Simulation and Optimization of Renewable Energy-Powered Desalination: A Bibliometric Analysis and Highlights of Recent Research
Abstract
:1. Introduction
2. Background
2.1. Simulation and Optimization
2.2. Challenges in Renewable Energy-Based Desalination
2.3. Challenges in Optimizing Renewable Energy-Based Desalination
3. Methodology
3.1. Data Collection
3.2. Data Analysis
3.2.1. Performa Analysis
- CiteScore: measures the impact of a citation of a title (journal, book, conference proceedings, etc.). Using this indicator for 2018–2021 since, at the time of this research, it was not updated to 2022.
- CiteScore Percentile: Indicates the relative standing of a title in its subject field and corrects for the different sizes of subject fields.
- CiteScore rank: Indicates the absolute standing of a title in its field.
- H-index: Evaluates the performance of a scientist. It considers the number of articles published and the quality represented by the total number of times their articles were cited.
3.2.2. Scientific Mapping
3.3. Analysis
4. Results and Discussion
4.1. Publication Trend
4.1.1. Article Distribution in Subject Areas and Journals
4.1.2. Countries, Institutions, and Authors
4.1.3. Analysis of Recent Articles with Most Citations
4.1.4. Keywords Analysis
4.2. Trends in Renewable Energy
4.3. Trends in the Usage of Optimization Algorithms and Modeling Tools
5. Research Gaps and Future Directions
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Koroneos, C.; Dompros, A.; Roumbas, G. Renewable energy driven desalination systems modelling. J. Clean. Prod. 2007, 15, 449–464. [Google Scholar] [CrossRef]
- Vinca, A.; Riahi, K.; Rowe, A.; Djilali, N. Climate-Land-Energy-Water Nexus Models across Scales: Progress, Gaps and Best Accessibility Practices. Front. Environ. Sci. 2021, 9, 691523. [Google Scholar] [CrossRef]
- Peng, W.; Maleki, A.; Rosen, M.A.; Azarikhah, P. Optimization of a hybrid system for solar-wind-based water desalination by reverse osmosis: Comparison of approaches. Desalination 2018, 442, 16–31. [Google Scholar] [CrossRef]
- Liu, J.; Mei, C.; Wang, H.; Shao, W.; Xiang, C. Mutual Adaptability of Renewable Energy and Water-supply Systems in Islands. Energy Procedia 2017, 105, 799–804. [Google Scholar] [CrossRef]
- Ahmed, F.E.; Hashaikeh, R.; Hilal, N. Solar powered desalination—Technology, energy and future outlook. Desalination 2019, 453, 54–76. [Google Scholar] [CrossRef] [Green Version]
- Sayed, E.T.; Olabi, A.; Elsaid, K.; Al Radi, M.; Alqadi, R.; Abdelkareem, M.A. Recent progress in renewable energy based-desalination in the Middle East and North Africa MENA region. J. Adv. Res. 2023, 48, 125–156. [Google Scholar] [CrossRef]
- Maia, C.; Ferreira, A.G.; Valle, R.M.; Cortez, M.F. Theoretical evaluation of the influence of geometric parameters and materials on the behavior of the airflow in a solar chimney. Comput. Fluids 2009, 38, 625–636. [Google Scholar] [CrossRef]
- Gökçek, M.; Gökçek, B. Technical and economic evaluation of freshwater production from a wind-powered small-scale seawater reverse osmosis system (WP-SWRO). Desalination 2016, 381, 47–57. [Google Scholar] [CrossRef]
- Al-Karaghouli, A.; Renne, D.; Kazmerski, L.L. Technical and economic assessment of photovoltaic-driven desalination systems. Renew. Energy 2010, 35, 323–328. [Google Scholar] [CrossRef]
- Ghobeity, A.; Mitsos, A. Optimal design and operation of desalination systems: New challenges and recent advances. Curr. Opin. Chem. Eng. 2014, 6, 61–68. [Google Scholar] [CrossRef]
- He, Q.; Zheng, H.; Ma, X.; Wang, L.; Kong, H.; Zhu, Z. Artificial intelligence application in a renewable energy-driven desalination system: A critical review. Energy AI 2021, 7, 100123. [Google Scholar] [CrossRef]
- Han, J.; Kang, H.-J.; Kim, M.; Kwon, G.H. Mapping the intellectual structure of research on surgery with mixed reality: Bibliometric network analysis (2000–2019). J. Biomed. Inform. 2020, 109, 103516. [Google Scholar] [CrossRef]
- Naseer, M.N.; Zaidi, A.A.; Khan, H.; Kumar, S.; Bin Owais, M.T.; Wahab, Y.A.; Dutta, K.; Jaafar, J.; Uzair, M.; Johan, M.R.; et al. Desalination technology for energy-efficient and low-cost water production: A bibliometric analysis. Green Process. Synth. 2022, 11, 306–315. [Google Scholar] [CrossRef]
- Sonawane, C.R.; Panchal, H.N.; Hoseinzadeh, S.; Ghasemi, M.H.; Alrubaie, A.J.; Sohani, A. Bibliometric Analysis of Solar Desalination Systems Powered by Solar Energy and CFD Modelled. Energies 2022, 15, 5279. [Google Scholar] [CrossRef]
- Liu, H.; Wu, B.; Maleki, A. Effects of dispatch strategies on optimum sizing of solar-diesel-battery energy storage-RO desalination hybrid scheme by efficient heuristic algorithm. J. Energy Storage 2022, 54, 104862. [Google Scholar] [CrossRef]
- Malisovas, A.; Koutroulis, E. Design Optimization of RES-Based Desalination Systems Cooperating With Smart Grids. IEEE Syst. J. 2020, 14, 4706–4717. [Google Scholar] [CrossRef]
- Salameh, T.; Kumar, P.P.; Olabi, A.; Obaideen, K.; Sayed, E.T.; Maghrabie, H.M.; Abdelkareem, M.A. Best battery storage technologies of solar photovoltaic systems for desalination plant using the results of multi optimization algorithms and sustainable development goals. J. Energy Storage 2022, 55, 105312. [Google Scholar] [CrossRef]
- Ben M’barek, T.; Bourouni, K.; Ben Mohamed, K. Optimization coupling RO desalination unit to renewable energy by genetic algorithms. Desalination Water Treat. 2013, 51, 1416–1428. [Google Scholar] [CrossRef]
- Zhang, W.; Maleki, A. Modeling and optimization of a stand-alone desalination plant powered by solar/wind energies based on back-up systems using a hybrid algorithm. Energy 2022, 254, 124341. [Google Scholar] [CrossRef]
- Zhang, G.; Wu, B.; Maleki, A.; Zhang, W. Simulated annealing-chaotic search algorithm based optimization of reverse osmosis hybrid desalination system driven by wind and solar energies. Sol. Energy 2018, 173, 964–975. [Google Scholar] [CrossRef]
- Impram, S.; Nese, S.V.; Oral, B. Challenges of renewable energy penetration on power system flexibility: A survey. Energy Strat. Rev. 2020, 31, 100539. [Google Scholar] [CrossRef]
- García-Rodríguez, L. Renewable energy applications in desalination: State of the art. Sol. Energy 2003, 75, 381–393. [Google Scholar] [CrossRef]
- Wang, Z.; Horseman, T.; Straub, A.P.; Yip, N.Y.; Li, D.; Elimelech, M.; Lin, S. Pathways and challenges for efficient solar-thermal desalination. Sci. Adv. 2019, 5, eaax0763. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scopus. Available online: www.scopus.com (accessed on 4 December 2022).
