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Abstract: In traditional network management, the configuration of routing policies and associated
settings on individual routers and switches was performed manually, incurring a considerable
cost. By centralizing network management, software-defined networking (SDN) technology has
reduced hardware construction costs and increased flexibility. However, this centralized architecture
renders information security vulnerable to network attacks, making intrusion detection in the SDN
environment crucial. Machine-learning approaches have been widely used for intrusion detection
recently. However, critical issues such as unknown attacks, insufficient data, and class imbalance may
significantly affect the performance of typical machine learning. We addressed these problems and
proposed a transfer-learning method based on the SDN environment. The following experimental
results showed that our method outperforms typical machine learning methods. (1) our model
achieved a F1-score of 0.71 for anomaly detection for unknown attacks; (2) for small samples, our
model achieved a F1-score of 0.98 for anomaly detection and a F1-score of 0.51 for attack types
identification; (3) for class imbalance, our model achieved an F1-score of 1.00 for anomaly detection
and 0.91 for attack type identification. In addition, our model required 15,230 seconds (4 h 13 m 50 s)
for training, ranking second among the six models when considering both performance and efficiency.
In future studies, we plan to combine sampling techniques with few-shot learning to improve the
performance of minority classes in class imbalance scenarios.

Keywords: transfer learning; meta-learning; intrusion detection; software-defined networking

1. Introduction

The rapid development of semiconductors and network-side information technology
has paved the way for the new generation of network technology, which is moving toward
software-defined networking (SDN) and network function virtualization (NFV). As a result,
the relevant market output value is expected to increase from US$13.7 billion in 2020 to
over US$32.7 billion in 2025 ( https://www.marketsandmarkets.com/Market-Reports/
software-defined-networking-sdn-market-655.html, accessed on 28 October 2021) with
programmable network management and orchestration as critical technologies.

The software-defined network leverages the decoupling of the control and data planes
to achieve centralized control of the entire system. This eliminates the need for network
administrators to set routing policies independently for each network device, making the
network more manageable and flexible. However, the centralized architecture of SDN
renders the network susceptible to information security threats. Attackers can use various
techniques to perform malicious tasks, and gaining access to the controller can put the
entire network system at risk. Therefore, deploying an intrusion detection system (IDS) to
detect SDN traffic is critical to this architecture.

Intrusion detection systems rely on two primary detection methods: signature and
anomaly-based [1,2]. Signature-based detection requires continuous database updating and
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cannot identify new or unknown attacks. By contrast, anomaly-based detection establishes
a benchmark for the typical behavioral characteristics of network packets and compares
the data parts to be detected with this benchmark to determine abnormalities. Of these
methods, anomaly-based methods are better equipped to identify attack behaviors and
have played a crucial role in safeguarding networks from new attacks in recent years.

Machine-learning technology has been widely adopted in anomaly-based intrusion
detection systems [3]. Depending on whether the data are labeled and the expected
outcome, machine learning classifiers can be distinguished into four different approaches:
(1) supervised learning, where classifiers are trained on data with pre-labeled categories to
classify new data; (2) unsupervised learning, which does not rely on labeled data but instead
uses a learning algorithm to analyze the feature distribution of data points to establish a
classifier and classify new data; (3) semi-supervised learning, which combines the previous
two methods, using a small amount of labeled data and a large amount of unlabeled data
for training, first training the machine learning classifier through the labeled data, then
using the partially trained algorithm to label the unlabeled data, and finally retraining the
classifier using both labeled and newly labeled data; and (4) reinforcement learning, which
does not use labeled data but relies on reward and punishment mechanisms and evaluation
metrics to help the classifier continually try and adjust to the best parameters based on the
quality of feedback.

Traditional machine learning methods assume the training and testing datasets share
the same feature space and distribution. However, this assumption is not fully applicable
in practice, and the classification performance may decrease if there is a gap in the sample
distribution between the two datasets. Three common challenges encountered during
practical scenarios are insufficient data volume, incompatibility of computing power, and
distribution mismatch [4]. To address the problem of insufficient training data, transfer
learning allows the classifier to be trained from related data to improve the performance
of the test data classification and accelerate the learning efficiency of the target domain
by transferring the learned parameters from related fields. Transfer learning enables the
reuse of training knowledge from other domains and tasks, thereby reducing the time
and computing resources required to train the model. Moreover, the problem of reduced
classification performance caused by a distribution mismatch can be solved by synthesizing
knowledge from one or more domains through various domain adaptations.

The concept of sustainability in this study includes the sustainability of SDN appli-
cations and the robust performance of transfer-learning paradigms in detecting new and
unknown attacks over time. The SDN architecture enables centralized management and
communication between controllers and OpenFlow switches, thereby reducing the cost of
controller–switch communication for dynamic and programmatically efficient networks.
For network security issues, owing to the ever-changing nature of unknown attacks and
potential threats, the transfer learning model must be able to identify abnormal attacks
over time while maintaining its robustness. In addition, the acquired knowledge needs to
be quickly fine-tuned based on small samples and then applied to new task domains to
face attacks and models requiring specific detection performance.

Transfer learning leverages the knowledge acquired from different fields to solve
the target task. The classifier need not learn from scratch when new samples are added,
thus solving the problem of insufficient training data. Unknown attack identification is
particularly important because the number of new attack samples is usually small in the
initial stage of development. However, if such attacks are tolerated or ignored, they can
pose a security threat to the entire information network. Nevertheless, the traditional
performance of machine-learning classification is limited by insufficient training data,
highlighting the importance of addressing the insufficiency of samples.

To address the challenges of unknown attack detection, insufficient training samples,
and imbalanced classification in intrusion detection systems, we propose a system architec-
ture based on the transfer learning strategy for intrusion detection in the SDN environment.
We propose a method called “Reptile-TL” that combines transfer learning (TL) and meta-
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learning technology. The architecture of the intrusion detection system comprises two
stages: anomaly detection and attack category identification. Initially, a binary classifica-
tion model is utilized for anomaly detection and assessment of packet flow as normal or
abnormal. Subsequently, abnormal packet flows are passed to a multi-class classification
model to identify the attack category and determine the type of attack. Experimental results
demonstrate that the deep learning method performs well and maintains stability when
sufficient training samples are available. However, the transfer learning methods (i.e.,
Reptile-TL and Convnet-TL) perform better in scenarios involving new unknown attacks
and intrusion detection with small samples.

In summary, this paper makes three contributions:

• We have investigated three challenges related to intrusion detection in an SDN envi-
ronment, i.e., unknown attacks, small samples, and class imbalance and conducted a
comprehensive survey of relevant studies.

• We have proposed the Reptile-TL model, which employs transfer learning and meta-
learning strategies to utilize the source domain to improve the performance of the
target domains.

