base are similarly recycled, so it is
feasible to use recycled concrete instead of cement-stabilized macadam base. CS reflects
the ultimate strength, the maximum stress when the object is damaged under the action of
the external force of an object under external pressure, which reflects the road performance
of recycled concrete [23–25]. Recently, more and more scholars are paying attention to
the evaluation of the CS of recycled concrete. Xie et al. [24] explored the influence rule
of metakaolin on the CS of recycled concrete employing the cube CS test and a scanning
electron microscope, and the results showed that when the aggregate replacement rate was
30% and 50%, and the content of nano-metakaolin was 5%, the CS of recycled concrete
was the maximum. Yang et al. [26] analyzed the influence of the mixing process on the
CS and splitting tensile strength of regenerated concrete based on laboratory tests and
t-tests, and proved that the quality of regenerated and multiply regenerated concrete
with vibration mixing is better than that of first-generation concrete. Kim Gwang Hee
et al. [27] analyzed the CS of recycled concrete based on data sets from existing articles
and artificial neural networks (ANN) and verified the prediction accuracy of ANN by
comparing the result of ANN with the maturity of the evaluation methods for the CS of
recycled concrete. Naderpour et al. [28] established the CS prediction model of recycled
concrete using ANN, and the research results showed that the use of ANN to analyze the
CS of recycled concrete has a positive impact on improving the prediction accuracy. Zhu
et al. [29] chose to establish the evaluation model based on genetic algorithm analysis,
applied the model to evaluate the CS of recycled concrete, and verified the accuracy using
data from the published articles. However, most of the existing studies on the CS of recycled
concrete use laboratory experimental methods and single machine learning models, among
which laboratory experimental methods have limitations such as long time and high cost,
and the evaluation accuracy of single machine learning models has difficulty achieving
satisfactory results. Thus, it is necessary to develop more accurate, easier, and cheaper
hybrid machine learning models to predict the CS of recycled concrete [30,31].
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The research on the CS of recycled concrete has significant implications for the green
and sustainable development of concrete. Although some researchers have applied machine
learning models to the study of CS in recycled concrete, the prediction accuracy of a single
machine learning model cannot achieve satisfactory results. Based on MATLAB (R2021b)
software, this study proposes to introduce the firefly algorithm (FA) to the random forest
(RF) for the CS modeling of recycled concrete to improve prediction accuracy. Firstly, based
on the influencing factors of the CS of recycled concrete and published literature, this study
selected the input indexes for evaluating the CS of recycled concrete and determined the
database. The feasibility of the database and indexes was verified through mathematical
statistical analysis and correlation analysis. Then 10-fold cross-validation (10-fold CV) was
used to analyze the effect of FA on the hyperparameters optimization of RF. Finally, the
prediction accuracy of the FA and RF hybrid machine learning model for the CS of recycled
concrete was studied based on consistency analysis and error analysis, and the importance
and sensitivity of input variables on the output variable were analyzed to evaluate the
change rule of the output index with the change in input indexes.

2. Methodology
2.1. Data Analysis

Researchers often focus on the research of prediction models, but they ignore the
important role of databases in model validation. A reliable database is the basis for
evaluating the effectiveness of the studied models [32,33]. This study collected relevant
data from previously published literature and formed a database with input variables
including effective water-cement ratio (WC), aggregate-cement ratio (AC), and RCA; among
them, the selection of RCA is mainly to study the influence of recycled aggregate on the
performance of recycled concrete and then study the feasibility of pavement recycling
technology. Six input variables were also selected to describe the physical properties
of aggregates, including aggregate size (nominal maximum RCA size (NMR), nominal
maximum NA size (NMN)), density (bulk density of RCA (BDR), bulk density of NA
(BDN)), and water absorption (water absorption of RCA (WAR), water absorption of NA
(WAN)), and the output variable including the compressive strength only [34–71]. Table 1
performs the mathematical statistical analysis, and Figure 2 shows the distribution of ten
parameters, respectively. It is obvious that the coverage of all variables is extensive and the
difference between the median and mean of the input variables and the output variable
is small, so the frequency distribution histogram of compressive strength is a single peak
type with reasonable data distribution. The results indicate the rationality of the database
collected in this study.

Table 1. Analysis of variables.