- Martín-Martín, A.; Orduna-Malea, E.; Thelwall, M.; Delgado López-Cózar, E. Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. J. Informetr. 2018, 12, 1160–1177. [Google Scholar] [CrossRef] [Green Version]
- Donthu, N.; Kumar, S.; Mukherjee, D.; Pandey, N.; Lim, W.M. How to conduct a bibliometric analysis: An overview and guidelines. J. Bus. Res. 2021, 133, 285–296. [Google Scholar] [CrossRef]
- Research Metrics Guidebook. Available online: https://www.elsevier.com/__data/assets/pdf_file/0020/53327/ELSV-13013-Elsevier-Research-Metrics-Book-r12-WEB.pdf (accessed on 4 December 2022).
- Small, H. Visualizing Science by Citation Mapping. J. Am. Soc. Inf. Sci. 1999, 50, 799–813. [Google Scholar] [CrossRef]
- Hernández-Romero, I.M.; Zavala, V.M.; Flores-Tlacuahuac, A.; Nápoles-Rivera, F.; Fuentes-Cortés, L.F.; Esquivel-Patiño, G.G. Multi-objective optimization of an open-cycle, ocean thermal energy conversion system with desalinization. Chem. Eng. Process.-Process Intensif. 2022, 179, 109091. [Google Scholar] [CrossRef]
- Taloba, A.I. An Artificial Neural Network Mechanism for Optimizing the Water Treatment Process and Desalination Process. Alex. Eng. J. 2022, 61, 9287–9295. [Google Scholar] [CrossRef]
- Pietrasanta, A.M.; Mussati, S.F.; Aguirre, P.A.; Morosuk, T.; Mussati, M.C. Water-renewable energy Nexus: Optimization of geothermal energy-powered seawater desalination systems. Renew. Energy 2022, 196, 234–246. [Google Scholar] [CrossRef]
- Das, S.; Ray, A.; De, S. Techno-economic optimization of desalination process powered by renewable energy: A case study for a coastal village of southern India. Sustain. Energy Technol. Assess. 2022, 51, 101966. [Google Scholar] [CrossRef]
- Ghaithan, A.M.; Mohammed, A.; Al-Hanbali, A.; Attia, A.M.; Saleh, H. Multi-objective optimization of a photovoltaic-wind- grid connected system to power reverse osmosis desalination plant. Energy 2022, 251, 123888. [Google Scholar] [CrossRef]
- Ghaithan, A.M.; Al-Hanbali, A.; Mohammed, A.; Attia, A.M.; Saleh, H.; Alsawafy, O. Optimization of a solar-wind- grid powered desalination system in Saudi Arabia. Renew. Energy 2021, 178, 295–306. [Google Scholar] [CrossRef]
- Zhou, B.; Xia, J.; Yang, D.; Li, G.; Xiao, J.; Cao, J.; Bu, S.; Littler, T. Multi-time scale optimal scheduling model for active distribution grid with desalination loads considering uncertainty of demand response. Desalination 2021, 517, 115262. [Google Scholar] [CrossRef]
- Koutroulis, E.; Petrakis, G.; Agou, V.; Malisovas, A.; Hristopulos, D.; Partsinevelos, P.; Tripolitsiotis, A.; Halouani, N.; Ailliot, P.; Boutigny, M.; et al. Site selection and system sizing of desalination plants powered with renewable energy sources based on a web-GIS platform. Int. J. Energy Sect. Manag. 2022, 16, 469–492. [Google Scholar] [CrossRef]
- Eltamaly, A.M.; Ali, E.; Bumazza, M.; Mulyono, S.; Yasin, M. Optimal Design of Hybrid Renewable Energy System for a Reverse Osmosis Desalination System in Arar, Saudi Arabia. Arab. J. Sci. Eng. 2021, 46, 9879–9897. [Google Scholar] [CrossRef]
- Liu, B.; Zhou, B.; Yang, D.; Li, G.; Cao, J.; Bu, S.; Littler, T. Optimal planning of hybrid renewable energy system considering virtual energy storage of desalination plant based on mixed-integer NSGA-III. Desalination 2022, 521, 115382. [Google Scholar] [CrossRef]
- Cherif, H.; Belhadj, J.; Champenois, G. Intelligent optimization of a hybrid renewable energy system-powered water desalination unit. Int. J. Environ. Sci. Technol. 2021, 18, 3539–3552. [Google Scholar] [CrossRef]
- Moreno-Leiva, S.; Haas, J.; Nowak, W.; Kracht, W.; Eltrop, L.; Breyer, C. Integration of seawater pumped storage and desalination in multi-energy systems planning: The case of copper as a key material for the energy transition. Appl. Energy 2021, 299, 117298. [Google Scholar] [CrossRef]
- Rahdan, P.; Kasaeian, A.; Yan, W.-M. Simulation and geometric optimization of a hybrid system of solar chimney and water desalination. Energy Convers. Manag. 2021, 243, 114291. [Google Scholar] [CrossRef]
- Cherif, H.; Belhadj, J. Design optimization and sensitivity analysis of a hybrid renewable power generation system coupled with a reverse osmosis desalination unit. Desalination Water Treat. 2021, 222, 92–102. [Google Scholar] [CrossRef]
- Moazeni, F.; Khazaei, J. Optimal design and operation of an islanded water-energy network including a combined electrodialysis-reverse osmosis desalination unit. Renew. Energy 2020, 167, 395–408. [Google Scholar] [CrossRef]
- Okampo, E.J.; Nwulu, N. Techno-economic evaluation of reverse osmosis desalination system considering emission cost and demand response. Sustain. Energy Technol. Assess. 2021, 46, 101252. [Google Scholar] [CrossRef]
- Al-Hotmani, O.; Al-Obaidi, M.; John, Y.; Patel, R.; Manenti, F.; Mujtaba, I. Minimisation of energy consumption via optimisation of a simple hybrid system of multi effect distillation and permeate reprocessing reverse osmosis processes for seawater desalination. Comput. Chem. Eng. 2021, 148, 107261. [Google Scholar] [CrossRef]
- Mohamed, M.A.E.; Mohamed, S.M.R.; Saied, E.M.M.; Elsisi, M.; Su, C.-L.; Hadi, H.A. Optimal Energy Management Solutions Using Artificial Intelligence Techniques for Photovoltaic Empowered Water Desalination Plants Under Cost Function Uncertainties. IEEE Access 2022, 10, 93646–93658. [Google Scholar] [CrossRef]