• We have compared the performance of six models for three critical issues and evalu-
ated the advantages of transfer learning in intrusion detection based on the SDN data
environment.

The remainder of this paper is organized as follows. Section 2 describes related
technologies. Section 3 introduces the question definition and model architecture. Section 4
presents the experimental results and their evaluation. Finally, Section 5 summarizes the
tasks and discusses future research directions.

2. Related Work
2.1. SDN and Security Issues

With recent changes in network behavior caused by the global pandemic [5], SDN has
become a promising solution for network management and adaptation. It offers greater
flexibility than traditional networks by utilizing SDN controllers or northbound application
programming interfaces (APIs) to guide the network traffic design and communicate with
the underlying hardware infrastructure through the OpenFlow protocol on the southbound
interface. Unlike traditional networks that rely on dedicated architecture devices such as
controllers, routers, and switches, SDN eliminates the need for such devices, resulting in
improved network construction, flexible configuration, and lower deployment costs. The
diversity and demand for many network function services have led to the use of virtu-
alization technology to automate various management tasks. The use of this technology
reduces human errors and difficulties faced by professionals during development, shortens
deployment time and costs, and provides rapid segmentation as required by computing
and storage resources [6].

Network function virtualization differs from traditional network service functions be-
cause it does not require the use of dedicated hardware equipment or underlying hardware
network architecture. When adding a new system or service, in addition to considering
resource requirements and service application types, the method can establish underlying
network segments, routing settings, firewalls, and other traffic-related security checks,
load balancing, and VPN settings required by the system according to its actual needs.
Simultaneously, it can also dynamically request the corresponding composition conditions
from the network virtualization system and configure the required network settings and
functions. This is the concept of service function chaining. If not required, the system can
be quickly recovered for subsequent demand re-planning [7].

SDN can be employed to reduce the complexity associated with the Internet-of-Things
(IoT) and improve the quality-of-service (QoS). Ali et al. [8] proposed an efficient slave
controller allocation-based load-balancing approach for a multi-domain SDN-enabled IoT
network, which aims to effectively transfer switches to a controller with idle resources.
SDN provides a practical approach to network management and adaptation by separating
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the control and data layers, allowing for greater flexibility in network configuration. SDN
controllers or northbound APIs guide the network traffic design and communicate with
the underlying hardware infrastructure on the southbound interface via the OpenFlow
protocol, eliminating the need for dedicated hardware devices such as controllers, routers,
and switches that are required in traditional networks. This results in improved network
construction, flexible configuration, and lower deployment costs [9].

However, the centralized architecture of an SDN may be vulnerable to security threats
from traditional networks and new information security vulnerabilities. Several studies
[9–11] have analyzed the security threats posed to the SDN architecture. The control
layer of SDN is the core component responsible for converting the priority conditions
of the application program, providing precise instructions for each system component,
and providing relevant information to the SDN application program. The control plane
manages logically all connected OpenFlow elements and enforces the policies defined by
them [11]. The controller processes devices on the data layer through channels, with each
device having a separate logical channel. However, these channels share the same physical
link. A controlled device can run a flood attack, causing link congestion and isolating the
SDN controller from the entire network by intercepting the communication between the
controller and the data layer [12]. In addition, attackers can exploit the trust between the
OpenFlow switches and controllers to launch man-in-the-middle attacks to collect valuable
information or gain full access to the control layer [13].

The data layer comprises network devices, such as switches, which are controlled by
the control layer. These devices execute programmable control algorithms and enhance
management processes and configurations for data transmission tasks. This layer requires
continuous connection and monitoring of the data transfer status between end hosts.
In addition, the data layer provides a standard protocol for establishing the software
environment to ensure that different devices can communicate and manage the open and
modular dimensions by standardizing Web applications, systems, and policies [13].

However, despite the potential benefits of SDN, unauthorized access to vulnerable
hosts in the network can be exploited to launch various attacks. For example, attackers can
generate malicious traffic to flood network elements with hosts or connected switches, lead-
ing to the exhaustion of the resources of OpenFlow switches’ controller or flow table space.
Attackers can deploy fake switches in an SDN to evade network traffic or steal target data.
Moreover, they can manipulate the packet-forwarding rules (flow entry) of an OpenFlow
switch to redirect legitimate network traffic, which can cause significant network conges-
tion or disruptions. Finally, fake switches can be used to generate fake request messages to
increase the load on the controller and reduce the speed of network transmission.

2.2. Machine Learning in Intrusion Detection Issues

Intrusion detection systems (IDSs) can detect attacks using signature or anomaly-based
methods [1,14,15]. Signature-based detection, also known as knowledge-based or misuse
detection [2], involves comparing incoming or outgoing packet traffic with a large database
of known attack signatures to identify and block malicious traffic. However, this method is
only effective for detecting known attacks and requires the storage of many rules. By contrast,
anomaly-based detection detects deviations from normal behavior [16]. This method first
establishes a baseline for normal network traffic and then compares the traffic against the
baseline to detect anomalies. Anomaly-based detection can detect both known and unknown
attacks. Machine learning technology is commonly used to classify network traffic as normal
or abnormal and to further classify abnormal traffic to identify the type of attack.

Machine learning has been widely and successfully used in various applications,
including intrusion detection. Kumar et al. [17] and Rathore et al. [18] used decision trees
for intrusion detection. By constructing a tree consisting of root nodes, internal nodes,
branches, and leaf nodes, internal nodes represent data features, branches represent rules,
and leaf nodes represent the final labels. Determining attributes of nodes to predict data
categories can help handle large amounts of data and support real-time traffic detection.
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In addition, related studies have added conceived of unsupervised machine learning
methods. For example, Ali et al. [19] proposed a hierarchical control plane SDN architecture
for multi-domain communication using principal component analysis (PCA) to reduce the
dimensionality of big data traffic and applied the support vector machine (SVM) classifier
to detect a distributed denial-of-service (DDoS) attack. Lopez-Martin et al. [20] proposed a
new method for detecting intrusions in IoT networks. The method incorporated intrusion
labels inside the inner decoder layers based on a conditional variational autoencoder. It
was less complex than other unsupervised methods. In addition, it was used to recover
missing features for incomplete training datasets.

Ahmed et al. [1] noted that recent studies [21–23] have focused on using multi-layer
deep neural networks to detect and classify cyber attacks, which have shown good perfor-
mance in detecting network anomalies. In practical scenarios, when there is a disparity
in the distribution of samples between the training and testing datasets, classification
performance decreases. Inadequate training data, discrepancies in computing capacity,
and differences in data distribution are commonly encountered challenges in practical
situations [4]. Assis et al. [24] proposed an SDN defense system based on analyzing single
IP flow records, which uses the gated recurrent unit (GRU) deep learning method to detect
DDoS and intrusion attacks. Direct flow inspection enables faster mitigation responses,
thereby minimizing the impact of the attack on the SDN.