Indexes Minimum Maximum Median Mean Standard
Deviation Variance

WC 0.29 0.72 0.45 0.472 0.088 0.008
AC 1.7 6.4 2.8 2.878 0.913 0.833

RCA (%) 0 90 45 39.623 16.936 286.83
NMR (mm) 8 32 20 20.591 5.094 25.953
NMN (mm) 10 32 20 22.047 4.991 24.909

BDR (Kg/m3) 2010 2880 2309 2393.084 124.373 15,468.73
BDN (Kg/m3) 2510 2970 2610 2638.591 81.93 6712.567

WAR (%) 1.5 10.9 5 5.341 1.955 3.823
WAN (%) 0.2 3 1.1 1.163 0.691 0.477
CS (mPa) 14.2 108 44.9 45.677 14.519 210.804
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2.2. Correlation Analysis

Correlation analysis is an important analytical method for studying the potential
connections between variables. The correlation between variables includes three types:
positive correlation, negative correlation, and uncorrelation [72,73]. Excessive positive
and negative correlations between input variables can lead to multicollinearity between
variables, which affects the accuracy of model evaluation. Hence, evaluating the correlation
between input parameters is an indispensable step to ensure the reliability of the selection
of input parameters. In this study, the Pearson correlation coefficient was selected to
calculate the correlation coefficient between input variables, and the calculation formula
for the Pearson correlation coefficient is as Formula (1):

ρXY =
cov(X, Y)

σXσY
=

E[(X− µX)(X− µY)]

σXσY
(1)

Figure 3 displays the results of the analysis. Excessive positive and negative corre-
lations between indexes will harm the interpretation of the output index. Obviously, the
correlations between BDN and RCA, WAR and BDR, and WAN and BDN are high, and
the correlation coefficients are −0.744, 0.752, and 0.688, respectively. It is worth noting
that the correlations between WAN and NMR and between WAN and AC are very small,
and the correlation coefficients are −0.002 and 0.003, which are close to being irrelevant.
The correlation coefficients between input variables are between −0.744 and 0.688, among
which the correlation coefficients between most input variables are between −0.3 and 0.4,
and only a few input variables have correlation coefficients lower than −0.3 or higher than
0.4. On the whole, there is no high correlation between the input parameters. Hence, these
parameters and data sets can be applied to the machine learning process to evaluate the CS
of recycled concrete.
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2.3. Machine Learning Algorithm
2.3.1. Firefly Algorithm (FA)

There exists a strong link between the luminous intensity of fireflies and their location
and attractiveness; the higher the luminous brightness is, and the brighter the brightness
is, the higher the attraction of fireflies to fireflies [74]. In practical problems, brightness
represents the answer to the problem, and the quality of the answer is directly proportional
to the brightness of the fireflies. During the iteration process, fireflies are drawn to brighter
fireflies and constantly update their location until they find the fireflies with the highest
brightness; in other words, until they find the optimal solution or meet the termination
condition. In practical problems, brightness is often used to represent the objective function
value, and the relationship between the two is shown in the following formula:

Ii = f (x), x = (xi1, xi2, . . . xin) (2)

Suppose there is a brightness difference between firefly i and firefly j, and the bright-
ness of firefly i is higher than that of firefly j. The attraction between firefly i and j is
recorded as βij, and the solution formula is

βij = β0e−γr2
ij (3)

where β0 is the maximum attraction, usually β0 = 1, γ is the light absorption coefficient,
and rij is the Cartesian distance between firefly i and firefly j, which is defined as

rij =
∥∥xi − xj

∥∥ =

√√√√ d

∑
k=1

(xik − xjk)
2 (4)
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In the formula, d represents the dimension of the variable, xi, xj represent the spatial
positions of firefly i and firefly j, and firefly i completes the iterative update of its position
by moving towards firefly j. The process is as follows:

xj(t + 1) = xj(t) + βij(xi(t)− xj(t)) + αε j (5)

In the formula, t represents the number of iterations, βij is the attraction of firefly i sto
j, α represents the step parameter, where α ∈ [0, 1], and ε j represents the random vector.
Figure 4 shows the specific process of FA.
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2.3.2. Random Forest

RF is an integrated algorithm that combines multiple classifiers to achieve the purpose
of prediction. RF has the advantages of fast speed, a simple model, and high precision,
so it is often applied to solve practical problems. The classification process of RF can be
summarized into the following steps (Figure 5):

(1) Through the bootstrap sampling method, m samples are randomly selected from the
training set M repeatedly and with put back. Each sample is the training data of each
classification tree, and the unselected samples are used to analyze the effectiveness of
the model.