- Affi, S.; Cherif, H.; Belhadj, J. Smart system management and techno-environmental optimal sizing of a desalination plant powered by renewables with energy storage. Int. J. Energy Res. 2021, 45, 7501–7520. [Google Scholar] [CrossRef]
- Kyriakarakos, G.; Papadakis, G. Is Small Scale Desalination Coupled with Renewable Energy a Cost-Effective Solution? Appl. Sci. 2021, 11, 5419. [Google Scholar] [CrossRef]
- Alqaed, S.; Mustafa, J.; Almehmadi, F.A. Design and Energy Requirements of a Photovoltaic-Thermal Powered Water Desalination Plant for the Middle East. Int. J. Environ. Res. Public Health 2021, 18, 1001. [Google Scholar] [CrossRef]
- Al-Qawabah, S.M.; Al-Soud, M.S.; Althneibat, A.K. Assessment of hybrid renewable energy systems to drive water desalination plant in an arid remote area in Jordan. Int. J. Green Energy 2021, 18, 503–511. [Google Scholar] [CrossRef]
- Ghenai, C.; Kabakebji, D.; Douba, I.; Yassin, A. Performance analysis and optimization of hybrid multi-effect distillation adsorption desalination system powered with solar thermal energy for high salinity sea water. Energy 2021, 215, 119212. [Google Scholar] [CrossRef]
- Zhu, W.; Guo, J.; Zhao, G. Multi-Objective Dispatching Optimization of an Island Microgrid Integrated with Desalination Units and Electric Vehicles. Processes 2021, 9, 798. [Google Scholar] [CrossRef]
- Mehrjerdi, H.; Aljabery, A.A.M.; Saboori, H.; Jadid, S. Carbon-Constrained and Cost Optimal Hybrid Wind-Based System for Sustainable Water Desalination. IEEE Access 2021, 9, 84079–84092. [Google Scholar] [CrossRef]
- Rosales-Asensio, E.; Rosales, A.-E.; Colmenar-Santos, A. Surrogate optimization of coupled energy sources in a desalination microgrid based on solar PV and wind energy. Desalination 2020, 500, 114882. [Google Scholar] [CrossRef]
- Abbasi, H.R.; Pourrahmani, H. Multi-criteria optimization of a renewable hydrogen and freshwater production system using HDH desalination unit and thermoelectric generator. Energy Convers. Manag. 2020, 214, 112903. [Google Scholar] [CrossRef]
- Onishi, V.C.; Manesh, M.H.K.; Salcedo-Díaz, R.; Ruiz-Femenia, R.; Labarta, J.A.; Caballero, J.A. Thermo-economic and environmental optimization of a solar-driven zero-liquid discharge system for shale gas wastewater desalination. Desalination 2021, 511, 115098. [Google Scholar] [CrossRef]
- Kiehbadroudinezhad, M.; Rajabipour, A.; Cada, M.; Khanali, M. Modeling, design, and optimization of a cost-effective and reliable hybrid renewable energy system integrated with desalination using the division algorithm. Int. J. Energy Res. 2021, 45, 429–452. [Google Scholar] [CrossRef]
- Ailliot, P.; Boutigny, M.; Koutroulis, E.; Malisovas, A.; Monbet, V. Stochastic weather generator for the design and reliability evaluation of desalination systems with Renewable Energy Sources. Renew. Energy 2021, 158, 541–553. [Google Scholar] [CrossRef]
- Lai, X.; Long, R.; Liu, Z.; Liu, W. Solar energy powered high-recovery reverse osmosis for synchronous seawater desalination and energy storage. Energy Convers. Manag. 2020, 228, 113665. [Google Scholar] [CrossRef]
- Karakitsios, I.; Dimeas, A.; Hatziargyriou, N. Optimal Management of the Desalination System Demand in Non-Interconnected Islands. Energies 2020, 13, 4021. [Google Scholar] [CrossRef]
- Okampo, E.J.; Nwulu, N. Optimal energy mix for a reverse osmosis desalination unit considering demand response. J. Eng. Des. Technol. 2020, 18, 1287–1303. [Google Scholar] [CrossRef]
- Elmaadawy, K.; Kotb, K.M.; Elkadeem, M.; Sharshir, S.W.; Dán, A.; Moawad, A.; Liu, B. Optimal sizing and techno-enviro-economic feasibility assessment of large-scale reverse osmosis desalination powered with hybrid renewable energy sources. Energy Convers. Manag. 2020, 224, 113377. [Google Scholar] [CrossRef]
- Azinheira, G.; Segurado, R.; Costa, M. Is Renewable Energy-Powered Desalination a Viable Solution for Water Stressed Regions? A Case Study in Algarve, Portugal. Energies 2019, 12, 4651. [Google Scholar] [CrossRef] [Green Version]
- Vakili-Nezhaad, G.; Mishra, S.B.; Mousa, H.; Ziaiefar, H. Simulation and optimization of hybrid green energy systems for desalination purposes. Environ. Prog. Sustain. Energy 2020, 40, e13515. [Google Scholar] [CrossRef]
- Klaimi, R.; Alnouri, S.Y.; Al-Hindi, M.; Azizi, F. Optimization techniques for coupling renewable/hybrid energy options with desalination systems for carbon footprint reduction. Chem. Eng. Res. Des. 2019, 151, 270–290. [Google Scholar] [CrossRef]
- Ghosh, S. Optimal design of autonomous desalination with storage energy system using SSO algorithm. Int. J. Energy Res. 2020, 44, 2355–2367. [Google Scholar] [CrossRef]
- Chen, Q.; Oh, S.; Li, Y.; Ja, M.K. Thermodynamic optimization of a low-temperature desalination system driven by sensible heat sources. Energy 2020, 192, 116633. [Google Scholar] [CrossRef]
- Okampo, E.J.; Nwulu, N. Optimal design and techno-economic evaluation of a renewable energy powered combined reverse osmosis desalination and brine treatment unit. Desalination Water Treat. 2020, 202, 27–37. [Google Scholar] [CrossRef]
- Atallah, M.O.; Farahat, M.; Lotfy, M.E.; Senjyu, T. Operation of conventional and unconventional energy sources to drive a reverse osmosis desalination plant in Sinai Peninsula, Egypt. Renew. Energy 2020, 145, 141–152. [Google Scholar] [CrossRef]
