Research Status and Challenges on the Sustainable Development of Artificial Intelligence Courses from a Global Perspective
Abstract
:1. Introduction
2. Methods and Materials
2.1. Research Methods
2.2. Data Source
2.3. Limitations of Research Data
3. Development Status of Artificial Intelligence Courses
3.1. Age Distribution and Stage
3.2. Countries of Publication
3.3. Institutions of Publication
3.4. Journal of Publication
3.5. Core Authors and Research Fields
4. The Hot Research Topics and Trends of the Artificial Intelligence Curriculum
4.1. Keyword Co-Occurrence Density Map Analysis
4.2. Keyword Co-Occurrence Time Span Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Acosta, J.N.; Falcone, G.J.; Rajpurkar, P.; Topol, E.J. Multimodal Biomedical AI. Nat. Med. 2022, 28, 1773–1784. [Google Scholar] [CrossRef] [PubMed]
- Krishnankutty, R.; Bharti, T.; Mishra, N. Herding behaviour and capital structure decision in BSE listed Indian firms. Int. J. Manag. Financ. Account. 2022, 14, 118–137. [Google Scholar] [CrossRef]
- Tiwari, A.K.; Abakah, E.J.A.; Gil-Alana, L.A.; Abakah, M.K. Inflation Co-Movement Dynamics: A Cross-Country Investigation Using a Continuous Wavelet Approach. J. Risk Financ. Manag. 2021, 14, 613. [Google Scholar] [CrossRef]
- Bharti, T.; Ojha, S.C.; Tiwari, A.K. Interplay of Workplace Sustainability, Sustainable Work Performance, Optimism, and Resilience: The Moderating Role of Green Creativity in Luxury Hotels. Sustainability 2022, 14, 15097. [Google Scholar] [CrossRef]
- Huang, X.; Qiao, C. Enhancing Computational Thinking Skills Through Artificial Intelligence Education at a STEAM High School. Sci. Educ. 2022, 1–21. [Google Scholar] [CrossRef]
- Zingoni, A.; Taborri, J.; Panetti, V.; Bonechi, S.; Aparicio-Martínez, P.; Pinzi, S.; Calabrò, G. Investigating Issues and Needs of Dyslexic Students at University: Proof of Concept of an Artificial Intelligence and Virtual Reality-Based Supporting Platform and Preliminary Results. Appl. Sci. 2021, 11, 4624. [Google Scholar] [CrossRef]
- Cellina, M.; Cè, M.; Irmici, G.; Ascenti, V.; Caloro, E.; Bianchi, L.; Pellegrino, G.; D’Amico, N.; Papa, S.; Carrafiello, G. Artificial Intelligence in Emergency Radiology: Where Are We Going? Diagnostics 2022, 12, 3223. [Google Scholar] [CrossRef] [PubMed]
- Nor, A.K.M.; Pedapati, S.R.; Muhammad, M.; Leiva, V. Overview of Explainable Artificial Intelligence for Prognostic and Health Management of Industrial Assets Based on Preferred Reporting Items for Systematic Reviews and Meta-Analyses. Sensors 2021, 21, 8020. [Google Scholar] [CrossRef]
- Ilkka, T. The Impact of Artificial Intelligence on Learning, Teaching, and Education; EU: Luxembourg, 2018. [Google Scholar]
- OECD. Trustworthy Artificial Intelligence (AI) in Education: Promises and Challenges. Available online: https://www.oecd-ilibrary.org/education/trustworthy-artificial-intelligence-ai-in-education_a6c90fa9-en (accessed on 22 December 2022).