(2) Generation of the classification tree: when the leaf nodes start to be sorted, n features
are randomly selected from N features, and the smallest Gini index is selected as the
classification point to split, forming a single classification tree with small deviation to
avoid the classification error of test data.
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Gini(M) = 1−
k

∑
i=1

p2
i (6)

where pi represents the probability of Ci appearing in sample set M.

(3) Repeat step (2) T times to form T CART classification trees.
(4) The classification results of the samples to be tested are determined by simple voting,

and the category with the largest number of votes is selected as the final category. The
result is the following:

H(x) = argmax
Y

k

∑
i=1

I(hi(x) = Y) (7)

In the formula, H(x) is the final classification, argmax represents the independent
variable point set of the maximum function value, k represents the number of classification
trees, I(·) represents the indicative function, the classification results of a single tree are
represented by hi(x), and the target classification is represented by Y. The diagrammatic of
RF is performed as follows:
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3. Analysis and Discussion
3.1. Result of Hyperparameter Tuning

Machine learning algorithms contain many hyperparameters; usually, some param-
eters can be optimized by training, and some parameters that cannot be optimized by
training are called super parameters. To ensure the fidelity of the model, we need to
optimize the super parameters. In the present study, 10-fold CV was selected to verify
the effect of FA on the hyperparameter tuning of RF. In this method, the data sets were
randomly divided into ten groups, which were taken turns as the test groups, and the
remaining nine groups were taken as the training groups. After 10 cross-validations, the
optimal combination of hyperparameters was obtained. Ten-fold CV makes better use of
the data sets and has the advantages of improving the generalization ability of the model
and avoiding overfitting and underfitting of the model.

Figure 6 shows the result of a 10-fold CV: every fold has an RMSE value of less than
6 except for the seventh fold, and the minimum RMSE value is reflected at the eighth fold,
proving that FA can effectively adjust the hyperparameters of RF and the hyperparameter
tuning result of the model at the eighth fold is the best [8]. It is worth noting that due to the
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abnormal phenomena of overfitting and underfitting, the prediction effect of the training
set and the test set was further analyzed to determine the accuracy of the FA and RF hybrid
machine learning model.
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3.2. Evaluating the Prediction Performance

In this study, the consistency of the training set and that of the test set were analyzed
to verify the accuracy of the FA and RF hybrid machine learning model in predicting the
CS of recycled concrete. Figure 7 shows the prediction performance of the hybrid machine
learning model on the CS, and the histogram in the figure represents the error between the
predicted values and actual values. From Figure 7a, we can clearly see that the predicted
values and the actual values almost coincide. There exists a high consistency between the
predicted values and the actual values of the vast majority of samples in Figure 7b, and
only a slight deviation between the predicted values and the actual values of individual
samples. It is not difficult to distinguish that the consistency between the predicted and
measured values is satisfactory. Although the training set has more errors compared to the
test set, and there are several samples with significant deviations between the predicted and
actual values, the overall consistency between the predicted values and measured values
is acceptable, proving that the prediction accuracy of FA and RF on the CS of recycled
concrete is also acceptable.
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To further evaluate the predictive accuracy of the hybrid machine learning model
from a quantitative analysis perspective, this study decided to analyze the RMSE value,
representing the error, and the R value, representing consistency, separately, and the
calculation of these two values was also carried out on the datasets for model training and
validation. The RMSE and R values can be calculated using the following formulas:

RMSE =

√
1
n

n

∑
i=1

(y∗i − yi)
2 (8)

R =

n
∑

i=1
(y∗i − y∗)(yi − y)√

n
∑

i=1
(y∗i − y∗)2

√
n
∑

i=1
(yi − y)2

(9)

In the formula, y∗i represents the predicted value, yi represents the actual value,y∗

represents the average of the predicted value, y represents that of the actual value, and n
represents the sample capacity.

From Figure 8, we can see that there is an acceptable agreement between the predicted
and measured values, and the CS values (predicted and measured) are concentrated in
20–70 MPa, with only a few points reaching around 100 MPa. The high consistency between
the predicted and measured values can be verified through quantitative analysis of the
parameters in the training and testing sets, and the parameters selected in this study are the
R values and the RMSE values. It is worth noting that the R values of the data sets used for
model training and model effectiveness verification are 0.9756 and 0.9328, respectively, and
the RMSE values are 3.0752 and 6.4369, respectively, which shows that both the training set
and the test set have a higher R value and a lower RMSE value. The above results show that
the proposed FA and RF hybrid machine learning model for predicting the CS of recycled
concrete does not have the phenomenon of overfitting. The satisfactory R values and RMSE
values once again validate the reliability of the FA and RF hybrid machine learning model
for the evaluation of the CS of recycled concrete.
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3.3. Significance and Sensitivity Analysis of Input Variables

