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Abstract: Forest fire regimes are changing as a function of increasing global weather extremes, socioe-
conomic development, and land use change. It is appropriate to use long-term time series satellite
observations to better understand forest fire regimes. However, many studies that have analyzed the
spatiotemporal characteristics of forest fires based on fire frequency have been inadequate. In this
study, a set of metrics was derived from the VIIRS active fire data in China, from 2012 to 2021, through
spatial extraction, spatiotemporal clustering, and spread reconstruction to obtain the frequency of
forest fire spots (FFS), the frequency of forest fire events (FFE), the frequency of large forest fire
events (LFFE), duration, burned area, and spread rate; these metrics were compared to explore the
characteristics of forest fires at different spatiotemporal scales. The experimental results include
72.41 × 104 forest fire spots, 7728 forest fire events, 1118 large forest fire events, and a burned area
of 58.4 × 104 ha. Forest fires present a significant spatiotemporal aggregation, with the most FFS
and FFE in the Southern Region and the most severe LFFE and burned area in the Southwest Region.
The FFS, FFE, and LFFE show a general decreasing trend on an annual scale, with occasional minor
rebounds. However, the burned area had substantial rebounds in 2020. The high incidence of forest
fires was concentrated from March to May. Additionally, 74.7% of the forest fire events had a duration
of less than 5 days, while 25.3% of the forest fire events lasted more than 5 days. This helps us to
understand the characteristics of more serious or higher risk forest fires. This study can provide more
perspectives for exploring the characteristics of forest fires, and more data underpinning for forest
fire prevention and management. This will contribute towards reasonable forest protection policies
and a sustainable environment.

Keywords: Visible Infrared Imaging Radiometer Suite (VIIRS); forest fire; spatiotemporal characteristics;
spatiotemporal clustering; spread reconstruction; China

1. Introduction

Forest fires are a major global concern, as they burn millions of hectares of forests every
year [1]. These fires have caused extensive damage to forest resources by directly reducing
forest area and seriously damaging forest structure and the environment [2], resulting
in imbalances in forest ecosystems [3], and even threatening human life and property if
serious [4,5]. In recent years, with socioeconomic development and land use changes,
anthropogenic-driven fire regimes have become increasingly important [6,7]. Moreover,
with a warmer climate, the frequency and burned area of fires are expected to increase
globally in the future [8–10], and the duration of the fire season will be extended [10,11].
As a result, fire regimes are changing [12–14].

The use of remote sensing data to study forest fire regimes has been shown to be very
effective [15–17], since it allows easy access to global, consistent, and long-term historical
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forest fire data There have been many studies that have quantitatively described and ana-
lyzed the spatial and temporal distribution of global fires [18–21] or specific regions [22,23].
Currently, the commonly used remote sensing data are MODIS Collection 6 [24] (Moderate
Resolution Imaging Spectroradiometer C6, with a spatial resolution of 1 km, temporal
resolution of four times per day, first released in 2001) and VIIRS V1 [25] (Visible Infrared
Imaging Radiometer Suite V1, with a spatial resolution of 375 m, temporal resolution of
two times per day, first released in 20 January 2012), which provide information such as
the location, time, and radiation energy [26,27]. In this study, we chose VIIRS because it
provides active fire data with a higher spatial resolution, can monitor forest fires with more
precise locations, and can observe forest fires at a smaller scale.

China is a country with a high incidence and vulnerability to forest fires [15]. Accord-
ing to the 9th China Forest Inventory, China’s forest cover is only 22.96% and it is unevenly
distributed, which, together with the complex climate and terrain, leads to differences in
forest fire characteristics across the country. Therefore, there is a need to investigate the
regional variations and temporal changes of forest fires in China. Currently, many scholars
have conducted research on the spatiotemporal characteristics of fires in China [15,28,29].
The primary sources of active fires in China are cropland fires and forest fires [30]. Cropland
fires have predominantly occurred in the agricultural regions of Northeastern, Northern,
and Northwestern China [31,32], and forest fires have frequently been observed in the
forested regions of Northeastern, Southwestern, and Southeastern China [33–35]. However,
most of these studies have solely focused on the frequency of fire spots, rather than on fire
events. Meanwhile, many scholars have also reconstructed fires using various methods to
estimate the burned area and spread rate. For instance, Kriging interpolation [36] has been
employed to model the daily progress of fires, while Delaunay triangulation [37,38] has
been used to construct burned areas. Most of these studies aimed to analyze the develop-
ment of certain (manually selected) fire events. This study is expected to process remote
sensing data, and therefore, derives more comprehensive information on fires, not only in
terms of frequency of fire spots, but also in terms of fire events.