- Heihsel, M.; Ali, S.M.H.; Kirchherr, J.; Lenzen, M. Renewable-powered desalination as an optimisation pathway for renewable energy systems: The case of Australia’s Murray–Darling Basin. Environ. Res. Lett. 2019, 14, 124054. [Google Scholar] [CrossRef] [Green Version]
- Prathapaneni, D.R.; Detroja, K. Optimal design of energy sources and reverse osmosis desalination plant with demand side management for cost-effective freshwater production. Desalination 2020, 496, 114741. [Google Scholar] [CrossRef]
- Karavas, C.-S.; Arvanitis, K.G.; Papadakis, G. Optimal technical and economic configuration of photovoltaic powered reverse osmosis desalination systems operating in autonomous mode. Desalination 2019, 466, 97–106. [Google Scholar] [CrossRef]
- Ghazi, M.; Faqir, M.; Mada, M.; Essadiqi, E. Thermal analysis and optimization of mechanical vapour compression desalination process driven by renewable energy using genetic algorithm. Desalination Water Treat. 2018, 135, 25–46. [Google Scholar] [CrossRef]
- Zhou, B.; Liu, B.; Yang, D.; Cao, J.; Littler, T. Multi-objective optimal operation of coastal hydro-electrical energy system with seawater reverse osmosis desalination based on constrained NSGA-III. Energy Convers. Manag. 2020, 207, 112533. [Google Scholar] [CrossRef]
- Yu, J.; Wang, D.; Yao, C.; Chen, P.; Liu, B. Planning and Design of a Micro energy network for seawater desalination and regional energy interconnection. Glob. Energy Interconnect. 2019, 2, 224–234. [Google Scholar] [CrossRef]
- Du, B.; Gao, J.; Zeng, L.; Su, X.; Zhang, X.; Yu, S.; Ma, H. Area optimization of solar collectors for adsorption desalination. Sol. Energy 2017, 157, 298–308. [Google Scholar] [CrossRef]
- Freire-Gormaly, M.; Bilton, A. Design of photovoltaic powered reverse osmosis desalination systems considering membrane fouling caused by intermittent operation. Renew. Energy 2019, 135, 108–121. [Google Scholar] [CrossRef]
- Abdelshafy, A.M.; Hassan, H.; Jurasz, J. Optimal design of a grid-connected desalination plant powered by renewable energy resources using a hybrid PSO–GWO approach. Energy Convers. Manag. 2018, 173, 331–347. [Google Scholar] [CrossRef]
- Rezk, H.; Alsaman, A.S.; Al-Dhaifallah, M.; Askalany, A.A.; Abdelkareem, M.A.; Nassef, A.M. Identifying optimal operating conditions of solar-driven silica gel based adsorption desalination cooling system via modern optimization. Sol. Energy 2019, 181, 475–489. [Google Scholar] [CrossRef]
- Gençer, E.; Agrawal, R. Toward supplying food, energy, and water demand: Integrated solar desalination process synthesis with power and hydrogen coproduction. Resour. Conserv. Recycl. 2018, 133, 331–342. [Google Scholar] [CrossRef]
- Heidarnejad, P. Exergy Based Optimization of a Biomass and Solar Fuelled CCHP Hybrid Seawater Desalination Plant. J. Therm. Eng. 2017, 3, 1034–1043. [Google Scholar] [CrossRef] [Green Version]
- Kyriakarakos, G.; Dounis, A.I.; Arvanitis, K.G.; Papadakis, G. Design of a Fuzzy Cognitive Maps variable-load energy management system for autonomous PV-reverse osmosis desalination systems: A simulation survey. Appl. Energy 2017, 187, 575–584. [Google Scholar] [CrossRef]
- Hossam-Eldin, A.A.; Abed, K.A.; Youssef, K.H.; Kotb, H. Techno-Economic Optimization and New Modeling Technique of PV-Wind-Reverse Osmosis Desalination Plant at Variable Load Conditions. Int. J. Environ. Sci. Dev. 2019, 10, 223–230. [Google Scholar] [CrossRef] [Green Version]
- Segurado, R.; Madeira, J.; Costa, M.; Duić, N.; Carvalho, M. Optimization of a wind powered desalination and pumped hydro storage system. Appl. Energy 2016, 177, 487–499. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Loy-Benitez, J.; Nam, K.; Hwangbo, S.; Rashidi, J.; Yoo, C. Sustainable and reliable design of reverse osmosis desalination with hybrid renewable energy systems through supply chain forecasting using recurrent neural networks. Energy 2019, 178, 277–292. [Google Scholar] [CrossRef]
- Tora, E.A. Joint economic and environmental optimization of hybrid power supply for large scale ro-desalination plant: With and without CO2 sequestration. J. Eng. Sci. Technol. 2016, 11, 1041–1055. [Google Scholar]
- Lee, S.; Myung, S.; Hong, J.; Har, D. Reverse osmosis desalination process optimized for maximum permeate production with renewable energy. Desalination 2016, 398, 133–143. [Google Scholar] [CrossRef]
- Smaoui, M.; Abdelkafi, A.; Krichen, L. Optimal sizing of stand-alone photovoltaic/wind/hydrogen hybrid system supplying a desalination unit. Sol. Energy 2015, 120, 263–276. [Google Scholar] [CrossRef]
- Ghenai, C.; Merabet, A.; Salameh, T.; Pigem, E.C. Grid-tied and stand-alone hybrid solar power system for desalination plant. Desalination 2018, 435, 172–180. [Google Scholar] [CrossRef]
- Maleki, A.; Pourfayaz, F.; Ahmadi, M.H. Design of a cost-effective wind/photovoltaic/hydrogen energy system for supplying a desalination unit by a heuristic approach. Sol. Energy 2016, 139, 666–675. [Google Scholar] [CrossRef]
- Thompson, M.A.; Baker, R.; Yong, N.H. Technical and economic evaluation of an off-grid solar desalination system in Myanmar. J. Water Supply Res. Technol. 2016, 65, 354–360. [Google Scholar] [CrossRef]
