Using a Photoacoustic Cell for Spectroscopy of Toxic Air Pollutants including CO2, SO2 and NO Gases
Abstract
:1. Introduction
- High selectivity for detection of target gas rather than different gases, and high sensitivity for detecting low concentrations of substances;
- Large dynamic domain for monitoring gas components at different concentrations using a unique tool.
2. Theory
2.1. Cell Design
- (1)
- These sensors are highly sensitive, but the bulkiness and cost of the sensors prevent them from being used in applications such as greenhouse gas monitoring or indoor air monitoring. Therefore, there is a tendency to miniaturize them [28].
- (2)
- Given that the photovoltaic signal is reversely related to the volume of the chamber, one solution to improve the accuracy of the sensor is to reduce its dimensions [31].
- (3)
- The most common noise in photoacoustic systems, which is due to the absorption of light in cell windows, is reduced by miniaturizing the resonator diameter [18]. In this study, a H-type micro-photoacoustic cell was utilized in order to investigate CO2, SO2 and NO gases, as shown in Figure 2. The H-type resonant cell is very simple in its design, with two buffers. The design of the buffer cylinders, as well as the dimensions of the cylinders, are important for the creation of an efficient photoacoustic cell.
2.2. Boundary Conditions
2.3. Simulation
3. Results and Discussion
3.1. Acoustic Pressure
3.2. Frequency Response
3.3. Quality Factor
3.4. Temperature
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
Parameter | Description |
Pressure field | |
Temperature field | |
Velocity field | |
Mean value of the pressure | |
Mean value of the temperature | |
Mean value of the temperature | |
Κ | Thermal conductivity |
Cp | Heat capacity at constant pressure |
Qe | Volumetric heat source |
r | Radial coordinate |
ω | Radius of laser beam |
a | Absorption coefficient |
I | Characteristic matrix |
I0 | Power of the laser beam |
c | Sound velocity |
R | Radius of the cylinder |
L | Length of the cylinder |
fres | Resonant frequency |
BW | Bandwidth |
References
- Zhang, M.; Shi, L.; Ma, X.; Zhao, Y.; Gao, L. Study on Comprehensive Assessment of Environmental Impact of Air Pollution. Sustainability 2021, 13, 476. [Google Scholar] [CrossRef]
- Fulton, L.; Lah, O.; Cuenot, F. Transport Pathways for Light Duty Vehicles: Towards a 2° Scenario. Sustainability 2013, 5, 1863–1874. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Wang, Q.; Yin, X. Photoacoustic spectroscopy for detection of trace C2H2 using ellipsoidal photoacoustic cell. Opt. Commun. 2021, 487, 126764. [Google Scholar] [CrossRef]
- Li, S.; Lu, J.; Shang, Z.; Zeng, X.; Yuan, Y.; Wu, H.; Pan, Y.; Sampaolo, A.; Patimisco, P.; Spagnolo, V.; et al. Compact quartz-enhanced photoacoustic sensor for ppb-level ambient NO2 detection by use of a high-power laser diode and a grooved tuning fork. Photoacoustics 2022, 25, 100325. [Google Scholar] [CrossRef] [PubMed]
- Vafaie, R.H.; Pour, R.S.; Nojavan, S.; Jermsittiparsert, K. Designing a miniaturized photoacoustic sensor for detecting hydrogen gas. Int. J. Hydrogen Energy 2020, 45, 21148–21156. [Google Scholar] [CrossRef]
- Shi, L.; Zhang, M.; Zhang, Y.; Yang, B.; Sun, H.; Xu, T. Comprehensive Analysis of Nitrogen Deposition in Urban Ecosystem: A Case Study of Xiamen City, China. Sustainability 2018, 10, 4673. [Google Scholar] [CrossRef] [Green Version]