To put forward valuable suggestions for civil engineers to prepare recycled concrete
with high CS, it is necessary to further analyze the influence law of input variables on
output variables. Hence, this study analyzed the importance and sensitivity of variables
based on the FA and RF hybrid machine learning model. The importance and sensitivity
analysis results of the input indexes on the CS strength output of recycled concrete by the
FA and RF hybrid model are performed in Figures 9 and 10.
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The importance of the nine input indexes for the CS of recycled concrete is shown in
Figure 9. As can be seen from Figure 9, the importance of the nine input variables to the
CS of recycled concrete decreases in the order of WC, NMR, AC, BDR, WAR, BDN, WAN,
NMR, and RCA. Among the input variables, WC and AC have the highest important score
for the CS of recycled concrete; it is not difficult to understand that WC and AC affect
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the output indexes by affecting its compactness, which has been confirmed in previous
studies [75,76]. This indicates that engineers need to pay more attention to the indexes
of WC and AC in the subsequent preparation of recycled concrete to achieve the purpose
of enhancing the CS of recycled concrete by controlling compactness. In the physical
properties of aggregates, the influence of size and density on the output indexes is greater
than that of water absorption. Interestingly, RCA has the lowest importance score of 0.4695
for the CS of recycled concrete. The above result shows that RCA has a slight effect on
the CS of recycled concrete, which proves the feasibility of recycled aggregate replacing
natural aggregate [77,78]. However, the low importance score of RCA will also mistakenly
lead readers to believe that it is feasible to use recycled aggregate to completely replace
natural aggregate without too much impact on the CS of recycled concrete. The use of
recycled aggregate instead of natural aggregate is not only beneficial to reduce resource
exploitation but also helpful to the disposal of construction waste. To further explore the
influence of RCA and other input variables on the CS of recycled concrete, the sensitivity
of input variables on output variables was analyzed.

As shown in Figure 10a, WC within the range of 0–0.3 has little influence on the CS of
recycled concrete, and when WC exceeds 0.5, there exists a negative correlation between
WC and CS. It is clear that (Figure 10c), with the increase of RCA, the CS variation trend
of recycled concrete increases first and then rapidly decreases. When RCA is less than
20%, the increase of RCA has a positive effect on the CS of recycled concrete. Therefore,
engineers can focus on RCA to improve the CS of recycled concrete while reducing the cost.
In the beginning, BDR and BDN have no significant influence on the compressive strength
(see Figure 10f,g), but when their values rise to a certain extent, there exists a negative
correlation between them and the compressive strength. As a whole, AC, NMR, and NMN
are negatively correlated with the CS of recycled concrete (see Figure 10b,d,e), while the
influence of WAR and WAN on the CS of recycled concrete is random.

4. Conclusions

Recycled concrete is a kind of green concrete processed from construction waste which
plays an important role in the green and sustainable development of concrete. To further
expand the utilization scope of recycled concrete, this research proposed to utilize recycled
concrete to replace cement-stabilized macadam base. To verify the feasibility of recycled
concrete in practical engineering, this study analyzes the impact of various factors on
its compressive strength based on an artificial intelligence model made up of FA and RF.
Through the study of intelligent optimization algorithms in the CS evaluation of recycled
concrete, the following conclusions can be obtained:

(1) There is no high positive and negative correlation between the input variables, which
proves that the multicollinearity phenomenon will not occur and affect model predic-
tion, indicating that the selection of input indicators is reasonable.

(2) FA shows a strong acceptability for the optimization effect of the hyperparameters
of RF, and the convergence of RMSE and the results of 10-fold CV can prove the
above conclusion.

(3) The predicted and measured values of the CS are highly consistent, both with sat-
isfactory R values and RMSE values, proving that introducing the firefly algorithm
to the random forest for the CS modeling of recycled concrete can improve the
computational accuracy.

(4) Importance and sensitivity analysis of variables shows that WC and NMR show
higher importance for the CS of recycled concrete, while RCA is the index with the
lowest importance score.

In the future, researchers need to invest their research efforts in optimizing the mechan-
ical and economic properties and achieving other interrelated goals of recycled concrete to
promote the application of recycled concrete in pavement materials and promote the sus-
tainable development of the construction industry. Furthermore, in addition to the hybrid
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algorithm of RF and FA, more evolutionary learning algorithms should be considered to
improve the reliability of the simulation process.
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