In this paper, we use the 10-year VIIRS data (2012–2021) and China’s land cover data to
extract fire spots within forestlands, to cluster them into fire events, to filter large fire events,
and to reconstruct their spread, thus, obtaining the following series of forest fire metrics: the
frequency of forest fire spots (FFS), the frequency of forest fire events (FFE), the frequency
of large forest fire events (LFFE), duration, burned area, and spread rate. Before analyzing
the data, a correlation analysis was conducted to reveal the relationships and usable values
among the main metrics. In the formal analysis, first, we aggregated calculations based on
the FFS, FFE, LFFE and, burned area at different spatial scales, including the whole country,
the five regions, and each province/region, to unveil the spatial distribution of frequency
and scale of forest fires in China. Secondly, statistical analyses were carried out for the
whole country and the five regions at different time scales, including years and months, to
illustrate the spatial and temporal variations in forest fires. In addition, we describe the
duration and spread rate of forest fire events. This study attempts to analyze the forest fire
spatiotemporal characteristics from multiple perspectives, laying the data foundation for
more in-depth research work, such as forest fire risk assessment and fire spread prediction
modeling. This study also serves as a reference for conducting forest fire research based on
remote sensing data.

2. Materials and Methods
2.1. Study Area

The total land area of China is approximately 9.6 × 106 km2. The latitude difference
between north and south is about 50◦, and the terrain and climate are complex and diverse.
The north is dry, and the south is relatively wet [39]. The northwest is the main dry
area of the country [40]. Precipitation in China gradually decreases from southeast to
northwest [41]. The topography in China exhibits a gradient of lower elevation in the east,
higher elevation in the west, and mountains covering approximately two-thirds of the
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country’s land area [42]. These factors have led to spatial and temporal variations in the
pattern of forest fires across China.

China’s forest area is 220,446,200 ha, with most of it concentrated in the Southwest,
Northeast, and Southern Regions. To better reflect the regional variations of forest fires, we
divided the study area into five regions: Southwest Region, Northeast Region, Southern
Region, Northwest Region, and N-E-China Region. The Southwest Region, including Yun-
nan Province, Sichuan Province, and Chongqing City, has a total forest area of 43 × 106 ha
(19.5% of China’s forest area) with forest covering 49.1%. The Northeast Region, including
Heilongjiang Province, Jilin Province, and Liaoning Province, has a total forest area of
33.47 × 106 ha (15.2% of China’s forest area) with forest covering 42.4%. The Southern
Region, which includes 11 provinces including Guangxi, Jiangxi, Guangdong, Fujian, and
Zhejiang, has a total forest area of 81.19 × 106 ha (36.8% of China’s forest area) with forest
covering 45.3%. However, the Northwest and N-E-China Regions have lower forest cover
than these regions, with a forest area of 41.75 × 106 ha and 42.02 × 106 ha, respectively.
The forest cover in the regions is only 9.7% and 22.3%, highlighting the serious uneven
distribution of forest resources in China.

The study area includes the whole of China except the Nansha Islands, Taiwan
Province, Hong Kong, and Macao. With the help of land cover data [43], we present
the study area in Figure 1, as well as the distribution of forest resources in China and the
five geographical regions.
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Figure 1. Map of land cover in China in 2020 [43]. The Southwest Region consists of Sichuan Province,
Yunnan Province, and Chongqing City; the Northeast Region consists of Heilongjiang, Jilin, and
Liaoning Provinces; the South Region consists of 11 provinces, namely Anhui, Jiangsu, Hubei, Hunan,
Jiangxi, Zhejiang, Fujian, Guangxi, Guangdong, Hainan, and Guizhou; the Northwest Region consists
of 6 provinces/regions, namely Tibet, Xinjiang, Qinghai, Gansu, Ningxia, and Shaanxi; the N-E-China
Region consists of 8 of provinces/cities, namely Beijing, Tianjin, Shanghai, Hebei, Henan, Shanxi,
Shandong, and Inner Mongolia.
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2.2. Study Data
2.2.1. VIIRS Active Fire Data

The VIIRS active fire data used in this paper were obtained through the Fire In-
formation for Resource Management System (https://firms.modaps.eosdis.nasa.gov/
download/, accessed on 20 February 2023, in Shapefile format). These data are con-
sidered to be near-real-time active fire data and are provided by the National Aeronautics
and Space Administration (NASA) and the Food and Agriculture Organization (FAO) of
the United Nations. The data have a nominal horizontal resolution of approximately 375 m
and provide complete global coverage every 12 h. Since the data have high spatial and
temporal resolution and have been widely used in fire research, we chose to use the VIIRS
active fire data to analyze the spatial and temporal variations of forest fires in China over
the decade 2012–2021. The main focus of our analysis was on fire spot locations, acquisition
date, and time information.

