Pollen and Flora as Bioindicators in Assessing the Status of Polluted Sites: The Case Study of the Mantua Lakes (SIN “Laghi di Mantova e Polo Chimico”; N Italy)
Abstract
:1. Introduction
Aim of the Study
2. Materials and Methods
2.1. Flora
2.2. Pollen
3. Results
3.1. The Flora of the Sectors A, B, C
3.2. Pollen Analysis
4. Discussion
4.1. Flora Composition of Sectors A, B, and C: The Role of Non-Native Invasive Species
4.2. Ecological Strategies: The Importance of Stress-Tolerant and Ruderal Strategies
4.3. Empty Pollen as Evidence of Environmental Stress
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Passariello, B.; Giuliano, V.; Quaresima, S.; Barbaro, M.; Caroli, S.; Forte, G.; Carelli, G.; Iavicoli, I. Evaluation of the Environmental Contamination at an Abandoned Mining Site. Microchem. J. 2002, 73, 245–250. [Google Scholar] [CrossRef]
- Manning, W.J.; Godzik, B. Bioindicator Plants for Ambient Ozone in Central and Eastern Europe. Environ. Pollut. 2004, 130, 33–39. [Google Scholar] [CrossRef] [PubMed]
- Mičieta, K.; Murín, G. Three Species of Genus Pinus Suitable as Bioindicators of Polluted Environment. Water Air Soil Pollut. 1998, 104, 413–422. [Google Scholar] [CrossRef]
- SIN Laghi di Mantova e Polo Chimico—ARPA Lombardia. Available online: https://www.arpalombardia.it/temi-ambientali/siti-contaminati-e-aree-degradate/bonifica-dei-siti-contaminati/siti-di-interesse-nazionale/sin-laghi-di-mantova-e-polo-chimico/ (accessed on 2 June 2023).
- Natura 2000—Environment—European Commission. Available online: https://ec.europa.eu/environment/nature/natura2000/index_en.htm (accessed on 8 November 2022).
- Rete Natura 2000|Ministero Della Transizione Ecologica. Available online: https://www.mite.gov.it/pagina/rete-natura-2000 (accessed on 27 October 2022).
- Persico, G. Guida alla Flora del Mincio e del Territorio Circostante, 1st ed.; Parco del Mincio, Sistema Bibliotecario Grande Mantova, Persico Family: Mantua, Italy, 2009. [Google Scholar]
- Cannerozzi, G.; Bianchi, A.; Spaggiari, M. SIN “Laghi di Mantova e Polo Chimico”. Risultati del Monitoraggio delle Acque Sotterranee: Campagna Acque 2019; ARPA Lombardia: Mantua, Italy, 2019. [Google Scholar]
- Giglioli, S.; Bonomi, S.; Spaggiari, M. Risultati del Monitoraggio delle Acque Sotterranee—Campagna Acque 2022—Sito d’Interesse Nazionale “Laghi di Mantova e Polo Chimico”; ARPA Lombardia: Mantua, Italy, 2022. [Google Scholar]
- Hedberg, O. Evolution and Speciation in a Tropical High Mountain Flora. Biol. J. Linn. Soc. 1969, 1, 135–148. [Google Scholar] [CrossRef]
- Hedberg, O. Evolution of the Afroalpine Flora. Biotropica 1970, 2, 16–23. [Google Scholar] [CrossRef]
- Abbott, R.J.; Brochmann, C. History and Evolution of the Arctic Flora: In the Footsteps of Eric Hultén. Mol. Ecol. 2003, 12, 299–313. [Google Scholar] [CrossRef]
- Lambrecht, S.C.; Mahieu, S.; Cheptou, P.-O. Natural Selection on Plant Physiological Traits in an Urban Environment. Acta Oecologica 2016, 77, 67–74. [Google Scholar] [CrossRef]
- Brochmann, C.; Gizaw, A.; Chala, D.; Kandziora, M.; Eilu, G.; Popp, M.; Pirie, M.D.; Gehrke, B. History and Evolution of the Afroalpine Flora: In the Footsteps of Olov Hedberg. Alp. Bot. 2022, 132, 65–87. [Google Scholar] [CrossRef]
- Ceschin, S.; Kumbaric, A.; Caneva, G.; Zuccarello, V. Testing Flora as Bioindicator of Buried Structures in the Archaeological Area of Maxentius’s Villa (Rome, Italy). J. Archaeol. Sci. 2012, 39, 1288–1295. [Google Scholar] [CrossRef]
- Barnes, J.; Bender, J.; Lyons, T.; Borland, A. Natural and Man-Made Selection for Air Pollution Resistance. J. Exp. Bot. 1999, 50, 1423–1435. [Google Scholar] [CrossRef]