- Maleki, A.; Khajeh, M.G.; Rosen, M.A. Weather forecasting for optimization of a hybrid solar-wind–powered reverse osmosis water desalination system using a novel optimizer approach. Energy 2016, 114, 1120–1134. [Google Scholar] [CrossRef]
- Altaee, A.; Millar, G.J.; Zaragoza, G. Integration and optimization of pressure retarded osmosis with reverse osmosis for power generation and high efficiency desalination. Energy 2016, 103, 110–118. [Google Scholar] [CrossRef] [Green Version]
- Bilton, A.M.; Kelley, L.C. Design of power systems for reverse osmosis desalination in remote communities. Desalination Water Treat. 2015, 55, 2868–2883. [Google Scholar] [CrossRef]
- Ben Ali, I.; Turki, M.; Belhadj, J.; Roboam, X. Optimized fuzzy rule-based energy management for a battery-less PV/wind-BWRO desalination system. Energy 2018, 159, 216–228. [Google Scholar] [CrossRef] [Green Version]
- Maleki, A. Design and optimization of autonomous solar-wind-reverse osmosis desalination systems coupling battery and hydrogen energy storage by an improved bee algorithm. Desalination 2018, 435, 221–234. [Google Scholar] [CrossRef]
- Hossam-Eldin, A.; El-Nashar, A.; Ismaiel, A. Investigation into economical desalination using optimized hybrid renewable energy system. Int. J. Electr. Power Energy Syst. 2012, 43, 1393–1400. [Google Scholar] [CrossRef]
- Clarke, D.P.; Al-Abdeli, Y.M.; Kothapalli, G. Multi-objective optimisation of renewable hybrid energy systems with desalination. Energy 2015, 88, 457–468. [Google Scholar] [CrossRef]
- Fthenakis, V.; Atia, A.A.; Morin, O.; Bkayrat, R.; Sinha, P. New prospects for PV powered water desalination plants: Case studies in Saudi Arabia. Prog. Photovolt. Res. Appl. 2016, 24, 543–550. [Google Scholar] [CrossRef]
- Lee, S.; Hong, J.; Har, D. Jointly optimized control for reverse osmosis desalination process with different types of energy resource. Energy 2016, 117, 116–130. [Google Scholar] [CrossRef]
- Kim, J.S.; Chen, J.; Garcia, H.E. Modeling, control, and dynamic performance analysis of a reverse osmosis desalination plant integrated within hybrid energy systems. Energy 2016, 112, 52–66. [Google Scholar] [CrossRef] [Green Version]
- Stuber, M.D. Optimal design of fossil-solar hybrid thermal desalination for saline agricultural drainage water reuse. Renew. Energy 2016, 89, 552–563. [Google Scholar] [CrossRef]
- Al-Nory, M.; El-Beltagy, M. An energy management approach for renewable energy integration with power generation and water desalination. Renew. Energy 2014, 72, 377–385. [Google Scholar] [CrossRef]
- Spyrou, I.D.; Anagnostopoulos, J.S. Design study of a stand-alone desalination system powered by renewable energy sources and a pumped storage unit. Desalination 2010, 257, 137–149. [Google Scholar] [CrossRef]
- Wang, P.; Chung, T.-S. A conceptual demonstration of freeze desalination–membrane distillation (FD–MD) hybrid desalination process utilizing liquefied natural gas (LNG) cold energy. Water Res. 2012, 46, 4037–4052. [Google Scholar] [CrossRef] [PubMed]
- Summers, E.K.; Antar, M.A.; Lienhard, J.H. Design and optimization of an air heating solar collector with integrated phase change material energy storage for use in humidification–dehumidification desalination. Sol. Energy 2012, 86, 3417–3429. [Google Scholar] [CrossRef]
- Porrazzo, R.; Cipollina, A.; Galluzzo, M.; Micale, G. A neural network-based optimizing control system for a seawater-desalination solar-powered membrane distillation unit. Comput. Chem. Eng. 2013, 54, 79–96. [Google Scholar] [CrossRef]
- Mousa, K.; Diabat, A.; Fath, H. Optimal design of a hybrid solar-wind power to drive a small-size reverse osmosis desalination plant. Desalination Water Treat. 2013, 51, 3417–3427. [Google Scholar] [CrossRef]
- Mentis, D.; Karalis, G.; Zervos, A.; Howells, M.; Taliotis, C.; Bazilian, M.; Rogner, H. Desalination using renewable energy sources on the arid islands of South Aegean Sea. Energy 2016, 94, 262–272. [Google Scholar] [CrossRef]
- Buschert, D.; Bitzer, B. Concept for optimization and simulation of renewable energy parks with desalination. Renew. Energy Power Qual. J. 2009, 1, 432–436. [Google Scholar] [CrossRef]
- Esfahani, I.J.; Yoo, C. An optimization algorithm-based pinch analysis and GA for an off-grid batteryless photovoltaic-powered reverse osmosis desalination system. Renew. Energy 2016, 91, 233–248. [Google Scholar] [CrossRef]
- Zejli, D.; Ouammi, A.; Sacile, R.; Dagdougui, H.; Elmidaoui, A. An optimization model for a mechanical vapor compression desalination plant driven by a wind/PV hybrid system. Appl. Energy 2011, 88, 4042–4054. [Google Scholar] [CrossRef]
- Roumasset, J.; A Wada, C. Ordering Renewable Resources: Groundwater, Recycling, and Desalination. B.E. J. Econ. Anal. Policy 2011, 11, 1–29. [Google Scholar] [CrossRef]
- Palacin, L.G.; Tadeo, F.; De Prada, C.; Salazar, J. Operation of desalination plants using renewable energies and hybrid control. Desalination Water Treat. 2011, 25, 119–126. [Google Scholar] [CrossRef]
- Nour, M.H.; Ghanem, A.; Buchholz, M.; Nassar, A. Greenhouse based desalination for brackish water management using bittern evaporative cooling technique. Water Supply 2015, 15, 709–717. [Google Scholar] [CrossRef]
- Bourouni, K.; Ben M’barek, T.; Al Taee, A. Design and optimization of desalination reverse osmosis plants driven by renewable energies using genetic algorithms. Renew. Energy 2011, 36, 936–950. [Google Scholar] [CrossRef]