- Cuesta-Mosquera, A.P.; Wahl, M.; Acosta-López, J.G.; García-Reynoso, J.A.; Aristizábal-Zuluaga, B.H. Mixing layer height and slope wind oscillation: Factors that control ambient air SO2 in a tropical mountain city. Sustain. Cities Soc. 2019, 52, 101852. [Google Scholar] [CrossRef]
- Mulmi, S.; Thangadurai, V. Semiconducting SnO2-TiO2 (S-T) composites for detection of SO2 gas. Ionics 2016, 22, 1927–1935. [Google Scholar] [CrossRef]
- Pasupuleti, K.S.; Ghosh, S.; Jayababu, N.; Kang, C.-J.; Cho, H.D.; Kim, S.-G.; Kim, M.-D. Boron doped g-C3N4 quantum dots based highly sensitive surface acoustic wave NO2 sensor with faster gas kinetics under UV light illumination. Sens. Actuators B Chem. 2023, 378, 133140. [Google Scholar] [CrossRef]
- Sohrabi, S.; Khreis, H.; Lord, D. Impacts of Autonomous Vehicles on Public Health: A Conceptual Model and Policy Recommendations. Sustain. Cities Soc. 2020, 63, 102457. [Google Scholar] [CrossRef]
- Fugiel, A.; Burchart-Korol, D.; Czaplicka-Kolarz, K.; Smoliński, A. Environmental impact and damage categories caused by air pollution emissions from mining and quarrying sectors of European countries. J. Clean. Prod. 2017, 143, 159–168. [Google Scholar] [CrossRef]
- Sadiek, I.; Mikkonen, T.; Vainio, M.; Toivonen, J.; Foltynowicz, A. Optical frequency comb photoacoustic spectroscopy. Phys. Chem. Chem. Phys. 2018, 20, 27849–27855. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Devabharathi, N.; Umarji, A.M.; Dasgupta, S. Fully Inkjet-Printed Mesoporous SnO2-Based Ultrasensitive Gas Sensors for Trace Amount NO2 Detection. ACS Appl. Mater. Interfaces 2020, 12, 57207–57217. [Google Scholar] [CrossRef] [PubMed]
- Strahl, T.; Steinebrunner, J.; Weber, C.; Wöllenstein, J.; Schmitt, K. Photoacoustic methane de-tection inside a MEMS microphone. Photoacoustics 2023, 29, 100428. [Google Scholar] [CrossRef]
- Vafaie, R.H.; Pour, R.S.; Mohammadzadeh, A.; Asad, J.H.; Mosavi, A. Photoacoustic Detection of Pollutants Emitted by Transportation System for Use in Automotive Industry. Photonics 2022, 9, 526. [Google Scholar] [CrossRef]
- Dinh, T.-V.; Choi, I.-Y.; Son, Y.-S.; Kim, J.-C. A review on non-dispersive infrared gas sensors: Improvement of sensor detection limit and interference correction. Sens. Actuators B Chem. 2016, 231, 529–538. [Google Scholar] [CrossRef]
- Tavakoli, M.; Tavakoli, A.; Taheri, M.; Saghafifar, H. Design, simulation and structural optimization of a longitudinal acoustic resonator for trace gas detection using laser photoacoustic spectroscopy (LPAS). Opt. Laser Technol. 2010, 42, 828–838. [Google Scholar] [CrossRef]
- Sthel, M.; Marcelo, G.; Guilherme, L.; Mila, V.; Juliana, R.; Delson, S.; Castro, M.P.; Miklos, A.; Vargas, H. Detection of Greenhouse Gases Using the Photoacoustic Spectroscopy. In Greenhouse Gases-Emission, Measurement and Management; IntechOpen: London, UK, 2012. [Google Scholar]
- Bonilla-Manrique, O.E.; Posada-Roman, J.E.; Garcia-Souto, J.A.; Ruiz-Llata, M. Sub-ppm-Level Ammonia Detection Using Photoacoustic Spectroscopy with an Optical Microphone Based on a Phase Interferometer. Sensors 2019, 19, 2890. [Google Scholar] [CrossRef] [Green Version]
- Palzer, S. Photoacoustic-Based Gas Sensing: A Review. Sensors 2020, 20, 2745. [Google Scholar] [CrossRef]
- Liu, Y.H.; Liao, W.Y.; Li, L.; Huang, Y.T.; Xu, W.J.; Zeng, X.L. Reduction measures for air pollu-tants and greenhouse gas in the transportation sector: A cost-benefit analysis. J. Clean. Prod. 2019, 207, 1023–1032. [Google Scholar] [CrossRef]