- Campos, J.A.; Peco, J.D.; García-Noguero, E. Antigerminative Comparison between Naturally Occurring Naphthoquinones and Commercial Pesticides. Soil Dehydrogenase Activity Used as Bioindicator to Test Soil Toxicity. Sci. Total Environ. 2019, 694, 133672. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, D.; Sarkar, A.; Basu, A.G.; Roy, S. Effect of Plastic Pollution on Freshwater Flora: A Meta-Analysis Approach to Elucidate the Factors Influencing Plant Growth and Biochemical Markers. Water Res. 2022, 225, 119114. [Google Scholar] [CrossRef] [PubMed]
- Azzazy, M.F. Plant Bioindicators of Pollution in Sadat City, Western Nile Delta, Egypt. PLoS ONE 2020, 15, e0226315. [Google Scholar] [CrossRef] [PubMed]
- Testi, A.; Bisceglie, S.; Guidotti, S.; Fanelli, G. Detecting River Environmental Quality through Plant and Macroinvertebrate Bioindicators in the Aniene River (Central Italy). Aquat. Ecol. 2009, 43, 477–486. [Google Scholar] [CrossRef]
- Gillet, S.; Ponge, J.F. Humus Forms and Metal Pollution in Soil. Eur. J. Soil Sci. 2002, 53, 529–540. [Google Scholar] [CrossRef] [Green Version]
- Viehweger, K. How Plants Cope with Heavy Metals. Bot. Stud. 2014, 55, 35. [Google Scholar] [CrossRef] [Green Version]
- Singh, S.; Parihar, P.; Singh, R.; Singh, V.P.; Prasad, S.M. Heavy Metal Tolerance in Plants: Role of Transcriptomics, Proteomics, Metabolomics, and Ionomics. Front. Plant Sci. 2016, 6, 1143. [Google Scholar] [CrossRef] [Green Version]
- Sulaiman, F.R.; Hamzah, H.A. Heavy Metals Accumulation in Suburban Roadside Plants of a Tropical Area (Jengka, Malaysia). Ecol. Process. 2018, 7, 28. [Google Scholar] [CrossRef]
- Van Kleunen, M.; Dawson, W.; Maurel, N. Characteristics of Successful Alien Plants. Mol. Ecol. 2015, 24, 1954–1968. [Google Scholar] [CrossRef] [Green Version]
- Buldrini, F.; Simoncelli, A.; Accordi, S.; Pezzi, G.; Dallai, D. Ten Years of Citizen Science Data Collection of Wetland Plants in an Urban Protected Area. Acta Bot. Gall. 2015, 162, 365–373. [Google Scholar] [CrossRef]
- Tóth, V.R.; Villa, P.; Pinardi, M.; Bresciani, M. Aspects of Invasiveness of Ludwigia and Nelumbo in Shallow Temperate Fluvial Lakes. Front. Plant Sci. 2019, 10, 647. [Google Scholar] [CrossRef] [PubMed]
- Erdtman, G. Handbook of Palynology. Morphology—Taxonomy—Ecology. An Introduction to the Study of Pollen Grains and Spores. 486 S., 50 Illustrationen, 125 Tafeln. Verlag Munksgaard, Copenhagen, 1969. Preis: Leinen D. Kr. 180. Feddes Repert. 1971, 81, 656–657. [Google Scholar] [CrossRef]
- Cariñanos, P.; Díaz de la Guardia, C.; Algarra, J.A.; De Linares, C.; Irurita, J.M. The Pollen Counts as Bioindicator of Meteorological Trends and Tool for Assessing the Status of Endangered Species: The Case of Artemisia in Sierra Nevada (Spain). Clim. Change 2013, 119, 799–813. [Google Scholar] [CrossRef]
- De Oliveira, R.C.; Queiroz, S.C.D.N.; da Luz, C.F.P.; Porto, R.S.; Rath, S. Bee Pollen as a Bioindicator of Environmental Pesticide Contamination. Chemosphere 2016, 163, 525–534. [Google Scholar] [CrossRef] [PubMed]
- Iannotti, O.; Mincigrucci, G.; Bricchi, E.; Frenguelli, G. Pollen Viability as a Bio-Indicator of Air Quality. Aerobiologia 2000, 16, 361–365. [Google Scholar] [CrossRef]
- Mercuri, A.M.; Clò, E.; Florenzano, A. Multiporate Pollen of Poaceae as Bioindicator of Environmental Stress: First Archaeobotanical Evidence from the Early–Middle Holocene Site of Takarkori in the Central Sahara. Quaternary 2022, 5, 41. [Google Scholar] [CrossRef]