2.3. Transfer Learning in Intrusion Detection Issues

The transfer-learning approach improves the performance of traditional classification
models in the target domain by transferring knowledge from different source domains [25].
This strategy reduces the dependency of the classification model on the existence of a large
amount of target data. Furthermore, the classification model of transfer learning has already
acquired knowledge from other domains before the training starts. Therefore, it does not need
to learn from scratch, unlike traditional machine-learning methods. Thus, the performance
of the transfer learning classification model is usually better than that of traditional machine
learning methods, and this model is more suitable for situations in which training samples are
insufficient or unknown attack detection is required.

Several studies have applied transfer learning to intrusion detection to address is-
sues such as insufficient training samples and unknown attack detection. For instance,
Wu et al. [26] proposed a transfer learning-based convolutional neural network (CNN)
called ConvNet-TL for network intrusion detection. The model consists of two connected
CNNs, and the learning process is divided into two stages. First, a CNN model is trained on
the source dataset, and the learned knowledge is then transferred to another CNN model
and the target dataset. The proposed method is verified on the NSL-KDD dataset and
demonstrates a better classification performance than traditional CNN models; in addition,
the proposed model can improve the detection accuracy for known and unknown attacks.

Rodríguez et al. [27] proposed a CNN-TL method for detecting unknown attacks in
IoT environments. The approach involved training a CNN on the BoT-IoT dataset [28],
transferring its convolutional layer to a new CNN model and fine-tuning it on a traditional
network dataset. The effectiveness of the transfer-learning-based IDS was tested on the UNSW-
NB15 dataset [29] and the IDS was shown to effectively detect cyber-attacks in IoT circuits
with small and imbalanced datasets. This approach is similar to [26]; however, this study
explored the feasibility of deploying a transfer learning-based IDS to deal with unknown
attacks specifically for IoT environments with limited data..

Dai et al. [30] proposed TrAdaBoost, which uses AdaBoost-based technology to select
samples from the source domain that are helpful for the classification of the target domain and
assign them higher weights. The model is then trained using the re-weighted samples from
the source domain and a few examples from the target domain. Wang et al. [31] proposed an
instance-based transfer learning method and applied it to DDoS attack detection. The method
used the publicly accessible DDoS dataset as the source domain and selected the top few
information gain features for the dimensional reconstruction of the dataset. The TrAdaBoost
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algorithm was used to determine samples that were helpful for the classification of the target
domain to ensure that the model could detect unknown DDoS attack behaviors. This study
focused solely on DDoS attacks and only one source domain dataset was selected with a
relatively small overall data volume; if the source domain data are extensive, this approach
may require a significant amount of time.

Singla et al. [32] investigated the feasibility of transfer learning in intrusion detection
using UNSW-NB15 as both the source and target datasets. The target domain comprised
one of the attacks in UNSW-NB15 and some normal samples, whereas the remainder
belonged to the source domain. The objective was to compare the performance of intrusion-
detection models which use transfer learning with that of those trained from scratch. The
number of training samples in the target domain ranged from 100 to 70,000. The results
indicated that transfer learning can better identify new attacks when fewer training data
are available in the target domain.

Dhillon et al. [33] employed the CNN-LSTM model to implement transfer learning.
UNSW-NB15 was used as both the source and target datasets, where the source domain was
split into training and validation sets, accounting for 60% and 20% of the data, respectively.
The testing set comprised the target domain, which accounted for the remaining 20% of
the data. The CNN layer was first used to extract the features of the training dataset,
down-sampling the input while retaining essential features during the extraction process to
reduce the data dimension. The output of the CNN layer was then fed to the LSTM layer,
and the weights were adjusted using the backpropagation algorithm. Finally, the results
were passed to a fully connected layer for classification. The method achieves classification
accuracies of 98.30% and 98.43% for the source and target datasets, respectively.

Dos Santos et al. [34] proposed a deep autoencoder and transfer learning-based
intrusion detection model to alleviate the model update burden in real networks. The model
leverages a deep auto-encoder as an additional feature extraction stage to obtain a historical
feature representation of network traffic. When the model is updated, some parameters
of the deep autoencoder are retained through transfer learning, and the classification
model is trained using new samples to update the parameters. This approach significantly
reduces the amount of labeled training data and the computing costs required to effectively
distinguishing between unusual and normal wireless network traffic.

Sameera et al. [35] utilized the manifold alignment transfer learning method to
transform the source and target domains into a common latent space, circumventing the
problem of different marginal probability distributions between the feature spaces and
domains. They proposed a method for generating labels in the transformed space, utilizing
a clustering correspondence procedure to compensate for the lack of labeled object samples.
The classification model uses the DNN framework and is evaluated on the NSL-KDD [36]
and CIDD datasets [35]. The experimental results showed that the proposed method can
successfully detect some unknown attacks, even if the distributions of the source and target
domains differ; however, the F1-score is only 0.4.

Phan et al. [37] proposed a CNN-based transfer learning model called DeepFlowIDS.
The model first extracts important features and is trained on the NSL-KDD dataset. The
abnormal detection performance of the model is then evaluated for the DDoS attack
category of CIC-IDS2018. Finally, the model is tested in a simulated SDN environment.
However, only one type of DDoS attack is assumed for an unknown attack; therefore, the
diversity of attack types is limited.

Similarly, Polat et al. [38] proposed a transfer learning model based on time series
to detect a type of DDoS attack on a supervisory control and data acquisition (SCADA)
system in a simulated SDN environment. Three types of DDoS attacks were considered,
and the model was trained and tested on a dataset of normal network traffic. This method
utilizes two independent deep learning models: LSTM and GRU. After training on 90% of
the dataset, the parts other than the output layer of the two models are extracted as feature
extractors of the transfer model. The extracted features are then processed using an SVM
for multi-class classification.
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Polat et al. employed the Q-learning [39] , a reinforcement learning technique, to
acquire the most informative knowledge from the source domain for the target task and
provide an optimal initial model parameter for the MLP deep learning model to enhance
the performance of the target domain. The proposed method trains the model using four
datasets from conventional network environments: NSL-KDD, UNSW-NB15, CICIDS,
and CICDDoS. It applies the model for DDoS anomaly detection in an SDN environment.
The classification accuracy of the proposed method outperforms other transfer learning
methods that do not utilize reinforcement learning techniques.

The research cited above is listed in Table 1. The objective of these studies was to
distinguish between normal and abnormal network traffic without employing multi-class
classification techniques to identify different types of abnormal traffic. However, we believe
that the intrusion detection systems can be refined and automated by classifying abnormal
traffic into various types of attacks. This would allow system administrators to implement
targeted responses according to the type of attack, thereby significantly reducing the time
required for manual interpretation.