- Santhanam, K.S.V.; Ahamed, N.N.N. Greenhouse Gas Sensors Fabricated with New Materials for Climatic Usage: A Review. Chemengineering 2018, 2, 38. [Google Scholar] [CrossRef] [Green Version]
- Rouxel, J.; Coutard, J.-G.; Gidon, S.; Lartigue, O.; Nicoletti, S.; Parvitte, B.; Vallon, R.; Zéninari, V.; Glière, A. Development of a Miniaturized Differential Photoacoustic Gas Sensor. Procedia Eng. 2015, 120, 396–399. [Google Scholar] [CrossRef] [Green Version]
- Gorelik, A.V.; Ulasevich, A.L.; Nikonovich, F.N.; Zakharich, M.P.; Firago, V.A.; Kazak, N.S.; Starovoitov, V.S. Minia-turized resonant photoacoustic cell of inclined geometry for trace-gas detection. Appl. Phys. B 2010, 100, 283–289. [Google Scholar] [CrossRef] [Green Version]
- Duggen, L.; Albu, M.; Willatzen, M.; Rubahn, H.-G. Modeling Frequency Response of Photoacoustic Cells using FEM for Determination of N-heptane Contamination in Air: Experimental Validation. Available online: https://portal.findresearcher.sdu.dk/en/publications/modeling-frequency-response-of-photoacoustic-cells-using-fem-for- (accessed on 21 February 2023).
- Ni, F.; Miguel-Brebion, M.; Nicoud, F.; Poinsot, T. Accounting for acoustic damping in a helm-holtz solver. AIAA J. 2017, 55, 1205–1220. [Google Scholar] [CrossRef] [Green Version]
- Berggren, M.; Bernland, A.; Noreland, D. Acoustic boundary layers as boundary conditions. J. Comput. Phys. 2018, 371, 633–650. [Google Scholar] [CrossRef] [Green Version]
- Rouxel, J.; Coutard, J.-G.; Gidon, S.; Lartigue, O.; Nicoletti, S.; Parvitte, B.; Vallon, R.; Zéninari, V.; Glière, A. Miniaturized differential Helmholtz resonators for photoacoustic trace gas detection. Sens. Actuators B Chem. 2016, 236, 1104–1110. [Google Scholar] [CrossRef]
- Sathiyamoorthy, K.; Kolios, M.C. Experimental design and numerical investigation of a photoacoustic sensor for a low-power, continuous-wave, laser-based frequency-domain photoacoustic microscopy. J. Biomed. Opt. 2019, 24, 121912. [Google Scholar] [CrossRef] [Green Version]
- Strumendo, M. Solution of the incompressible Navier-Stokes equations by the method of lines. Int. J. Numer. Methods Fluids 2015, 80, 317–339. [Google Scholar] [CrossRef]
- Glière, A.; Barritault, P.; Berthelot, A.; Constancias, C.; Coutard, J.-G.; Desloges, B.; Duraffourg, L.; Fedeli, J.-M.; Garcia, M.; Lartigue, O.; et al. Downsizing and Silicon Integration of Photoacoustic Gas Cells. Int. J. Thermophys. 2020, 41, 16. [Google Scholar] [CrossRef] [Green Version]
- Cai, Y.; Arsad, N.; Li, M.; Wang, Y. Buffer structure optimization of the photoacoustic cell for trace gas de-tection. Optoelectron. Lett. 2013, 9, 233–237. [Google Scholar] [CrossRef]
- Yehya, F.; Chaudhary, A.K.; Srinivas, D.; Muralidharan, K. Study of thermal decomposition mechanisms and low-level detection of explosives using pulsed photoacoustic technique. Appl. Phys. B Laser Opt. 2015, 121, 193–202. [Google Scholar] [CrossRef]
- Ishaku, L.; Hutson, D. A Resonant Photoacoustic CO2 Sensor Based on MID-IR LED and MEMS Microphone Technology Operating at 4.3 µM. Innov. Syst. Des. Eng. 2016, 7, 1–11. [Google Scholar]
- Baumann, B.; Wolff, M.; Kost, B.; Groninga, H.G. Calculation of Quality Factors and Amplitudes of Photo-Acoustic Resonators. Available online: https://www.researchgate.net/publication/271075875_Calculation_of_Quality_Factors_and_Amplitudes_of_Photoacoustic_Resonators (accessed on 21 February 2023).