- Koutroulis, E.; Kolokotsa, D. Design optimization of desalination systems power-supplied by PV and W/G energy sources. Desalination 2010, 258, 171–181. [Google Scholar] [CrossRef]
- Carta, J.A.; González, J.; Cabrera, P.; Subiela, V.J. Preliminary experimental analysis of a small-scale prototype SWRO desalination plant, designed for continuous adjustment of its energy consumption to the widely varying power generated by a stand-alone wind turbine. Appl. Energy 2015, 137, 222–239. [Google Scholar] [CrossRef]
- Farsi, A.; Rosen, M.A. Multi-Objective Optimization of a Geothermal Steam Turbine Combined with Reverse Osmosis and Multi-Effect Desalination for Sustainable Freshwater Production. J. Energy Resour. Technol. 2022, 144, 052102. [Google Scholar] [CrossRef]
- Riyahi, N.; Saraei, A.; Azad, A.V.; Fazelpour, F. Energy analysis and optimization of a hybrid system of reverse osmosis desalination system and solar power plant (case study: Kish Island). Int. J. Energy Environ. Eng. 2022, 13, 67–75. [Google Scholar] [CrossRef]
- Clarke, D.P.; Al-Abdeli, Y.; Kothapalli, G. The effects of including intricacies in the modelling of a small-scale solar-PV reverse osmosis desalination system. Desalination 2013, 311, 127–136. [Google Scholar] [CrossRef]
- Zang, X.; Ma, Q.; Liang, K.; Lu, H. Modeling and experimental research on the formation of the super-gravity vacuum/low-pressure region for seawater desalination. Desalination Water Treat. 2019, 150, 38–48. [Google Scholar] [CrossRef]
- Li, G.; Liu, J.; Zhang, F.; Wang, J. Heat and moisture transfer and dimension optimization of cross-flow hollow fiber membrane contactor for membrane distillation desalination. Sep. Purif. Technol. 2022, 297, 121576. [Google Scholar] [CrossRef]
- Bognar, K.; Blechinger, P.; Behrendt, F. Seawater desalination in micro grids: An integrated planning approach. Energy Sustain. Soc. 2012, 2, 14. [Google Scholar] [CrossRef] [Green Version]
- Maraver, D.; Uche, J.; Royo, J. Assessment of high temperature organic Rankine cycle engine for polygeneration with MED desalination: A preliminary approach. Energy Convers. Manag. 2012, 53, 108–117. [Google Scholar] [CrossRef]
- Mohamed, A.; El-Minshawy, N. Humidification–dehumidification desalination system driven by geothermal energy. Desalination 2009, 249, 602–608. [Google Scholar] [CrossRef]
- Frikha, N.; Benabdallah, S.; Gabsi, S. Theoretical study of various configurations of solar desalination by vacuum membrane distillation. Desalination Water Treat. 2017, 83, 184–193. [Google Scholar] [CrossRef]
- Moser, M.; Trieb, F.; Kern, J. Development of a flexible tool for the integrated techno-economic assessment of renewable desalination plants. Desalination Water Treat. 2017, 76, 53–70. [Google Scholar] [CrossRef]
- Calise, F.; Dentice d’Accadia, M.; Piacentino, A. A novel solar trigeneration system integrating PVT (photovoltaic/thermal collectors) and SW (seawater) desalination: Dynamic simulation and economic assessment. Energy 2014, 67, 129–148. [Google Scholar] [CrossRef]
- Yılmaz, İ.H.; Söylemez, M.S. Design and computer simulation on multi-effect evaporation seawater desalination system using hybrid renewable energy sources in Turkey. Desalination 2012, 291, 23–40. [Google Scholar] [CrossRef]
- Saleem, M.W.; Abbas, A.; Asim, M.; Uddin, G.M.; Chaudhary, T.N.; Ullah, A. Design and cost estimation of solar powered reverse osmosis desalination system. Adv. Mech. Eng. 2021, 13, 16878140211029090. [Google Scholar] [CrossRef]
- Skourtos, M.; Damigos, D.; Kontogianni, A.; Tourkolias, C.; Marafie, A.; Zainal, M. A combined probabilistic framework to support investment appraisal under uncertainty in desalination projects: An application to Kuwait’s water/energy nexus. Water Supply 2021, 21, 276–288. [Google Scholar] [CrossRef]
- Petrakis, G.; Tripolitsiotis, A.; Koutroulis, E.; Hristopulos, D.; Halouani, N.; Ben Naceur, A.; Partsinevelos, P. Geo-informatics for optimal design of desalination plants using renewable energy sources: The DES2iRES platform paradigm. Arab. J. Geosci. 2020, 13, 1012. [Google Scholar] [CrossRef]
- Cioccolanti, L.; Renzi, M. Coupling a small-scale concentrated solar power plant with a single effect thermal desalination system: Analysis of the performance. Appl. Therm. Eng. 2018, 143, 1046–1056. [Google Scholar] [CrossRef]
- Uche, J.; Muzás, A.; Acevedo, L.; Usón, S.; Martínez, A.; Bayod, A. Experimental tests to validate the simulation model of a Domestic Trigeneration Scheme with hybrid RESs and Desalting Techniques. Renew. Energy 2020, 155, 407–419. [Google Scholar] [CrossRef]
- Cabrera, P.; Folley, M.; Carta, J.A. Design and performance simulation comparison of a wave energy-powered and wind-powered modular desalination system. Desalination 2021, 514, 115173. [Google Scholar] [CrossRef]
- Cui, Y.; Ma, Q.; Wu, Z.; Lu, H.; Gao, Z.; Fan, J. A Hydrostatic Pressure-Driven Desalination System for Large-Scale Deep Sea Space Station. Int. J. Chem. Eng. 2021, 2021, 8898472. [Google Scholar] [CrossRef]
- Chen, Q.; Burhan, H.J.M.; Li, Y.; Ng, K.C. An ocean thermocline desalination system using the direct spray method. Desalination 2021, 520, 115373. [Google Scholar] [CrossRef]