- Human, H.; Nicolson, S.W. Digestion of Maize and Sunflower Pollen by the Spotted Maize Beetle Astylus atromaculatus (Melyridae): Is There a Role for Osmotic Shock? J. Insect Physiol. 2003, 49, 633–643. [Google Scholar] [CrossRef]
- Human, H.; Nicolson, S.W.; Strauss, K.; Pirk, C.W.W.; Dietemann, V. Influence of Pollen Quality on Ovarian Development in Honeybee Workers (Apis mellifera scutellata). J. Insect Physiol. 2007, 53, 649–655. [Google Scholar] [CrossRef]
- Montali, E.; Mercuri, A.M.; Trevisan Grandi, G.; Accorsi, C.A. Towards a “Crime Pollen Calendar”—Pollen Analysis on Corpses throughout One Year. Forensic Sci. Int. 2006, 163, 211–223. [Google Scholar] [CrossRef]
- Zhang, Z.; Lu, Y.; Liu, X.; Feng, J. Nuclear and Cell Migration during Pollen Development in Rice (Oryza sativa L.). Sex Plant Reprod. 2005, 17, 297–302. [Google Scholar] [CrossRef]
- Xiong, H.; Chen, P.; Zhu, Z.; Chen, Y.; Zou, F.; Yuan, D. Morphological and Cytological Characterization of Petaloid-Type Cytoplasmic Male Sterility in Camellia oleifera. HortScience 2019, 54, 1149–1155. [Google Scholar] [CrossRef] [Green Version]
- Sótonyi, P.; Szabó, Z.; Nyéki, J.; Benedek, P.; Soltész, M. Pollen Morphology of Fruit Species. Int. J. Hortic. Sci. 2000, 6, 49–57. [Google Scholar] [CrossRef]
- Melati, M.R.; Alaimo, M.G.; Orecchio, S.; De Vita, F. Stress-Induced Cytological and Chemical Adaptations in Cupressus Plants from an Urban Area of Palermo (Italy). Acta Bot. Gall. 2004, 151, 265–283. [Google Scholar] [CrossRef] [Green Version]
- Aina, R.; Asero, R.; Ghiani, A.; Marconi, G.; Albertini, E.; Citterio, S. Exposure to Cadmium-Contaminated Soils Increases Allergenicity of Poa annua L. Pollen. Allergy 2010, 65, 1313–1321. [Google Scholar] [CrossRef] [PubMed]
- Malayeri, B.E.; Noori, M.; Jafari, M. Using the Pollen Viability and Morphology for Fluoride Pollution Biomonitoring. Biol. Trace Elem. Res. 2012, 147, 315–319. [Google Scholar] [CrossRef] [PubMed]
- Sénéchal, H.; Visez, N.; Charpin, D.; Shahali, Y.; Peltre, G.; Biolley, J.-P.; Lhuissier, F.; Couderc, R.; Yamada, O.; Malrat-Domenge, A.; et al. A Review of the Effects of Major Atmospheric Pollutants on Pollen Grains, Pollen Content, and Allergenicity. Sci. World J. 2015, 2015, e940243. [Google Scholar] [CrossRef] [Green Version]
- Cloutier-Hurteau, B.; Gauthier, S.; Turmel, M.-C.; Comtois, P.; Courchesne, F. Trace Elements in the Pollen of Ambrosia artemisiifolia: What Is the Effect of Soil Concentrations? Chemosphere 2014, 95, 541–549. [Google Scholar] [CrossRef]
- Rezanejad, F. The Effect of Air Pollution on Microsporogenesis, Pollen Development and Soluble Pollen Proteins in Spartium junceum L. (Fabaceae). Turk. J. Bot. 2007, 31, 183–191. [Google Scholar]
- Massa, N.; Andreucci, F.; Poli, M.; Aceto, M.; Barbato, R.; Berta, G. Screening for Heavy Metal Accumulators amongst Autochtonous Plants in a Polluted Site in Italy. Ecotoxicol. Environ. Saf. 2010, 73, 1988–1997. [Google Scholar] [CrossRef]
- Pescott, O.L.; Stewart, G.B. Assessing the Impact of Human Trampling on Vegetation: A Systematic Review and Meta-Analysis of Experimental Evidence. PeerJ 2014, 2, e360. [Google Scholar] [CrossRef] [Green Version]
- Jäger, E.J.; Müller, F.; Ritz, C.; Welk, E.; Wesche, K. Rothmaler—Exkursionsflora von Deutschland, Gefäßpflanzen: Atlasband; Springer: Berlin/Heidelberg, Germany, 2017; ISBN 978-3-662-49709-8. [Google Scholar]
- Pignatti, S.; La Rosa, M.; Guarino, R. Flora d’Italia: 4 Volumi, 2nd ed.; Edagricole, New Business Media: Bologna, Italy, 2019. [Google Scholar]
- Home Page Acta Plantarum. Available online: https://www.actaplantarum.org/ (accessed on 24 September 2022).