Furthermore, while many existing studies address common issues such as limited
training samples or unknown attack detection, they tend to focus on one problem rather
than comprehensively evaluating all three issues. In addition, most of the current research,
such as in [26,31–33,40,41], has been conducted in traditional networks. In contrast, a few
others, including [27,34,35], have explored the IoT, wireless networks, and cloud networks.
This study adopts a transfer learning approach for intrusion detection in SDN environments,
as described in [38,39,42], with a specific focus on DDoS attacks. However, the intrusion
detection performance of this model has not been compared with that for other types of
unknown attack behaviors.

Table 1. Research related to intrusion detection. (Symbol© indicates it belongs to.)

Author Model Data
Environment Problem # of Class

TN 1 IoT SDN UA 2 SS 3 CI 4 Binary Multiple

Our study

CNN,MAML,
Meta-SGD,
Reptile,
Convnet-TL,
Reptile-TL

CIC-IDS
InSDN © © © © © ©

[27], 2022 CNN,
Convnet-TL

UNSW-NB15
NSL-KDD © © ©

[40], 2022 CNN-TL,
CNN,IDS

BoT-IoT
UNSW-NB15 © © © ©

[38], 2022 LSTM,GTU
SVM simulation © ©

[43], 2021
CNN,TANN,
EDM,MCA,
ODM

UNSW-NB15,
Bot-IoT © © © ©

[44], 2021 CNN NSL-KDD © © © ©

[45], 2021

ID-FSCIL,
MAML,NB,
Logistic,
DT

NSL-KDD © © ©

[31], 2021 TrAdaBoost

NSL-KDD,
DARPA2000,
CICIDS2017,
UNSW-NB15

© © ©
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Table 1. Cont.

Author Model Data
Environment Problem # of Class

TN 1 IoT SDN UA 2 SS 3 CI 4 Binary Multiple

[34], 2021 DeepAE,
DT,GBT MAWIFlow © © ©

[31], 2021 SVM,KNN,
CNN

KDD99,
NSL-KDD © © ©

[37], 2021 MLP,RL

NSL-KDD,
UNSW-NB15,
CICIDDoS,
DosinSDN

© © ©

[46], 2020 FC-Net
ISCX2012,
CIC-IDS2017 © © © ©

[47], 2020

J48,NB,RF,
SVM,RNN,
DNN
CBR-CNN

NSL-KDD,
UNSW-NB15 © © © © ©

[33], 2020 CNN-LSTM,
CNN,DNN

UNSW-NB15 © © ©

[35], 2020 DNN,KNN,
SVM,RF,DT

NSL-KDD
CIDD © © © ©

[48], 2020 CNN UNSW-
NB15

© © © ©

[26], 2019 CNN,
Convnet-TL

UNSW-NB15
NSLKDD © © ©

[32], 2019 DNN UNSW-NB15 © © ©

[41], 2018 SVM,NAMA
KDD99,
KYOTO2006 © © ©

1 TN: Traditional Network. 2 UA: Unknown Attacks. 3 SS: Small Samples. 4 CI: Class Imbalance.

3. Methodology
3.1. Question Definition

Supervised learning methods generally assume that the training and testing data are
drawn from the same distribution, such that the input feature space and data distribution
remain constant [4]. However, novel forms of attacks frequently emerge in real-world
networks. In the early stages of such attacks, the number of available samples is typically
limited; directly using such a small sample size to train a classifier often leads to overfit-
ting. Therefore, transfer learning leverages data from related domains to train classifiers
and alleviates the problem of insufficient training data, thereby improving the classifier
performance for a limited number of categories.

We propose a novel approach called Reptile-TL, which combines transfer learning and
meta-learning techniques to address three critical intrusion detection challenges—unknown
attacks, small sample sizes, and class imbalance—to identify abnormal detection and attack
types. In transfer learning, the target domain DT serves as the small training and testing
datasets for classification tasks. The source domain dataset DS is utilized to improve the
classification performance of the target domain and is referred to as the source domain. Each
domain consists of the feature space X and the marginal distribution P(X) of the feature
space, such that D = {X, P(X)}, where X = {xi ∈ X, i = 1, . . . , n}. Each domain is associated
with a specific classification task (T), which includes a label space Y and a decision function
F, such that T = {Y, F}, and F is learned from training samples to make predictions. In this
study, we aim to address the following three classification problems: (1) Unknown attacks:
This refers to an environment with unknown attacks where the source and target domains
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belong to different datasets (DS 6= DT), in which the tasks of the two domains’ are related.
In this scenario, some attacks on the target domain DT do not occur in the source domain
DS. (2) Small samples: This describes a small sample environment where there are limited
training samples DT for most attack categories. (3) Class imbalance: This pertains to a
class-imbalance environment, where DT is a highly imbalanced dataset.

Our intrusion detection method is divided into two stages: anomaly detection and
attack category classification, as shown in Figure 1. First, anomaly detection uses a binary
classification model to determine whether a packet is normal or abnormal. If it is abnormal,
it is sent to a multi-classification model to identify and classify the type of attack. This
enables system administrators to perform further defense depending on the attack type.
The seven attack types are determined by the multi-class classifier in the second stage:
DDoS, Probe, DoS, BFA, Web attack, Botnet, and U2R.

Figure 1. Proposed intrusion detection architecture process.

3.2. Model Architectures

The conventional supervised learning approach for intrusion detection requires a priori
knowledge of all attack categories and adequate training samples for each type. However,
new attacks emerge almost daily, and their samples may not be available beforehand. As a
result, the number of samples is often limited, leading to poor performance or overfitting.
In such scenarios, traditional supervised learning methods may be unable to make effective
predictions because of inadequate training.

Meta-learning has been proven to be an effective solution for small-sample classifica-
tion problems. In meta-learning, each meta-training stage comprises multi-class classifica-
tion tasks, where each task consists of a support set and query set both sampled from the
same training dataset. The model is trained on the support set and validated on the query
set; this process is repeated several times. The aim is to learn from a few known samples in
the meta-training stage, obtain an effective feature representation, and quickly adapt to
various new tasks.

1. CNN

The CNN architecture is used to detect unknown attacks in traditional networks and has
demonstrated excellent binary classification performance by Das et al. [40]. Therefore,
we use the model as a basic component for binary and multi-class classification tasks in
the SDN environment. The CNN model adopted for binary classification in this study
composes five hidden layers; its architecture and parameters are illustrated in Figure 2.
Binary cross-entropy serves as the loss function, and Adam is used as the optimizer. The
output layer has two output nodes with the sigmoid activation function. The architecture
of the multi-class classification model is the same as that of the binary classification
model, except for the output layer, which consists of seven output nodes for the softmax
activation function. Categorical cross-entropy is used as the loss function.
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Figure 2. The CNN model for binary and multi-class classification.