- Goh, P.; Kang, H.; Ismail, A.; Hilal, N. The hybridization of thermally-driven desalination processes: The state-of-the-art and opportunities. Desalination 2021, 506, 115002. [Google Scholar] [CrossRef]
- Amin, I.; Ali, M.E.; Bayoumi, S.; Balah, A.; Oterkus, S.; Shawky, H.; Oterkus, E. Numerical hydrodynamics-based design of an offshore platform to support a desalination plant and a wind turbine in Egypt. Ocean Eng. 2021, 229, 108598. [Google Scholar] [CrossRef]
- Ziyaei, M.; Jalili, M.; Chitsaz, A.; Nazari, M.A. Dynamic simulation and life cycle cost analysis of a MSF desalination system driven by solar parabolic trough collectors using TRNSYS software: A comparative study in different world regions. Energy Convers. Manag. 2021, 243, 114412. [Google Scholar] [CrossRef]
- Riera, J.A.; Lima, R.M.; Hoteit, I.; Knio, O. Simulated co-optimization of renewable energy and desalination systems in Neom, Saudi Arabia. Nat. Commun. 2022, 13, 3514. [Google Scholar] [CrossRef]
- Ahmed, F.; Aziz, M.S.A.; Zainol, M.R.R.M.A.; Yee, K.C.; Shaik, F.; Halin, D.S.C.; Salleh, M.A.A.M.; Kheimi, M. Design, Modelling and Optimization of a Novel Concentrated Solar Powered (CSP) Flash Desalination System Involving Direct Heating and Pressure Modulation Using Response Surface Methodology (RSM). Sustainability 2022, 14, 11558. [Google Scholar] [CrossRef]
- de Sampaio, P.A. Computational model and simulation of DCMD desalination systems with heat recovery. Desalination 2022, 533, 115769. [Google Scholar] [CrossRef]
- Saboori, H.; Mehrjerdi, H. Tri-objective optimization of a synergistic wind-photovoltaic plant for water desalination addressing sustainable development goals. Sustain. Dev. 2022, 30, 1811–1822. [Google Scholar] [CrossRef]
- Aldaghi, A.; Gheibi, M.; Akrami, M.; Hajiaghaei-Keshteli, M. A smart simulation-optimization framework for solar-powered desalination systems. Groundw. Sustain. Dev. 2022, 19, 100861. [Google Scholar] [CrossRef]
- Shahzamanian, B.; Varga, S.; Soares, J.; Palmero-Marrero, A.; Oliveira, A. Performance evaluation of a variable geometry ejector applied in a multi-effect thermal vapor compression desalination system. Appl. Therm. Eng. 2021, 195, 117177. [Google Scholar] [CrossRef]
- Leblanc, J.; Andrews, J.; Akbarzadeh, A. Low-temperature solar-thermal multi-effect evaporation desalination systems. Int. J. Energy Res. 2010, 34, 393–403. [Google Scholar] [CrossRef]
- Borge-Diez, D.; García-Moya, F.J.; Cabrera-Santana, P.; Rosales-Asensio, E. Feasibility analysis of wind and solar powered desalination plants: An application to islands. Sci. Total. Environ. 2021, 764, 142878. [Google Scholar] [CrossRef]
- Gude, V.G.; Nirmalakhandan, N.; Deng, S. Desalination using solar energy: Towards sustainability. Energy 2011, 36, 78–85. [Google Scholar] [CrossRef]
- Godart, P. Design and simulation of a heat-driven direct reverse osmosis device for seawater desalination powered by solar thermal energy. Appl. Energy 2021, 284, 116039. [Google Scholar] [CrossRef]
- Gnaifaid, H.; Ozcan, H. Development and multiobjective optimization of an integrated flash-binary geothermal power plant with reverse osmosis desalination and absorption refrigeration for multi-generation. Geothermics 2021, 89, 101949. [Google Scholar] [CrossRef]
- Suwaileh, W.; Johnson, D.; Jones, D.; Hilal, N. An integrated fertilizer driven forward osmosis- renewables powered membrane distillation system for brackish water desalination: A combined experimental and theoretical approach. Desalination 2019, 471, 114126. [Google Scholar] [CrossRef]
- Amiri, A.; Al-Rawajfeh, A.; Brewer, C.E. Simulation of small-scale thermal water desalination using biomass energy. Desalination Water Treat. 2018, 108, 65–75. [Google Scholar] [CrossRef]
- Ahmad, N.; Sheikh, A.K.; Gandhidasan, P.; Elshafie, M. Modeling, simulation and performance evaluation of a community scale PVRO water desalination system operated by fixed and tracking PV panels: A case study for Dhahran city, Saudi Arabia. Renew. Energy 2015, 75, 433–447. [Google Scholar] [CrossRef]
- Park, G.L.; Schäfer, A.I.; Richards, B. The effect of intermittent operation on a wind-powered membrane system for brackish water desalination. Water Sci. Technol. 2012, 65, 867–874. [Google Scholar] [CrossRef] [PubMed]
- Mericq, J.-P.; Laborie, S.; Cabassud, C. Evaluation of systems coupling vacuum membrane distillation and solar energy for seawater desalination. Chem. Eng. J. 2011, 166, 596–606. [Google Scholar] [CrossRef]
- Campione, A.; Cipollina, A.; Calise, F.; Tamburini, A.; Galluzzo, M.; Micale, G. Coupling electrodialysis desalination with photovoltaic and wind energy systems for energy storage: Dynamic simulations and control strategy. Energy Convers. Manag. 2020, 216, 112940. [Google Scholar] [CrossRef]
- Chang, H.; Hsu, J.-A.; Chang, C.-L.; Ho, C.-D.; Cheng, T.-W. Simulation study of transfer characteristics for spacer-filled membrane distillation desalination modules. Appl. Energy 2017, 185, 2045–2057. [Google Scholar] [CrossRef]
- Mohamed, A.; El-Minshawy, N. Theoretical investigation of solar humidification–dehumidification desalination system using parabolic trough concentrators. Energy Convers. Manag. 2011, 52, 3112–3119. [Google Scholar] [CrossRef]
- van Eck, N.J.; Waltman, L. VOSviewer Manual. 2022. Available online: https://www.vosviewer.com/documentation/Manual_VOSviewer_1.6.18.pdf (accessed on 4 December 2022).