- El-Meniawy, N.; Rizk, M.R.M.; Ahmed, M.A.; Saleh, M. An Authentication Protocol for the Medical Internet of Things. Symmetry 2022, 14, 1483. [Google Scholar] [CrossRef]
- Kumar, M.G.V.; Čepová, L.; Raja, M.A.M.; Balaram, A.; Elangovan, M. Evaluation of the Quality of Practical Teaching of Agricultural Higher Vocational Courses Based on BP Neural Network. Appl. Sci. 2023, 13, 1180. [Google Scholar] [CrossRef]
- Albulescu, C.T.; Tiwari, A.K.; Kyophilavong, P. Nonlinearities and Chaos: A New Analysis of CEE Stock Markets. Mathematics 2021, 9, 707. [Google Scholar] [CrossRef]
- Huang, X. Aims for cultivating students’ key competencies based on artificial intelligence education in China. Educ. Inf. Technol. 2021, 26, 5127–5147. [Google Scholar] [CrossRef]
- Heredia-Negron, F.; Alamo-Rodriguez, N.; Oyola-Velazquez, L.; Nieves, B.; Carrasquillo, K.; Hochheiser, H.; Fristensky, B.; Daluz-Santana, I.; Fernandez-Repollet, E.; Roche-Lima, A. Evaluation of AIML + HDR—A Course to Enhance Data Science Workforce Capacity for Hispanic Biomedical Researchers. Int. J. Environ. Res. Public Health 2023, 20, 2726. [Google Scholar] [CrossRef] [PubMed]
- UNESCO. K-12 AI Curricula: A Mapping of Government-Endorsed AI Curricula. Available online: https://unesdoc.unesco.org/ark:/48223/pf0000380602 (accessed on 22 December 2022).
- Fernández, C.; Vicente, M.A.; Martínez-Rach, M.O. Implementation of a face recognition system as experimental practices in an artificial intelligence and pattern recognition course. Comput. Appl. Eng. Educ. 2020, 28, 497–511. [Google Scholar] [CrossRef]
- Farahmand, F. Integrating cybersecurity and artificial intelligence research in engineering and computer science education. IEEE Secur. Priv. 2021, 19, 104–110. [Google Scholar] [CrossRef]
- Liang, X.; Lv, H.; Liu, J.; Lin, L. Reform of English interactive teaching mode based on cloud computing artificial intelligence–a practice analysis. J. Intell. Fuzzy Syst. 2021, 40, 3617–3629. [Google Scholar] [CrossRef]
- Udupa, P. Application of artificial intelligence for university information system. Appl. Artif. Intell. 2022, 114, 105038. [Google Scholar] [CrossRef]
- Barriga, N.A.; Besoain, F. Artificial intelligence and mobile programming courses for a video game development program in Chile. Comput. Sci. Eng. 2020, 22, 17–25. [Google Scholar] [CrossRef]
- Laupichler, M.C.; Hadizadeh, D.R.; Wintergerst, M.W.; Von der Emde, L.; Paech, D.; Dick, E.A.; Raupach, T. Effect of a flipped classroom course to foster medical students’ AI literacy with a focus on medical imaging: A single group pre-and post-test study. BMC Med. Educ. 2022, 22, 803. [Google Scholar] [CrossRef]
- Salas-Pilco, S.Z.; Xiao, K.; Oshima, J. Artificial Intelligence and New Technologies in Inclusive Education for Minority Students: A Systematic Review. Sustainability 2022, 14, 13572. [Google Scholar] [CrossRef]
- Hwang, G.-J.; Tu, Y.-F. Roles and Research Trends of Artificial Intelligence in Mathematics Education: A Bibliometric Mapping Analysis and Systematic Review. Mathematics 2021, 9, 584. [Google Scholar] [CrossRef]
- Jobin, A.; Ienca, M.; Vayena, E. The global landscape of AI ethics guidelines. Nat. Mach. Intell. 2019, 1, 389–399. [Google Scholar] [CrossRef] [Green Version]
- Xing, Z.; Zhao, S.; Guo, W.; Guo, X.; Wang, S.; Li, M.; Wang, Y.; He, H. Analyzing point cloud of coal mining process in much dust environment based on dynamic graph convolution neural network. Environ. Sci. Pollut. Res. 2023, 30, 4044. [Google Scholar] [CrossRef]