2.2.2. Land Cover Data

The land cover data used in this study are the 1 km × 1 km land cover data for 2020
provided by the Institute of Geographical Sciences and Resources of the Chinese Academy
of Sciences [43]. The data classify land into 6 categories: cropland, forest land, grassland,
water, urban land, and unused land. Since the land cover data change every year, the
forest area has gradually increased from 207,687,300 ha in the 8th China Forest Inventory
(2009–2013) to 220,446,200 ha in the 9th China Forest Inventory (2014–2018). As a result,
the number of fire spots extracted using the 2020 forest area is higher. Nevertheless, for a
large number of forest fire spots, the redundant forest fire spots do not substantially affect
the characteristics of forest fires.

2.3. Data Processing Methods

To extract forest fire spots, we overlaid the 2012–2021 VIIRS active fire data with the
1 km × 1 km land cover data. Over the 10-year period, there were 5.24 × 106 fire spots in
China, but after filtering using the land cover data, the total number of forest fire spots was
reduced to 72.41 × 104, representing an overall reduction of 86.2% (including 38.9% for
cropland fire spots, 32.4% for urban land fire spots, 8.9% for grassland fire spots, etc.). Most
of the subsequent data processing and analysis were conducted based on the remaining
forest fire spots, using ArcGIS (version 10.5, a GIS software developed by ESRI) and Python
3.8 tools. Figure 2 depicts the process flowchart for producing data on forest fire spots,
forest fire events, and large forest fire events, and the main information contained in them.
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Figure 2. Forest fire data process flowchart. Figure 2. Forest fire data process flowchart.

2.3.1. Method of Spatiotemporal Clustering

Based on the proximity of the location and the time of fire spots in a forest fire
event [36], we applied clustering techniques to group discrete fire spots into independent
forest fire events using temporal and spatial thresholds. The specific steps involved the

https://firms.modaps.eosdis.nasa.gov/download/
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following: (1) clustering in space (threshold of 2 km); (2) clustering in time within each
space cluster (threshold of 2 days); (3) filtering out clusters with less than 10 fire spots to
exclude sporadic fire spots, smaller fires, or incompletely monitored forest fires; and (4) for
the remaining clusters, clustering again in space and time in order to process spots that are
close in time but more than 2 km apart in space. Finally, each cluster was identified as a
forest fire event.

When choosing thresholds, on the one hand, if the space threshold or time interval
is too large, it can group together discrete fires into one event. On the other hand, if the
threshold is too small, it can divide a complete fire event into multiple parts. After filtering
in Step 3, the remaining forest fire events were at a certain scale with a higher risk, and had
greater research value.

Each forest fire event was assigned a unique ID, and its duration was determined by
calculating the time difference between the latest and earliest time. This duration indicated
how long the fire event lasted. For instance, a duration of 0 signified a fire event that lasted
less than 12 h, while a duration of 0.5 days suggested a fire event lasting between 12 h and
1 day. Additionally, forest fire events included information on location, start time, and end
time. For example, the forest fire event that occurred in Sichuan Province in 2020 (Figure 3)
started at 2:00 on 26 December 2020 and ended at 14:00 on 7 January 2021, lasted 12.5 days,
and involved 1477 forest fire spots.
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2.3.2. Method of Spread Reconstruction

Forest fire spread reconstruction is a modeling approach that aims to recreate the
development of a forest fire based on a series of fire spots. In real-life scenarios, medium
to large forest fire events occur less frequently but are more destructive, last longer, and
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occupy larger areas. To more accurately reconstruct the burned area and represent the
spread of forest fires, forest fire events with more than 20 (≥20) fire spots that lasted longer
than 2 days (≥2 d) were selected, as they had more complete monitoring information. The
specific steps for forest fire spread reconstruction included: (1) constructing a Delaunay
triangulation for each forest fire event with control sides no longer than 2 km; (2) removing
larger triangles (area > 500 ha) to eliminate areas with low fire spot density and to address
possible unburned holes within the burned area; (3) merging each forest fire Delaunay
triangulation of an event, representing the burned area of forest fire; and (4) constructing
the spread vector of a forest fire, from the earliest monitored fire spot (at time t) to the
furthest spot (at time s (s > t)). The vector used to track the spread of a forest fire, and its
length divided by the time difference (s – t) represents the average spread rate of the forest
fire event. This part of the forest fire selection is for forest fire events that last longer than
2 days and have a cluster of more than 20 fire spots, and therefore can be considered to be
large-scale forest fires.