- IPFI: Index Plantarum. Available online: https://www.actaplantarum.org/flora/flora.php (accessed on 3 December 2022).
- Conti, F.; Abbate, G.; Alessandrini, A.; Blasi, C. An Annotated Checklist of the Italian Vascular Flora; Palombi Editori: Roma, Italy, 2005. [Google Scholar]
- Moratoria IPFI. Available online: https://www.actaplantarum.org/flora/flora_moratoria.php (accessed on 3 December 2022).
- Pyšek, P.; Richardson, D.M.; Rejmánek, M.; Webster, G.L.; Williamson, M.; Kirschner, J. Alien Plants in Checklists and Floras: Towards Better Communication between Taxonomists and Ecologists. Taxon 2004, 53, 131–143. [Google Scholar] [CrossRef]
- Dizionario Botanico. Available online: https://www.actaplantarum.org/glossario/glossario_view.php?id=3067 (accessed on 24 September 2022).
- Pierce, S.; Negreiros, D.; Cerabolini, B.E.L.; Kattge, J.; Díaz, S.; Kleyer, M.; Shipley, B.; Wright, S.J.; Soudzilovskaia, N.A.; Onipchenko, V.G.; et al. A Global Method for Calculating Plant CSR Ecological Strategies Applied across Biomes World-Wide. Funct. Ecol. 2017, 31, 444–457. [Google Scholar] [CrossRef]
- Kattge, J.; Bönisch, G.; Díaz, S.; Lavorel, S.; Prentice, I.C.; Leadley, P.; Tautenhahn, S.; Werner, G.D.A.; Aakala, T.; Abedi, M.; et al. TRY Plant Trait Database—Enhanced Coverage and Open Access. Glob. Change Biol. 2020, 26, 119–188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hammer, Ø.; Harper, D.A.T.; Ryan, P.D. PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontol. Electron. 2001, 4, 1–9. [Google Scholar]
- Piotrowska, K. Pollen Production in Selected Species of Anemophilous Plants. Acta Agrobot. 2008, 61, 41–52. [Google Scholar] [CrossRef]
- Prieto-Baena, J.C.; Hidalgo, P.J.; Domínguez, E.; Galán, C. Pollen Production in the Poaceae Family. Grana 2003, 42, 153–159. [Google Scholar] [CrossRef]
- Winkler, J.; Koda, E.; Skutnik, Z.; Černý, M.; Adamcová, D.; Podlasek, A.; Vaverková, M.D. Trends in the Succession of Synanthropic Vegetation on a Reclaimed Landfill in Poland. Anthropocene 2021, 35, 100299. [Google Scholar] [CrossRef]
- Sołtys-Lelek, A.; Barabasz-Krasny, B.; Możdżeń, K. Synanthropization of Riparian Plant Communities in the Ojców National Park (Southern Poland). Biodivers. Res. Conserv. 2016, 44, 35–53. [Google Scholar] [CrossRef] [Green Version]
- Popova, E.I. Synanthropization and Species Diversity of Floodplain Ecosystems of the Ob-Irtysh Basin, Russia. Acta Biol. Sib. 2021, 7, 545–558. [Google Scholar] [CrossRef]
- Mercuri, A.M.; Mazzanti, M.B.; Florenzano, A.; Montecchi, M.C.; Rattighieri, E.; Torri, P. Anthropogenic Pollen Indicators (API) from Archaeological Sites as Local Evidence of Human-Induced Environments in the Italian Peninsula. Ann. Bot. 2013, 3, 143–153. [Google Scholar] [CrossRef]
- Celesti-Grapow, L.; Blasi, C. A Comparison of the Urban Flora of Different Phytoclimatic Regions in Italy. Glob. Ecol. Biogeogr. Lett. 1998, 7, 367–378. [Google Scholar] [CrossRef]
- Kornaś, J. Plant Invasions in Central Europe: Historical and Ecological Aspects. In Biological Invasions in Europe and the Mediterranean Basin; di Castri, F., Hansen, A.J., Debussche, M., Eds.; Monographiae Biologicae; Springer: Dordrecht, The Netherlands, 1990; pp. 19–36. ISBN 978-94-009-1876-4. [Google Scholar]