2. Model-Agnostic Meta-Learning(MAML)

The MAML model aims to find model parameters that are sensitive to changes in
tasks, so that good classification results can be achieved with only a small number of
gradient descents and a small amount of training data. This basic model is responsible
for learning the features of each task, and a meta-learning module is subsequently
used for learning. The meta-learner updates the parameters of the basic model to
obtain a good initial value for performing new classification tasks. The meta-learner
synthesizes the training experience of all tasks, and passes the calculated initial values
of the model parameters to the basic model to perform well after a few iterations.
During the training process, a small number of samples are randomly selected from
the labeled training dataset (support set) to perform a training task, after which the
model is trained. The MAML process is illustrated in Figure 3 and proceeds as follows.

Figure 3. MAML training process.

(1) The basic model fφ is defined, where φ is a trainable parameter.
(2) Task Ti is randomly extracted from the training dataset DT according to the

probability distribution p(T). The loss function of the basic model for task Ti is
denoted as LTi ( fφ), and the objective function minimizes LTi ( fφ).

(3) The parameter θ is provided by the meta-learner and is initially set to φ. It is then
updated iteratively using the loss function gradient on task Ti. After N iterations,
the parameters are denoted as θN

i . The value of N depends on the number of
samples in task Ti.

(4) After N iterations, the meta-learner returns the updated parameter θN
i and the

gradient value of the loss function, denoted by Equation (1), to the basic model.

g = [5φLTi ( fφ)]φ = θN
i (1)
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(5) The meta-objective function is then defined as min ∑TivP(T) LTi ( f N
θi
), where

LTi ( f N
θi
) is the loss function based on the parameter θN

i on task Ti. The meta-
objective function is the sum of the loss function values of the query set for all
tasks. Finally, the updated initial parameter θ is obtained as shown in Equa-
tion (2), where β is the learning rate of the meta-learner, and5θ LTi ( fφ)φ=θN

i
is

the gradient of the loss function value after iterative training on task Ti to the
initial value of the parameter.

θ ← θ − β5θ ∑
Tivp(T)

LTi( fφ)φ=θN
i

(2)

when a new task is encountered, the meta-learner provides the updated initial param-
eter values for the basic model of the new task. In this study, the CNN model, which
is responsible for learning the features of each task, is adopted as the basic model for
intrusion detection. The meta-learning module is used to update the model parame-
ters of the basic model for new classification tasks, thus achieving good performance
with only few-shot supervised learning.

3. Meta-SGD

Meta-SGD is a variation of MAML that modifies the learning process, as illustrated
in Figure 4. Unlike MAML, Meta-SGD requires updating the initial parameter θ
and the corresponding learning rate of each task because the learning rate is not
fixed. This necessitates the dynamic updating of the learning rate after each training
iteration, resulting in high training complexity. However, all other calculations are the
same as those in MAML. The objective of the meta-learner is to identify the optimal
initialization parameters and learning rate vectors and provide feedback to the basic
model. The model architecture is identical to that of MAML. The training parameters
are represented by Equation (3), where the Nth iteration and the initial parameter
update of the meta-learner are expressed by Equation (4):

θN
i = θN−1

i − α[5φLTi ( fφ)]φ = θN−1
i (3)

(θ, α) = (θ, α)− β ∑ Ti ∼ p(T)5θ [LTi ( fφ)]φ=θN
i

(4)

Figure 4. Meta-SGD training process.

4. Reptile

Similar to MAML, the Reptile method performs model-agnostic meta-learning to
learn and perform new tasks quickly with minimal training data. By leveraging the
difference between the weights trained on the task and the model weights before
training to perform a stochastic gradient descent, the model can be rapidly generalized
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to a small number of samples, thereby improving its performance. Figure 5 illustrates
the training process of the Reptile method.

Figure 5. Reptile training process.

(1) Each task begins with the initial values of the basic model parameters, and the
gradient is updated N times. The resulting estimated parameter value is then
fed back to the meta-learner. In this experiment, the basic model is a CNN
with the same architecture as that of MAML.

(2) The meta-learner calculates the difference vector between the previous param-
eter and the initial parameter and updates the initial value using Equation (5),
where ε is the learning rate, N is the number of iterative updates of the initial
value of the parameters on the basic learner, and n denotes that the initial value
of the parameters in the meta-learner is updated once after training the basic
model on n tasks each time.

θ ← θ + ε
1
n

n

∑
i=1

(θN
i − θ) (5)

5. ConvNet-TL

The ConvNet-TL approach was first proposed by Wu et al. [26]. This method aims
to enhance the detection performance for unknown attack anomalies in traditional
network datasets by transferring the knowledge learned from these datasets. Building
on this idea, our study applies this method to anomaly detection and multiclassifica-
tion in an SDN environment and investigates whether transferring knowledge from
traditional network datasets can enhance the classification performance of models in
an SDN environment.

6. Reptile-TL

Because conventional supervised learning relies heavily on several training samples,
training models with small samples can result in overfitting or underfitting. Thus,
we propose the Reptile-TL model, which combines the strengths of traditional deep
learning and meta-learning. Specifically, we use traditional deep learning methods to
train models on the source domain with many samples, effectively learning and trans-
ferring knowledge. However, for the target domain with a small number of samples,
we use the Reptile method to train the model and improve classification performance.
Our model for the training process comprises two stages, as illustrated in Figure 6.
The first stage involves the basic model training, in which a CNN model is trained in
the source domain DS. The CNN architecture for binary and multi-class classification
is shown in Figure 7, with its four convolutional layers serving as feature extractors
to extract important features of the source domain to aid the training in the second
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stage. The purpose is to train the Convnet_B model in DS with sufficient samples and
then migrate its convolutional layer to the Reptile-TL model such that Reptile-TL can
be trained in the target field and have good initial parameters. When preparing the
migration model in the second stage, Reptile-TL updates the initial parameters of the
model using Reptile meta-learning to obtain better initial values of model parameters.
During training, the parameters of the convolutional layer model transferred from
ConvNet_B are fixed to avoid overfitting. The loss function of the binary classification
model uses binary cross-entropy, whereas that of the multiclass classification model
uses categorical cross-entropy, and the optimizer is Adam.

Figure 6. Proposed transfer classifiers processes.

Figure 7. Reptile-TL architecture.