- Duggen, L.; Frese, R.; Willatzen, M. FEM analysis of cylindrical resonant photoacoustic cells. J. Phys. Conf. Ser. 2010, 214, 012036. [Google Scholar] [CrossRef]
- Gorelik, A.V.; Ulasevich, A.L.; Nikonovich, F.N.; Zakharich, M.P.; Chebotar, A.I.; Firago, V.A.; Stetsik, V.M.; Kazak, N.S.; Starovoitov, V.S. Small-Size Resonant Photoacoustic Cell of Inclined Geometry for Gas Detection. arXiv 2009, arXiv:0910.1005. [Google Scholar]
- Suchenek, M. A Novel Method of Evaluating the Frequency Response of a Photoacoustic Cell. Int. J. Thermophys. 2014, 35, 2287–2291. [Google Scholar] [CrossRef] [Green Version]
- Yehya, F.; Chaudhary, A.K. Designing and modeling of efficient resonant photo acoustic sensors for spectro-scopic applications. J. Mod. Phys. 2011, 2, 200. [Google Scholar] [CrossRef]
Parameter | Description | Value [cm] |
---|---|---|
Lres | Length of the resonator | 0.6 |
Lbuf | Length of the buffer | 0.3 |
Rres | Radius of the resonator | 0.3 |
Rbuf | Radius of the buffer | 3 × Rres |
Gas | 1st Natural Frequency | 2nd Natural Frequency | 3rd Natural Frequency | Quality Factor |
---|---|---|---|---|
CO2 | 18.101 (kHz) | 31.718 (kHz) | 48.997 (kHz) | 27.84 |
SO2 | 26.888 (kHz) | 47.114 (kHz) | 72.782 (kHz) | 33.32 |
NO | 23.329 (kHz) | 40.891 (kHz) | 63.158 (kHz) | 33.61 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hadjiaghaie Vafaie, R.; Hosseinzadeh, G. Using a Photoacoustic Cell for Spectroscopy of Toxic Air Pollutants including CO2, SO2 and NO Gases. Sustainability 2023, 15, 9225. https://doi.org/10.3390/su15129225
Hadjiaghaie Vafaie R, Hosseinzadeh G. Using a Photoacoustic Cell for Spectroscopy of Toxic Air Pollutants including CO2, SO2 and NO Gases. Sustainability. 2023; 15(12):9225. https://doi.org/10.3390/su15129225
Chicago/Turabian StyleHadjiaghaie Vafaie, Reza, and Ghader Hosseinzadeh. 2023. "Using a Photoacoustic Cell for Spectroscopy of Toxic Air Pollutants including CO2, SO2 and NO Gases" Sustainability 15, no. 12: 9225. https://doi.org/10.3390/su15129225
APA StyleHadjiaghaie Vafaie, R., & Hosseinzadeh, G. (2023). Using a Photoacoustic Cell for Spectroscopy of Toxic Air Pollutants including CO2, SO2 and NO Gases. Sustainability, 15(12), 9225. https://doi.org/10.3390/su15129225