- Batty, L.C.; Hallberg, K.B. Ecology of Industrial Pollution; Cambridge University Press: Cambridge, UK, 2010; ISBN 978-1-139-48616-3. [Google Scholar]
- Słomka, A.; Jędrzejczyk-Korycińska, M.; Rostański, A.; Karcz, J.; Kawalec, P.; Kuta, E. Heavy Metals in Soil Affect Reproductive Processes More than Morphological Characters in Viola tricolor. Environ. Exp. Bot. 2012, 75, 204–211. [Google Scholar] [CrossRef]
- Höfle, R.; Dullinger, S.; Essl, F. Different Factors Affect the Local Distribution, Persistence and Spread of Alien Tree Species in Floodplain Forests. Basic Appl. Ecol. 2014, 15, 426–434. [Google Scholar] [CrossRef]
- Chytrý, M.; Maskell, L.C.; Pino, J.; Pyšek, P.; Vilà, M.; Font, X.; Smart, S.M. Habitat Invasions by Alien Plants: A Quantitative Comparison among Mediterranean, Subcontinental and Oceanic Regions of Europe. J. Appl. Ecol. 2008, 45, 448–458. [Google Scholar] [CrossRef]
- Alpert, P.; Bone, E.; Holzapfel, C. Invasiveness, Invasibility and the Role of Environmental Stress in the Spread of Non-Native Plants. Perspect. Plant Ecol. Evol. Syst. 2000, 3, 52–66. [Google Scholar] [CrossRef] [Green Version]
- Planty-Tabacchi, A.-M.; Tabacchi, E.; Naiman, R.J.; Deferrari, C.; Décamps, H. Invasibility of Species-Rich Communities in Riparian Zones. Conserv. Biol. 1996, 10, 598–607. [Google Scholar] [CrossRef]
- Davis, M.A.; Grime, J.P.; Thompson, K. Fluctuating Resources in Plant Communities: A General Theory of Invasibility. J. Ecol. 2000, 88, 528–534. [Google Scholar] [CrossRef] [Green Version]
- Richardson, D.M.; Holmes, P.M.; Esler, K.J.; Galatowitsch, S.M.; Stromberg, J.C.; Kirkman, S.P.; Pyšek, P.; Hobbs, R.J. Riparian Vegetation: Degradation, Alien Plant Invasions, and Restoration Prospects. Divers. Distrib. 2007, 13, 126–139. [Google Scholar] [CrossRef]
- Pysek, P.; Prach, K. Plant Invasions and the Role of Riparian Habitats: A Comparison of Four Species Alien to Central Europe. J. Biogeogr. 1993, 20, 413–420. [Google Scholar] [CrossRef]
- Gulezian, P.Z.; Ison, J.L.; Granberg, K.J. Establishment of an Invasive Plant Species (Conium maculatum) in Contaminated Roadside Soil in Cook County, Illinois. Amid 2012, 168, 375–395. [Google Scholar] [CrossRef]
- Prabakaran, K.; Li, J.; Anandkumar, A.; Leng, Z.; Zou, C.B.; Du, D. Managing Environmental Contamination through Phytoremediation by Invasive Plants: A Review. Ecol. Eng. 2019, 138, 28–37. [Google Scholar] [CrossRef]
- Dai, Z.-C.; Cai, H.-H.; Qi, S.-S.; Li, J.; Zhai, D.-L.; Wan, J.S.H.; Du, D.-L. Cadmium Hyperaccumulation as an Inexpensive Metal Armor against Disease in Crofton Weed. Environ. Pollut. 2020, 267, 115649. [Google Scholar] [CrossRef]
- Gong, W.; Wang, Y.; Chen, C.; Xiong, Y.; Zhou, Y.; Xiao, F.; Li, B.; Wang, Y. The Rapid Evolution of an Invasive Plant Due to Increased Selection Pressures throughout Its Invasive History. Ecotoxicol. Environ. Saf. 2022, 233, 113322. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Chen, C.; Xiong, Y.; Wang, Y.; Li, Q. Combination Effects of Heavy Metal and Inter-Specific Competition on the Invasiveness of Alternanthera philoxeroides. Environ. Exp. Bot. 2021, 189, 104532. [Google Scholar] [CrossRef]
- European Union. Council Directive 92/43/EEC of 21 May 1992 on the Conservation of Natural Habitats and of Wild Fauna and Flora; European Union: Bruxelles, Belgium, 1992. [Google Scholar]