4. Experiments
4.1. Datasets and Measures

We investigated the three discussed issues with the intrusion detection framework in
SDN environments. Our model utilized two datasets to demonstrate the performance of
transfer learning: one for the source domain and the other for the target domain, as listed
in Table 2. For the source domain, we used the CIC-IDS2017 dataset [49] developed by the
Canadian Institute for Cybersecurity (CIC), which contains benign and various attack types
observed in traditional networks. For the target domain, we used the InSDN dataset proposed
by Elsayed et al. [12], which collected normal and seven types of attacks in SDN and was
currently the latest intrusion detection dataset based on the SDN environment. We relabeled
the labels of attack types as 0 and 1 from the source and target domain datasets, respectively,
used the source dataset to train the parameters of the source-domain model, and then applied
part of the target dataset for training to improve performance and efficiency.
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Table 2. Data labeling of datasets and attack types.

Label Source Domain Target Domain
CIC-IDS2017 [49] InSDN [12]

0 Benign Normal

1

DoS, DoS goldenEye, DoS Hulk,
DoS Slowhttptest, DoS Slowloris,

FTP-Patator, Heartbleed, Infiltration,
PortScan, SSH-Patator, Web attack,

Brute Force, SQL Injection, XSS

DDoS, DoS, Probe, BFA,
Web attack, Botnet, U2R

The CIC-IDS2017 dataset is a traditional network-based intrusion detection dataset
comprising 14 attack types and normal traffic data. This dataset was developed in 2017 by
the Canadian Institute of Cyber Security at the University of New Brunswick (UNB) [49]
and contains 78 features. The dataset comprises 80% normal traffic and 20% attack traffic.
The InSDN dataset contains seven types of attacks: DDoS, DoS, prospecting, botnet, brute
force attack, Web attack, and User to Root (U2R). It contains 83 features, with 19.9% normal
traffic and 80.1% abnormal traffic.

To prepare the dataset for unknown attacks, only DDoS attacks were retained in
the training dataset. By contrast, the testing dataset included six other attack types as
unseen types: Probe, DoS, BFA, Web attack, Botnet, and U2R. The numbers of the various
attack types in the training and testing datasets are listed in Table 3. Next, to compare the
performance based on few-shot learning, we prepared the dataset by adding 5, 10, and
15 samples of the attack types to the original training dataset to generate three sample
sets—5-shot, 10-shot, and 15-shot, respectively—to evaluate the learning curve of few-shot
learning. Finally, we prepared the imbalanced dataset, as shown in Table 4. The dataset
was randomly sampled and divided into 75% training and 25% testing datasets with a total
of one normal and seven abnormal attack types.

Table 3. Data preparation of target domain (InSDN) for unknown attacks.

Types # of Training # of Testing

Known Normal 34,212 34,212
DDoS 121,942 0

Unknown

Probe 0 98,129
DoS 0 53,616
BFA 0 1405

Web attack 0 192
Botnet 0 164
U2R 0 17

Table 4. Data preparation for class imbalance.

Class # of Training (75%) # of Testing (25%)

Normal 51,292 17,132
DDoS 91,354 30,588
Probe 73,696 24,433
DoS 40,206 13,410
BFA 1079 326

Web attack 144 48
Botnet 132 32
U2R 14 3
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We used the F1-score as an evaluation metric to balance the precision and recall, which
is more objective than accuracy, particularly when the data distribution is imbalanced. The
equation is shown in Equations (6)–(8), where True Positive (TP) and True Negative (TN)
represent normal and the number of correct predictions for the attack type, while False
Negative (FN) and False Positive (FP) represent the number of misclassified predictions for
normal and attack types.

F1-score =
2P× R
P + R

(6)

P =
TP

TP + FP
(7)

R =
TP

TP + FN
(8)

4.2. Performance Comparison in Three Issues

In the experimental design, we compared the basic deep-learning model (CNN),
four types of meta-learning models (MAML, Meta-SGD, Reptile, and ConvNet-TL), and
our model (Reptile-TL). We conducted this experiment on the 12th generation Intel(R)
Core(TM) i7-12700H 2.70 GHz CPU, and each model was implemented using Python 3.9.13,
TensorFlow version 2.11.0, and Keras 2.11.0. The simulated datasets are publicly available.

4.2.1. Unknown Attacks

The first experiment was used to evaluate the anomaly detection performance of the
six models for unknown attacks, as shown in Figure 8. The results showed that Reptile-TL
had the highest F1-score with an average of 0.71, which was followed by Reptile (0.65), and
Convnet-TL method (0.52). We found that the performances of the two models based on
transfer-learning (Reptile-TL and Convnet-TL) were higher than that of CNN (0.34). As
shown in Figure 9, we compared the confusion matrices of Reptile and Reptile-TL for error
analysis; we set positive as abnormal and negative as normal. From the confusion matrix on
the right, TP i.e., the correct detection rate (45.33%) of the anomaly category and is higher
than the detection rate (39.71%) on the left. Therefore, Reptile-TL is significantly better
than Reptile. Further analysis of the error types shows that the proportion of Reptile-TL
results in FN was more significant than that in FP (36.45% > 0.23%). The model misjudged
unknown attacks as normal packets more and misjudged normal packets as abnormal less.
Thus, future studies should use weighted adjustment parameters.

We believe that deep learning relies on a large amount of labeled data for high-
performance training. The anomaly detection performance was lower for various types
of unknown attacks. In contrast, the transfer learning models (Reptile-TL and Convnet-
TL) learned from the source domain before training the target domain. Although the
source domain is a traditional network environment, unlike the SDN environment of the
target domain, the source domain enhances the performance of the models in performing
classification tasks in the target domain (unknown attacks). Additionally, the Reptile,
MAML, and Meta-SGD models learned suitable initial parameters from the source domain
during training. Therefore, in the face of unknown attacks, the performance of anomaly
detection is often better than that of a basic deep learning model (CNN).
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Figure 8. Performance of anomaly detection for unknown attacks.

Figure 9. Confusion matrix of unknown attacks by Reptile and Reptile-TL.

4.2.2. Small Samples

We compared three types of small samples: 5-shot, 10-shot, and 15-shot datasets to
show the learning curve of few-shot learning. Among the six models, Reptile-TL had the
best average F1-score for anomaly detection, with an F1-score of 0.98, which was followed
by Reptile (0.92) and Convnet -TL (0.85), as shown in Figure 10. Reptile-TL combined the
advantages of Reptile for small samples; therefore, its sensitivity is higher than that of
ConvNet-TL. The results of the two transfer learning models (Reptile-TL and Convnet-
TL) were better than those of the CNN model (0.63), again indicating that the learning
knowledge transferred from the source domain was critical when target domain data
were rare. In contrast, the CNN model relied on many samples for training; therefore it
could not effectively extract important features from small samples for attack categories
with few examples, so the performance was poor. As shown in Figure 11, we compared
the confusion matrices between Reptile and Reptile-TL, setting positive as abnormal and
negative as normal. The confusion matrices show that the TP of Reptile-TL was higher than
that of Reptile (66.31% > 61.90%); therefore Reptile-TL was significantly better than Reptile.
Further analysis of the error types showed that the proportion of Reptile-TL results in FN
was 15.46%, and the FP error rate was 0.02%.