- Hamamoto, R.; Suvarna, K.; Yamada, M.; Kobayashi, K.; Shinkai, N.; Miyake, M.; Takahashi, M.; Jinnai, S.; Shimoyama, R.; Sakai, A.; et al. Application of Artificial Intelligence Technology in Oncology: Towards the Establishment of Precision Medicine. Cancers 2020, 12, 3532. [Google Scholar] [CrossRef]
- Xing, Z.; Zhao, S.; Guo, W.; Guo, X.; Wang, Y.; Bai, Y.; Zhu, S.; He, H. Identifying Balls Feature in a Large-Scale Laser Point Cloud of a Coal Mining Environment by a Multiscale Dynamic Graph Convolution Neural Network. ACS Omega 2022, 7, 4892. [Google Scholar] [CrossRef] [PubMed]
- Ngwenya, S.; Boshoff, N. Different manifestations of ‘context’: Examples from a bibliometric study of research in Zimbabwe in Southern Africa. Scientometrics 2022, 127, 3911–3933. [Google Scholar] [CrossRef]
- Liu, Z.; Yang, Z.; Xiao, C.; Zhang, K.; Osmani, M. An Investigation into Art Therapy Aided Health and Well-Being Research: A 75-Year Bibliometric Analysis. Int. J. Environ. Res. Public Health 2022, 19, 232. [Google Scholar] [CrossRef] [PubMed]
- Arsad, A.Z.; Sebastian, G.; Hannan, M.A.; Ker, P.J.; Rahman, M.S.A.; Mansor, M.; Lipu, M.S.H. Solid State Switching Control Methods: A Bibliometric Analysis for Future Directions. Electronics 2021, 10, 1944. [Google Scholar] [CrossRef]
- Memon, A.; Kilby, J.; Breñosa, J.; Espinosa, J.C.M.; Ashraf, I. Analysis and Implementation of Human Mobility Behavior Using Similarity Analysis Based on Co-Occurrence Matrix. Sensors 2022, 22, 9898. [Google Scholar] [CrossRef]
- Chen, S.; Chen, Y.; Yuan, F.; Chang, X. Establishment of herbal prescription vector space model based on word co-occurrence. J. Supercomput. 2020, 76, 3590–3601. [Google Scholar] [CrossRef]
- Gorzeń-Mitka, I.; Bilska, B.; Tomaszewska, M.; Kołożyn-Krajewska, D. Mapping the Structure of Food Waste Management Research: A Co-Keyword Analysis. Int. J. Environ. Res. Public Health 2020, 17, 4798. [Google Scholar] [CrossRef] [PubMed]
- Del Mondo, G.; Peng, P.; Gensel, J.; Claramunt, C.; Lu, F. Leveraging Spatio-Temporal Graphs and Knowledge Graphs: Perspectives in the Field of Maritime Transportation. ISPRS Int. J. Geo-Inf. 2021, 10, 541. [Google Scholar] [CrossRef]
- Lin, J.; Zhao, Y.; Huang, W.; Liu, C.; Pu, H. Domain knowledge graph-based research progress of knowledge representation. Neural Comput. Appl. 2021, 33, 681–690. [Google Scholar] [CrossRef]
- Sun, X.; Li, T.; Wang, P.; Shang, L.; Niu, M.; Meng, X.; Shao, H. Nanomaterials and Advances in Tumor Immune-Related Therapy: A Bibliometric Analysis. J. Biomed. Nanotechnol. 2022, 18, 2154–2170. [Google Scholar] [CrossRef]
- Kuzior, A.; Sira, M. A Bibliometric Analysis of Blockchain Technology Research Using VOSviewer. Sustainability 2022, 14, 8206. [Google Scholar] [CrossRef]
- Ribeiro, A.P.D.; Almeida, R.F.; Medonca, J.G.A.; Leal, S.C. Oral health and its effect on the academic performance of children and adolescents. Pediatr. Dent. 2018, 40, 12–17. [Google Scholar] [PubMed]
- Barbosa, A.; Whiting, S.; Simmonds, P.; Scotini Moreno, R.; Mendes, R.; Breda, J. Physical Activity and Academic Achievement: An Umbrella Review. Int. J. Environ. Res. Public Health 2020, 17, 5972. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Véstias, M.P.; Duarte, R.P.; de Sousa, J.T.; Neto, H.C. Moving Deep Learning to the Edge. Algorithms 2020, 13, 125. [Google Scholar] [CrossRef]
- Wood, R. Artificial Intelligence a Collaboration. Available online: https://www.gov.uk/government/speeches/artificial-intelligence-a-collaboration (accessed on 6 January 2023).