- Louback, E.; Pereira, T.A.R.; de Souza, S.R.; de Oliveira, J.A.; da Silva, L.C. Vegetation Damage in the Vicinity of an Aluminum Smelter in Brazil. Ecol. Indic. 2016, 67, 193–203. [Google Scholar] [CrossRef]
- Zhu, J.; Chen, Z.; Wang, Q.; Xu, L.; He, N.; Jia, Y.; Zhang, Q.; Yu, G. Potential Transition in the Effects of Atmospheric Nitrogen Deposition in China. Environ. Pollut. 2020, 258, 113739. [Google Scholar] [CrossRef] [PubMed]
- Stevens, C.J.; Bell, J.N.B.; Brimblecombe, P.; Clark, C.M.; Dise, N.B.; Fowler, D.; Lovett, G.M.; Wolseley, P.A. The Impact of Air Pollution on Terrestrial Managed and Natural Vegetation. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2020, 378, 20190317. [Google Scholar] [CrossRef]
- Malanson, G.P.; Talal, M.L.; Pansing, E.R.; Franklin, S.B. Vegetation Ecology with Anthropic Drivers and Consequences. Prog. Phys. Geogr. Earth Environ. 2021, 45, 446–459. [Google Scholar] [CrossRef]
- Ling, K.A. Using Environmental and Growth Characteristics of Plants to Detect Long-Term Changes in Response to Atmospheric Pollution: Some Examples from British Beechwoods. Sci. Total Environ. 2003, 310, 203–210. [Google Scholar] [CrossRef]
- Fletcher, J.; Willby, N.; Oliver, D.M.; Quilliam, R.S. Resource Recovery and Freshwater Ecosystem Restoration—Prospecting for Phytoremediation Potential in Wild Macrophyte Stands. Resour. Environ. Sustain. 2022, 7, 100050. [Google Scholar] [CrossRef]
- Pyšek, P.; Sádlo, J.; Mandák, B.; Jarošík, V. Czech Alien Flora and the Historical Pattern of Its Formation: What Came First to Central Europe? Oecologia 2003, 135, 122–130. [Google Scholar] [CrossRef] [PubMed]
- Pywell, R.F.; Bullock, J.M.; Roy, D.B.; Warman, L.; Walker, K.J.; Rothery, P. Plant Traits as Predictors of Performance in Ecological Restoration. J. Appl. Ecol. 2003, 40, 65–77. [Google Scholar] [CrossRef]
- Pierce, S.; Brusa, G.; Vagge, I.; Cerabolini, B.E.L. Allocating CSR Plant Functional Types: The Use of Leaf Economics and Size Traits to Classify Woody and Herbaceous Vascular Plants. Funct. Ecol. 2013, 27, 1002–1010. [Google Scholar] [CrossRef] [Green Version]
- Aizen, M.A.; Rovere, A.E. Does Pollen Viability Decrease with Aging? A Cross-Population Examination in Austrocedrus Chilensis (Cupressaceae). Int. J. Plant Sci. 1995, 156, 227–231. [Google Scholar] [CrossRef]
- Ascari, L.; Cristofori, V.; Macrì, F.; Botta, R.; Silvestri, C.; De Gregorio, T.; Huerta, E.S.; Di Berardino, M.; Kaufmann, S.; Siniscalco, C. Hazelnut Pollen Phenotyping Using Label-Free Impedance Flow Cytometry. Front. Plant Sci. 2020, 11, 615922. [Google Scholar] [CrossRef] [PubMed]
- Berdnikov, V.A.; Kosterin, O.E.; Bogdanova, V.S. Mortality of Pollen Grains May Result from Errors of Meiosis: Study of Pollen Tetrads in Typha latifolia L. Heredity 2002, 89, 358–362. [Google Scholar] [CrossRef]
- Deng, Y.; Liang, L.; Sun, X.; Jia, X.; Gu, C.; Su, J. Ultrastructural Abnormalities in Pollen and Anther Wall Development May Lead to Low Pollen Viability in Jasmine (Jasminum sambac (L.) Aiton, Oleaceae). S. Afr. J. Bot. 2018, 114, 69–77. [Google Scholar] [CrossRef]
- De Carvalho, J.D.T.; de Oliveira, J.M.S. Structural Anomalies in Pollen Grains of Dyckia racinae L.B.Sm. (Bromeliaceae). Braz. J. Bot. 2021, 44, 179–185. [Google Scholar] [CrossRef]