Next, we compared the performance of attack-type identification in the second stage,
as shown in Figure 12. Because the first stage was only used as an intrusion detection system
for normal or abnormal detection, the binary classification model had high performance
and avoided affecting normal packet delivery.
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Figure 10. Performance of anomaly detection for small samples.

Figure 11. Confusion matrix of small samples for Reptile and Reptile-TL.

Figure 12. Performance of attack types identification for small samples.

The model of the second stage, which was used to predict the labels of the attack type
identification, provided system administrators with further follow-up actions. However,
because there were seven types of attacks, the number of training samples was small, and
the performance of each class was easily affected by the imbalanced dataset. Thus, the
performance of the six models was generally slightly poor. However, our Reptile-TL model
ranked first in the performance of the six models (0.51 F1-score), which showed that the
advantages of transfer learning achieved the performance of multi-class classification in
small samples.

As shown in Figure 13, we compared the confusion matrices of ConvNet-TL and
Reptile-TL. We set 0 to 7 as eight types: normal, DDoS, Probe, DoS, BFA, Web attack, Botnet,
and U2R. For the six types of attacks, the TP of Reptile-TL was higher than that of Reptile;
therefore, Reptile-TL was slightly better than Reptile. Further analysis of the error types
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showed that the number of FPs was greater than that of FN for Reptile-TL. Some DDoS
attacks were misjudged as DoS attacks, while some probes were misjudged as normal.
These results indicate that the features of the two attacks may be similar, and future research
should further strengthen the weights of the differences between these two attack types.

Figure 13. Confusion matrix of attack types identification for Reptile and Reptile-TL.

4.2.3. Class Imbalance

The third experiment was conducted to evaluate the performance of the six models’
for class imbalance in anomaly detection, as shown in Figure 14. Because the number of
training samples was sufficient to train the models to determine the binary classification
(i.e., abnormal or normal), the F1-score of the models was as high as 1.00 for CNN, Reptile,
ConvNet-TL, and Reptile-TL. As shown in Figure 15, we compared the confusion matrices
of ConvNet-TL and Reptile-TL, setting positive as abnormal and negative as normal. The
confusion matrices indicate that the TP of Reptile-TL was higher than that of Reptile (66.31%
> 61.90%); therefore Reptile-TL performed significantly better than Reptile. Further analysis
of the error types showed that the proportion of Reptile-TL results in FN was 15.46%, and
the FP error rate was 0.02%.

Next, for attack-type identification, the experimental results demonstrated the advan-
tages of transfer learning, as shown in Table 5. Although the performances of Reptile-TL
and CNN were roughly equal, with F1-scores of 0.91 and 0.90, respectively, Convnet-TL
is third, with an F1-score of 0.85. The performances of the minority classes (i.e., U2R,
Botnet, and Web attack) of Reptile-TL obtained better performance than the other models.
Regarding multi-class classification, the typical models were easily affected by the number
of majority classes when the imbalanced dataset, especially since the number of U2R in the
training sample was only 14. Therefore, the performance of the minority classes remains
critical for attack-type identification.

Figure 14. Performance of anomaly detection for class imbalance.
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Figure 15. Confusion matrix of class imbalance by ConvNet-TL and Reptile-TL.

Table 5. Performance for class imbalance with seven types of attacks.

Class CNN MAML Meta-SGD Reptile ConvNet-TL Reptile-TL

DDoS 1.00 0.99 0.98 1.00 1.00 1.00
Probe 0.99 0.21 0.46 0.98 1.00 1.00
DoS 1.00 0.56 0.61 0.98 1.00 1.00
BFA 0.91 0.03 0.00 0.98 1.00 0.99

Web attack 0.83 0.00 0.00 0.78 0.43 0.84
Botnet 1.00 0.04 0.01 0.58 0.99 0.85
U2R 0.60 0.00 0.00 0.40 0.67 0.80

macro-F1 0.90 0.26 0.29 0.74 0.85 0.91

The results of the multiple attacks are listed in Table 5. For the majority of classes
(i.e., attack types with a large number of samples, DDoS, Probe, and DoS), the CNN,
Reptile, ConvNet-TL, and Reptile-TL models achieved good performance (larger than 0.98).
Because the core model of Reptile-TL is CNN, the performance of Reptile-TL was similar to
that of CNN. However, the number of training samples in the target domain was sufficient,
and the performance of the transfer-learning models was not significant. When the training
samples were small or insufficient, the advantages of the transfer learning models were
effectively applied. The results demonstrate that the performance of our Reptile-TL model
was better than that of the other models.

Additionally, correctly classifying minority classes in an imbalanced dataset is
challenging—a critical problem in typical multi-class classification models. MAML ex-
hibited the lowest performance in this experiment, possibly because the task involved
multi-class attacks. The difference between each attack was significant, which rendered
the model unable to generalize well; thus, its performance was poor. Because Meta-SGD
is a modified version of MAML, the learning rate was adjusted for each training; thus, its
performance was better than that of MAML.

Finally, the training times of the six models were compared using an imbalanced
dataset; the results are shown in Table 6. The most efficient model with the least training
time was Reptile, which required 14,109 s (3:55′:9′ ′). The proposed Reptile-TL ranked
second among the six models, with a training time of 15,230 s (4:13′50′ ′). In contrast,
although CNN ranked second for attack type identification performance in class-imbalance
issues among the six models, it took the longest training time, with 30,088 s (8:21′:28′ ′).
Therefore, our model not only has the characteristics of transfer learning but also considers
the anomaly detection performance and efficiency required for the actual training model.
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Table 6. Efficiency comparison of six models during training and testing stages.

Time (Second) CNN MAML Meta-SGD Reptile ConvNet-TL Reptile-TL

Training 30,088 21,518 25,092 14,109 28,924 15,230
Testing 10,539 7053 8288 6416 16,659 9403

4.3. Discussion

In this subsection, we explain the feature differences between SDN and traditional
networks, illustrate the detection differences between active and passive attacks, and
presenting the challenges of the proposed method from other perspectives.

4.3.1. Feature Differences of between SDN and Traditional Networks

Regarding intrusion detection, the differences between SDN and traditional networks
mainly include traffic characteristics and attack behaviors, as described below.