- Gouvernement Français. Rapport de Synthèse France Intelligence Artificielle. Available online: https://www.economie.gouv.fr/files/files/PDF/2017/Rapport_synthese_France_IA_.pdf (accessed on 8 January 2023).
- Touretzky, D.; Gardner-McCune, C.; Martin, F.; Seehorn, D. Envisioning AI for K-12: What should every child know about AI? In Proceedings of the 2019 Proceedings of the AAAI Conference on Artificial Intelligence, Honolulu, HI, USA, 27 January–1 February 2019; pp. 9795–9799. [Google Scholar]
- Hedderich, D.M.; Keicher, M.; Wiestler, B.; Gruber, M.J.; Burwinkel, H.; Hinterwimmer, F.; Czempiel, T.; Spiro, J.E.; Pinto dos Santos, D.; Heim, D.; et al. AI for Doctors—A Course to Educate Medical Professionals in Artificial Intelligence for Medical Imaging. Healthcare 2021, 9, 1278. [Google Scholar] [CrossRef]
- Pantelimon, F.-V.; Bologa, R.; Toma, A.; Posedaru, B.-S. The Evolution of AI-Driven Educational Systems during the COVID-19 Pandemic. Sustainability 2021, 13, 13501. [Google Scholar] [CrossRef]
- Dai, Y.; Chai, C.-S.; Lin, P.-Y.; Jong, M.S.-Y.; Guo, Y.; Qin, J. Promoting Students’ Well-Being by Developing Their Readiness for the Artificial Intelligence Age. Sustainability 2020, 12, 6597. [Google Scholar] [CrossRef]
- Bañeres, D.; Rodríguez, M.E.; Guerrero-Roldán, A.E.; Karadeniz, A. An Early Warning System to Detect At-Risk Students in Online Higher Education. Appl. Sci. 2020, 10, 4427. [Google Scholar] [CrossRef]
- Chiu, T.K.F.; Chai, C.-S. Sustainable Curriculum Planning for Artificial Intelligence Education: A Self-Determination Theory Perspective. Sustainability 2020, 12, 5568. [Google Scholar] [CrossRef]
- Povedano-Montero, F.J.; Weinreb, R.N.; Raga-Martínez, I.; Romero, A.; López-Muñoz, F. Detection of Neurological and Ophthalmological Pathologies with Optical Coherence Tomography Using Retinal Thickness Measurements: A Bibliometric Study. Appl. Sci. 2020, 10, 5477. [Google Scholar] [CrossRef]
- Gams, M.; Kolenik, T. Relations between Electronics, Artificial Intelligence and Information Society through Information Society Rules. Electronics 2021, 10, 514. [Google Scholar] [CrossRef]
- Erdil, D.C.; White, L.; Foster, D.; Adams, J.; Cruz, A.J.A.; Hainey, B.; Hyman, H.; Lewis, G.; Nazir, S.; Nguyen, M.V.; et al. Toward developing a cloud computing model curriculum. In Proceedings of the 2019 ACM Conference on Innovation and Technology in Computer Science Education, Scotland, UK, 15–17 July 2019; pp. 255–256. [Google Scholar]
- Dec, G.; Stadnicka, D.; Paśko, Ł.; Mądziel, M.; Figliè, R.; Mazzei, D.; Tyrovolas, M.; Stylios, C.; Navarro, J.; Solé-Beteta, X. Role of Academics in Transferring Knowledge and Skills on Artificial Intelligence, Internet of Things and Edge Computing. Sensors 2022, 22, 2496. [Google Scholar] [CrossRef]
- Paśko, Ł.; Mądziel, M.; Stadnicka, D.; Dec, G.; Carreras-Coch, A.; Solé-Beteta, X.; Pappa, L.; Stylios, C.; Mazzei, D.; Atzeni, D. Plan and Develop Advanced Knowledge and Skills for Future Industrial Employees in the Field of Artificial Intelligence, Internet of Things and Edge Computing. Sustainability 2022, 14, 3312. [Google Scholar] [CrossRef]
- Tedre, M.; Toivonen, T.; Kahila, J.; Vartiainen, H.; Valtonen, T.; Jormanainen, I.; Pears, A. Teaching machine learning in K–12 classroom: Pedagogical and technological trajectories for artificial intelligence education. IEEE Access 2021, 9, 110558–110572. [Google Scholar] [CrossRef]