- Karlsdóttir, L.; Hallsdóttir, M.; Thórsson, A.T.; Anamthawat-Jónsson, K. Characteristics of Pollen from Natural Triploid Betula Hybrids. Grana 2008, 47, 52–59. [Google Scholar] [CrossRef]
- Wrońska-Pilarek, D.; Danielewicz, W.; Bocianowski, J.; Maliński, T.; Janyszek, M. Comparative Pollen Morphological Analysis and Its Systematic Implications on Three European Oak (Quercus L., Fagaceae) Species and Their Spontaneous Hybrids. PLoS ONE 2016, 11, e0161762. [Google Scholar] [CrossRef] [Green Version]
- Mert, C. Pollen Morphology and Anatomy of Cornelian Cherry (Cornus mas L.) Cultivars. HortScience 2009, 44, 519–522. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Z.-W.; Wang, S.-M.; Zhang, Z.-H.; Huang, H.-W. Pollen Morphology of Actinidia and Its Systematic Significance. J. Syst. Evol. 2004, 42, 245. [Google Scholar]
- Luo, L.; Xiao, D.; Huo, G.; Liu, Y.; Gu, Q. A primary study on male sterility in peach. I. Phenotypes and abortive ways of the first batch of 23 male sterile breeds of peach. Acta Agric. Univ. Jiangxiensis 1999, 21, 463–468. [Google Scholar]
- Mc Creight, J.D. Phenotypic Variation of Male-Fertile and Male-Sterile Segregates of Ms-1 and Ms-2 Muskmelon Hybrids. J. Hered. 1984, 75, 51–54. [Google Scholar] [CrossRef]
- De Vries, A.P.; Ie, T.S. Electron-Microscopy on Anther Tissue and Pollen of Male Sterile and Fertile Wheat (Triticum aestivum L.). Euphytica 1970, 19, 103–120. [Google Scholar] [CrossRef]
- Mert, C.; Soylu, A. Morphology and Anatomy of Pollen Grains from Male-Fertile and Male-Sterile Cultivars of Chestnut (Castanea sativa Mill.). J. Hortic. Sci. Biotechnol. 2007, 82, 474–480. [Google Scholar] [CrossRef]
- Johnsson, H. Meiotic Aberrations and Sterility in Alopecurus myosuroides Huds. Hereditas 1944, 30, 469–566. [Google Scholar] [CrossRef]
- Bernström, P. Cytogenetic Intraspecific Studies in Lamium. I. Hereditas 1952, 38, 163–219. [Google Scholar] [CrossRef]
- Bernström, P. Cytogenetic Intraspecific Studies in Lamium. II. Hereditas 1953, 39, 381–437. [Google Scholar] [CrossRef]
- Asmat, T.; Khan, M.A.; Ahmed, M.; Zafar, M.; Manzoor, F.; Munir, M.; Akhtar, K.; Bashir, S.; Mukhtar, T.; Ambreen, M.; et al. Pollen Morphology of Selected Species of Scrophulariaceae of District Dir Upper, Pakistan. J. Med. Plants Res. 2011, 5, 6423–6428. [Google Scholar]
- Farmer, A.M. The Effects of Dust on Vegetation—A Review. Environ. Pollut. 1993, 79, 63–75. [Google Scholar] [CrossRef]
- Gregušková, E.; Mičieta, K. Phytoindication of the Ecogenotoxic Effects of Vehicle Emissions Using Pollen Abortion Test with Native Flora. Pol. J. Environ. Stud. 2013, 22, 1069–1076. [Google Scholar]
- Mičieta, K.; Murín, G. Microspore Analysis for Genotoxicity of a Polluted Environment. Environ. Exp. Bot. 1996, 36, 21–27. [Google Scholar] [CrossRef]
- Vasilevskaya, N. Pollution of the Environment and Pollen: A Review. Stresses 2022, 2, 515–530. [Google Scholar] [CrossRef]
- Zhuikova, T.V.; Bezel, V.S.; Bergman, I.E.; Meling, E.V.; Krivosheeva, A.V. Fertility and Viability of Pollen Grains of Taraxacum Officinale Wigg. s.l. (Asteraceae, Magnoliopsida) in a Gradient of an Anthropogenically Transformed Environment. Biol. Bull. 2020, 47, 1351–1358. [Google Scholar] [CrossRef]