- Van Eck, N.J.; Waltman, L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 2010, 84, 523–538. [Google Scholar] [CrossRef] [Green Version]
- McAllister, J.T.; Lennertz, L.; Mojica, Z.A. Mapping A Discipline: A Guide to Using VOSviewer for Bibliometric and Visual Analysis. Sci. Technol. Libr. 2022, 41, 319–348. [Google Scholar] [CrossRef]
- Jurasz, J.; Canales, F.A.; Kies, A.; Guezgouz, M.; Beluco, A. A review on the complementarity of renewable energy sources: Concept, metrics, application and future research directions. Sol. Energy 2020, 195, 703–724. [Google Scholar] [CrossRef]
Rank | Journal | Number of Articles | CiteScore 2021 | Scopus Source Categories | CiteScore Rank |
---|---|---|---|---|---|
1 | Desalination | 20 | 16.3 | Water Science and Technology | 4/237 |
Mechanical Engineering | 11/601 | ||||
General Chemical Engineering | 9/208 | ||||
General Chemistry | 25/409 | ||||
General Materials Science | 29/455 | ||||
2 | Energy | 14 | 13.4 | Modeling and Simulation | 5/303 |
Civil and Structural Engineering | 7/326 | ||||
Management, Monitoring, Policy and Law | 8/376 | ||||
Mechanical Engineering | 18/601 | ||||
Building and Construction | 7/211 | ||||
Industrial and Manufacturing Engineering | 13/338 | ||||
Fuel Technology | 6/109 | ||||
Energy Engineering and Power Technology | 14/235 | ||||
Pollution | 10/144 | ||||
General Energy | 5/68 | ||||
Electrical and Electronic Engineering | 36/708 | ||||
3 | Renewable Energy | 12 | 13.6 | Renewable Energy, Sustainability, and the Environment | 21/215 |
4 | Desalination and Water Treatment | 11 | 1.7 | Ocean Engineering | 55/98 |
Water Science and Technology | 147/237 | ||||
Pollution | 99/144 | ||||
5 | Energy Conversion and Management | 10 | 18.0 | Nuclear Energy and Engineering | 2//64 |
Energy Engineering and Power Technology | 7/235 | ||||
Fuel Technology | 4/109 | ||||
Renewable Energy, Sustainability, and the Environment | 11/215 | ||||
6 | Applied Energy | 7 | 20.4 | Building and Construction | 1/211 |
Management, Monitoring, Policy, and Law | 2/376 | ||||
Mechanical Engineering | 7/601 | ||||
General Energy | 3/68 |
Rank | Country | Number of Articles | Rank | Country | Number of Citations |
---|---|---|---|---|---|
1 | China | 17 | 1 | Iran | 589 |
1 | Iran | 17 | 2 | Egypt | 476 |
2 | Egypt | 14 | 3 | United States | 372 |
2 | United States | 14 | 4 | Saudi Arabia | 354 |
2 | Saudi Arabia | 14 | 5 | Greece | 353 |
3 | Greece | 12 | 6 | China | 312 |
3 | United Kingdom | 12 | 7 | Italy | 287 |
4 | Spain | 10 | 8 | Canada | 259 |
4 | Tunisia | 10 | 9 | France | 251 |
5 | United Arab Emirates | 8 | 10 | Spain | 241 |
6 | Canada | 7 | 11 | Tunisia | 235 |
6 | Germany | 7 | 12 | United Kingdom | 234 |
7 | Italy | 6 | 13 | United Arab Emirates | 188 |
7 | France | 6 | 14 | Australia | 147 |
8 | Australia | 5 | 15 | South Korea | 123 |
8 | South Korea | 5 | 16 | Germany | 24 |
Institutes | Country | Number of Articles |
---|---|---|
University of Tehran | Iran | 9 |
The University of Tunis El Manar | Tunisia | 6 |
King Fahd University of Petroleum and Minerals | Saudi Arabia | 5 |
Massachusetts Institute of Technology | United States | 5 |
Technical University of Crete | Greece | 5 |
The National Engineering School of Tunis | Tunisia | 5 |
National Technical University of Athens | Greece | 4 |
The University of Las Palmas de Gran Canaria | Spain | 4 |
Technical University of Berlin | Germany | 4 |
Queen’s University Belfast | United Kingdom | 4 |
The Higher National Engineering School of Tunis | Tunisia | 4 |
Tunis University | Tunisia | 4 |
University of Sharjah | United Arab Emirates | 4 |
Rank | Author Name | Number of Articles | Citation | Present Affiliation | H-Index |
---|---|---|---|---|---|
1 | Maleki, A. | 7 | 590 | Shahrood University of Technology, Semnan, Iran | 40 |
2 | Koutroulis, E. | 5 | 114 | The Technical University of Crete, Chania, Greece | 27 |
3 | Belhadj, J. | 4 | 45 | The University of Tunis El Manar Tunis, Tunisia | 16 |
4 | Cao, J. | 3 | 31 | Luxembourg Institute of Science and Technology, Esch-sur-Alzette, Luxembourg | 18 |
5 | Cherif, H. | 3 | 8 | The National Engineering School of Tunis, Tunis, Tunisia | 5 |
6 | Littler, T. | 3 | 31 | Queen’s University Belfast, Belfast, United Kingdom | 24 |
7 | Malisovas, A. | 3 | 10 | Technical University of Crete, Chania, Greece | 2 |
8 | Okampo, E.J. | 3 | 18 | University of Johannesburg, Johannesburg, South Africa | 5 |
9 | Papadakis, G. | 3 | 102 | The Agricultural University of Athens, Athens, Greece | 44 |
10 | Rosen, M.A. | 3 | 187 | Ontario Tech University, Oshawa, Canada | 92 |
11 | Yang, D. | 3 | 31 | College of Information Science and Engineering, Northeastern University, Shenyang, China | 20 |
12 | Zhou, B. | 3 | 31 | Northeastern University, Shenyang, China | 14 |
Rank | Article Title | Number of Citations |
---|---|---|
1 | Design and optimization of autonomous solar-wind-reverse osmosis desalination systems coupling battery and hydrogen energy storage by an improved bee algorithm [96] | 186 |
2 | Optimal design of a grid-connected desalination plant powered by renewable energy resources using a hybrid PSO–GWO approach [78]. | 142 |
3 | Optimization of a hybrid system for solar-wind-based water desalination by reverse osmosis: Comparison of approaches [3]. | 116 |
4 | Simulated annealing-chaotic search algorithm based optimization of reverse osmosis hybrid desalination system driven by wind and solar energies [20]. | 96 |
5 | Optimal sizing and techno-enviro-economic feasibility assessment of large-scale reverse osmosis desalination powered with hybrid renewable energy sources [62]. | 91 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pietrasanta, A.M.; Shaaban, M.F.; Aguirre, P.A.; Mussati, S.F.; Hamouda, M.A. Simulation and Optimization of Renewable Energy-Powered Desalination: A Bibliometric Analysis and Highlights of Recent Research. Sustainability 2023, 15, 9180. https://doi.org/10.3390/su15129180
Pietrasanta AM, Shaaban MF, Aguirre PA, Mussati SF, Hamouda MA. Simulation and Optimization of Renewable Energy-Powered Desalination: A Bibliometric Analysis and Highlights of Recent Research. Sustainability. 2023; 15(12):9180. https://doi.org/10.3390/su15129180
Chicago/Turabian StylePietrasanta, Ariana M., Mostafa F. Shaaban, Pio A. Aguirre, Sergio F. Mussati, and Mohamed A. Hamouda. 2023. "Simulation and Optimization of Renewable Energy-Powered Desalination: A Bibliometric Analysis and Highlights of Recent Research" Sustainability 15, no. 12: 9180. https://doi.org/10.3390/su15129180
APA StylePietrasanta, A. M., Shaaban, M. F., Aguirre, P. A., Mussati, S. F., & Hamouda, M. A. (2023). Simulation and Optimization of Renewable Energy-Powered Desalination: A Bibliometric Analysis and Highlights of Recent Research. Sustainability, 15(12), 9180. https://doi.org/10.3390/su15129180