- Toivonen, T.; Jormanainen, I.; Kahila, J.; Tedre, M.; Valtonen, T.; Vartiainen, H. Co-designing machine learning apps in K–12 with primary school children. In Proceedings of the 2020 IEEE 20th International Conference on Advanced Learning Technologies, Tartu, Estonia, 6–9 July 2020; pp. 308–310. [Google Scholar]
- Weerasekara, S.; Lu, Z.; Ozek, B.; Isaacs, J.; Kamarthi, S. Trends in Adopting Industry 4.0 for Asset Life Cycle Management for Sustainability: A Keyword Co-Occurrence Network Review and Analysis. Sustainability 2022, 14, 12233. [Google Scholar] [CrossRef]
- Chen, Q.; Wen, Y.; Zhang, X.; Zhu, Z. Evolutionary Overview of Terrace Research Based on Bibliometric Analysis in Web of Science from 1991 to 2020. Int. J. Environ. Res. Public Health 2022, 19, 7796. [Google Scholar] [CrossRef] [PubMed]
- Lis, A.; Sudolska, A.; Pietryka, I.; Kozakiewicz, A. Cloud Computing and Energy Efficiency: Mapping the Thematic Structure of Research. Energies 2020, 13, 4117. [Google Scholar] [CrossRef]
- Khan, M.; Ibrahim, M.; Wu, N.; Patil, R. Interdisciplinary Project Based Learning Approach for Machine Learning and Internet of Things. In Proceedings of the IEEE Integrated STEM Education Conference, Princeton, NJ, USA, 1 August 2020; pp. 1–6. [Google Scholar]
- Wu, Y.; Nouri, J.; Li, X.; Weegar, R.; Afzaal, M.; Zia, A. Catching Group Criteria Semantic Information When Forming Collaborative Learning Groups. In Proceedings of the 16th European Conference on Technology Enhanced Learning, Toulouse, France, 12–16 September 2021; pp. 20–24. [Google Scholar]
- Fan, X.; Zhong, X. Artificial intelligence-based creative thinking skill analysis model using human–computer interaction in art design teaching. Comput. Electr. Eng. 2022, 100, 107957. [Google Scholar] [CrossRef]
- Rossi, R. Catching Data Science Education Based on ADDIE Model and the EDISON Framework. In Proceedings of the International Conference on Big Data Engineering and Education, Guiyang, China, 12–14 August 2021; pp. 40–45. [Google Scholar]
- Lameras, P.; Arnab, S. Power to the Teachers: An Exploratory Review on Artificial Intelligence in Education. Information 2022, 13, 14. [Google Scholar] [CrossRef]
- Sanusi, I.T.; Olaleye, S.A. An insight into cultural competence and ethics in K-12 artificial intelligence education. In Proceedings of the IEEE Global Engineering Education Conference, Tunis, Tunisia, 18–31 March 2022; pp. 790–794. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Y.; Qin, J.; Lei, J.; Liu, Y. Research Status and Challenges on the Sustainable Development of Artificial Intelligence Courses from a Global Perspective. Sustainability 2023, 15, 9335. https://doi.org/10.3390/su15129335
Yang Y, Qin J, Lei J, Liu Y. Research Status and Challenges on the Sustainable Development of Artificial Intelligence Courses from a Global Perspective. Sustainability. 2023; 15(12):9335. https://doi.org/10.3390/su15129335
Chicago/Turabian StyleYang, Ying, Jinruo Qin, Jing Lei, and Yanping Liu. 2023. "Research Status and Challenges on the Sustainable Development of Artificial Intelligence Courses from a Global Perspective" Sustainability 15, no. 12: 9335. https://doi.org/10.3390/su15129335
APA StyleYang, Y., Qin, J., Lei, J., & Liu, Y. (2023). Research Status and Challenges on the Sustainable Development of Artificial Intelligence Courses from a Global Perspective. Sustainability, 15(12), 9335. https://doi.org/10.3390/su15129335