- Vasilevskaya, N.V.; Osechinskaya, P.V. Palynoindication of the Environment in the Impact Zone of the Apatit Mining Processing Plant with the Use of Pollen of Pinus sylvestris L. IOP Conf. Ser. Earth Environ. Sci. 2021, 723, 032010. [Google Scholar] [CrossRef]
TRY Trait ID | TRY Data ID | TRY Plant Trait Name | Measure Unit |
---|---|---|---|
3110 | 6577 | Leaf area: in case of compound leaves, leaf, petiole and rachis included | mm2 |
47 | 258 | Leaf dry matter content per leaf water-saturated mass (LDMC) | % |
3116 | 6583 | SLA: petiole included | mm2 mg−1 |
Species | Area A | Area B | Area C | |
---|---|---|---|---|
Habitus | Herbaceous | 65 (74.7%) | 43 (78.2%) | 49 (89.1%) |
Woody | 22 (25.3%) | 12 (21.8%) | 6 (10.9%) | |
Total | 87 | 55 | 55 | |
Occurrence | Native | 73 (84.0%) | 46 (83.6%) | 48 (87.3%) |
Non-Native Invasive 1 | 7 (8.0%) | 6 (10.9%) | 4 (7.3%) | |
Other 1 | 7 (8.0%) | 3 (5.5%) | 3 (5.4%) | |
Total | 87 | 55 | 55 | |
Occurrence (Herbaceous) | Native | 56 (86.2%) | 38 (88.4%) | 44 (89.8%) |
Non-Native Invasive 1 | 4 (6.1%) | 3 (6.9%) | 3 (6.1%) | |
Other 1 | 5 (7.7%) | 2 (4.7%) | 2 (4.1%) | |
Occurrence (Woody) | Native | 17 (77.3%) | 8 (66.7%) | 4 (66.6%) |
Non-Native Invasive 1 | 3 (13.7%) | 3 (25.0%) | 1 (16.7%) | |
Other 1 | 2 (9.0%) | 1 (8.3%) | 1 (16.7%) |
Species | Total Pollen Grains | Area A | Area B | Area C | Mean |
---|---|---|---|---|---|
Alopecurus myosuroides Huds. | 248 | 0.096 | N/A 1 | 0.018 | 0.057 c |
9.6% | 1.8% | 5.7% | |||
Amorpha fruticosa L. | 4302 | 0.072 | 0.079 | 0.015 | 0.056 c |
7.2% | 7.9% | 1.5% | 5.6% | ||
Lamium purpureum L. 2 | 826 | 0.057 | 0.057 | 0.030 | 0.048 c |
5.7% | 5.7% | 3.0% | 4.8% | ||
Potentilla reptans L. | 7515 | 0.117 | 0.114 | 0.008 | 0.080 c |
11.7% | 11.4% | 0.8% | 8.0% | ||
Prunus spinosa L. | 1054 | 0.067 | 0.062 | 0.034 | 0.054 c |
6.7% | 6.2% | 3.4% | 5.4% | ||
Veronica persica Poir. | 760 | 0.150 | 0.068 | 0.041 | 0.086 c |
15.0% | 6.8% | 4.1% | 8.6% | ||
Mean | 2450.8 | 0.093 a | 0.076 a | 0.025 b | |
9.3% | 7.6% | 2.5% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Braga, L.; Furia, E.; Buldrini, F.; Mercuri, A.M. Pollen and Flora as Bioindicators in Assessing the Status of Polluted Sites: The Case Study of the Mantua Lakes (SIN “Laghi di Mantova e Polo Chimico”; N Italy). Sustainability 2023, 15, 9414. https://doi.org/10.3390/su15129414
Braga L, Furia E, Buldrini F, Mercuri AM. Pollen and Flora as Bioindicators in Assessing the Status of Polluted Sites: The Case Study of the Mantua Lakes (SIN “Laghi di Mantova e Polo Chimico”; N Italy). Sustainability. 2023; 15(12):9414. https://doi.org/10.3390/su15129414
Chicago/Turabian StyleBraga, Lorenzo, Elisa Furia, Fabrizio Buldrini, and Anna Maria Mercuri. 2023. "Pollen and Flora as Bioindicators in Assessing the Status of Polluted Sites: The Case Study of the Mantua Lakes (SIN “Laghi di Mantova e Polo Chimico”; N Italy)" Sustainability 15, no. 12: 9414. https://doi.org/10.3390/su15129414
APA StyleBraga, L., Furia, E., Buldrini, F., & Mercuri, A. M. (2023). Pollen and Flora as Bioindicators in Assessing the Status of Polluted Sites: The Case Study of the Mantua Lakes (SIN “Laghi di Mantova e Polo Chimico”; N Italy). Sustainability, 15(12), 9414. https://doi.org/10.3390/su15129414