Traffic features. In traditional networks, traffic features are primarily collected from
various network devices; whereas in SDN, the traffic information of SDN controllers is
directly obtained from switches using the OpenFlow protocol. For example, the InSDN
dataset [12] collected from the controller includes the duration of the flow, type of trans-
mission protocol, the maximum timeout time of the flow, idle time of the flow, number of
packets transmitted and received from the source to the destination, number of packets and
packet size for simultaneous bidirectional data transmission in the network, and standards
for the subsequent manual calculation of traffic features. There are 48 features, including
difference, minimum value, maximum value, and mean value. Although some of the
names of these features collected in the SDN environment are the same as those in the
traditional network dataset, considering the CIC-IDS2017 dataset [49], there are 73 common
features between the two. However, SDN is more sensitive to attacks owing to different
network architectures. Therefore, what is considered normal traffic in traditional networks
may be regarded as attack behavior in the SDN environment. Therefore, by collecting the
features of packet traffic in SDN, we can analyze the behavior of network traffic, which to
detect abnormal traffic and identify possible attacks.

Attack behaviors. Decoupling the control layer and the data layer and the design
of centralized management of network behavior by the controller brings some specific
new threats to SDN. For example, Santos et al. [34] used four machine learning methods,
such as random forest, to detect SDN. As a result, there are three types of DDoS attacks:
controller attack, flow table attack, and bandwidth attack. Among them, the classification
performance of controller attacks is the worst, possibly because of important features
that are similar to the detection of SDN attack types and normal traffic patterns. For
example, the duration features of traffic in SDN controller attacks are similar to those of
normal traffic. Although these features are widely used in traditional networks to detect
different attacks, they cannot effectively detect SDN controllers—device attacks. In addition,
common SDN attacks include saturation attacks from the data layer to the control layer, link
flooding attacks, and flow-rule flooding attacks. Abbas et al. [50] pointed out that there are
different correlations between the traffic features and various attack behaviors in the SDN
environment and analyzed six types of attack behaviors for detecting DoS, DDoS, brute
force cracking, exploration, botnets, and web applications. For example, traffic duration
has the greatest impact on distinguishing normal traffic from brute-force, probe, botnet,
and Web application attacks, whereas the total deviation in the reverse packet sending
time has the greatest impact on identifying DDoS attacks. Therefore, the dataset used to
train the intrusion detection system must be collected in an SDN environment, various
possible attack behaviors for the network architecture must be assumed, and the relevant
features of these attack behaviors must be recorded to learn and recognize the type of
attack effectively.
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4.3.2. Detection Differences of between Active Attacks and Passive Attacks

The proposed model is trained against active attacks, such as DoS attacks. Although it
may not be directly applicable to passive attacks such as eavesdropping, there may still be
signatures or traffic analysis that can indirectly help detect passive attacks. We illustrate the
differences between active and passive attack detection from three perspectives: datasets,
methods, and measures.

1. Datasets. Actively attacked datasets typically include situations in which an attacker
actively modifies or interferes with the data. In contrast, passive attacks involve the
unauthorized interception of data without actively modifying or destroying data.
Therefore, the period for collecting samples, the attack behavior identification, and
labeling rules of markers must be considered.

2. Methods. The common method of detecting active attacks is the use of machine-
learning classifiers or rule-based methods for anomaly detection. In contrast, passive
attacks typically use traffic analysis to detect snooping attacks or apply encryption
technology to protect data. Even if an attacker intercepts data while it is encrypted,
extracting meaningful information is difficult. For example, An and Yang [51] for-
mulated a new framework for opacity for distributed state estimation to meet the
confidentiality requirement. In addition, they proposed two opacity-enhancing al-
gorithms against the intruder models with different eavesdropping capacities for a
subset of nodes.

3. Measures. The evaluation of active attacks usually involves testing the detection
rate, accuracy rate, and efficiency of the training model for known attack patterns.
Public training and testing datasets are typically used to provide the recognition
and processing capabilities of a model for specific attack types. In contrast, passive
attacks involve monitoring the accuracy of traffic patterns, the security of encryption
algorithms, and the ability to detect anomalous activity. Additionally, known passive
attack patterns or synthetic test cases can be used to evaluate the ability of a defense
system to detect and protect against snooping attacks.

4.3.3. Challenges of Methods

Although the proposed model did not yield breakthrough performance, it still illus-
trated novel concepts and provided improvements over existing methods. Combining
transfer learning and meta-learning techniques is challenging because of the following
three aspects:

1. Model complexity. Both transfer learning and meta-learning are mathematical model
optimization techniques. The proposed architecture combines the existing Reptile
model with the concept of transfer learning. The challenges involve parameter tuning
to balance predictive performance with efficiency as well as preparing source and
target domain datasets.

2. Heterogeneity. Transfer learning and meta-learning usually operate at different levels
of abstraction, and their goals are not identical; transfer learning focuses on leveraging
knowledge from the source domain to improve learning in the target domain; whereas
meta-learning aims to learn efficiently through a sequence of tasks. The proposed
Reptitle-TL model considers the correlation between the source and target domains
based on transfer learning. Reptile model was then used to quickly obtain the best
parameters for the transfer learning model.

3. Architecture optimization. For model architecture design, combining transfer learn-
ing and meta-learning models requires the effective integration of two components,
and developing a unified architecture that allows seamless integration and avoids
conflicts or redundancies is challenging. Regarding effectiveness optimization, trans-
fer learning focuses on fine-tuning pre-trained models for specific tasks, whereas
meta-learning aims to learn knowledge to quickly adapt to new tasks. As shown
in Figure 6, the transfer learning model first pre-trained the source domain model,
after which meta-learning quickly obtained the parameters required for new tasks
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(Figure 5). By updating these parameters, transfer learning enables them to fine-tune
the target domain model for optimization.

5. Conclusions

To effectively detect anomalous threats in an SDN environment, we used deep learning
(CNN) models, two transfer learning models (Convnet-TL and Reptile-TL), and three
meta-learning models (MAML, Meta-SGD, and Reptile) to evaluate the performance. The
experiments simulated three types of practical issues: unknown attacks, small samples, and
class imbalance. Our Reptile-TL model combined two-stage tasks: abnormal detection and
multi-class attack classification. Our method retained the advantages of deep learning and
transfer learning, first using the CNN trained in the source domain as the feature extractor
of the target domain and then adopting the Reptile meta-learning training method to obtain
suitable initial parameters for training. Thus, our model outperformed the other models in
three cases: unknown attack, small number of samples, and class imbalance.

The experimental results also showed that general deep-learning methods achieved
stable and good performance with sufficient training samples. By contrast, ConvNet-TL
and Reptile-TL can be used for unknown attacks and intrusion detection with few training
samples. Transfer learning and meta-learning methods offer several advantages; however,
minority classification remains challenging. As the minority and majority classes are
trained together and exist in a data distribution space, the classifiers are easily biased and
misjudged for majority classes with larger training samples.

In future research, we will consider resampling to minimize the difference in the
number of samples between classes to alleviate class imbalance issues. We will also explore
the critical features of attack types to effectively improve the performance of unknown
attack detection and strengthen the multi-class classification performance for small samples.
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