Here, since the time difference between the origin spot and the furthest spot is at least
12 h (reason of the temporal resolution of VIIRS), it is difficult for a forest fire to maintain
a uniform spread rate over such a long period of time. Therefore, the spread rate only
represents the average spread rate, which may be smaller due to the lag in monitoring. Of
course, there may be multiple spots in the earliest monitoring times, and in principle, the
spot with the furthest distance is selected as the only origin spot.

Finally, we obtained the area burned and the spread vector of the forest fire, as well as
had access to information on the area burned, the rate of spread in addition to the location,
start time, and duration of the forest fires.

For instance, in 2018, the forest fire that occurred in Inner Mongolia and Heilongjiang
Province (Figure 4) started at 14:00 on 1 June 2018, ended at 2:00 on 5 June 2018, and lasted
for 4.5 days. It involved 188 fire spots with a spread rate of 6882.17 m/d and a burned area
of 4741 ha.
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2.3.3. Method of Mathematical Statistics

After processing ten years of VIIRS active fire data in China (2012–2021), we were
able to obtain forest fire spots, forest fire events, and large forest fire events. Through
further calculations, we derived metrics such as the frequency of FFS, FFE, LFFE; duration;
burned area; and spread rate. To measure the relationships among the primary information
of these data (FFS, FFE, LFFE, and average area burned), we used a Pearson correlation
coefficient (Pearson) analysis. A correlation coefficient closer to 1 or −1 indicates a stronger
correlation, while a coefficient closer to 0 indicates a weaker correlation.

Forest fire metrics were compiled and organized into tables for each province and the
five regions, creating a comprehensive database of information. First, we summarized the
metrics FFS, FFE, LFFE, and area burned for each province and region. Then, statistical
tables were created for the five regions, and maps were generated to analyze regional
differences. We also calculated the annual and monthly FFS, FFE, LFFE, and burned area for
the country and the five regions, and presented charts to show their temporal distribution.
Finally, we analyzed the annual and monthly FFE of different durations and the monthly
spread rates of LFFE, and presented appropriate charts to illustrate the findings.

3. Results and Discussion
3.1. Pearson Analysis

Based on the analysis of forest fire data in China, from 2012 to 2021, we finally obtained
a total of 72.41 × 104 forest fire spots and detected a total of 7728 forest fire events, and of
these, 1118 forest fire events were classified as large forest fire events. The total burned area
of large forest fire events was 58.4 × 104 ha, with a minimum burned area of 6.9 ha, and
an average burned area of 552 ha. Forest fire events filtered out 70.9% of forest fire spots.
Large forest fire events filtered out 85.5% of forest fire events. These data demonstrate a
large number of forest fire spots and the subsequent filtering process for notable events,
allowing us to focus on the most important cases. Regarding the burned area, the scale and
severity of large forest fire events are revealed. This provides valuable insights for research.

Forest fire metrics were summarized for each month of the 10-year period for five
regions, and a total of 600 records were calculated. Using a Pearson analysis at a significance
level of 0.01, we calculated the correlations among FFS, FFE, LFFE, and average burned
area (Table 1) and found the following six main results:

1. The correlation coefficient between FFS and FFE is 0.957, indicating an extremely
strong relationship between the two. This means that FFE can be accurately estimated
from FFS, especially in situations in which obtaining direct measurements of FFE
may be difficult. Overall, these findings highlight the importance of the relationship
between FFS and FFE for effective forest fire management and prevention.

2. FFS and FFE have an extremely strong correlation. This indicates that, despite the
condition filtering of 10 clustering spots during temporal and spatial clustering, the
forest fire events obtained can still comprehensively reflect the occurrence of forest
fires, not just in terms of space or time.

3. The correlation analysis shows that LFFE had strong correlations of 0.666 and 0.772
with FFS and FFE, respectively. These results suggest that by monitoring FFS and
FFE, it may be possible to predict the likelihood of large forest fires occurring. This
information could be very valuable in preventing and controlling large fires.

4. The correlation coefficients between the average burned area and FFS and FFE are
0.298 and 0.347, respectively, which are weak correlations. This suggests that burned
areas may have different characteristics for forest fires compared to fire frequency,
and therefore a comprehensive study of this metric is necessary. The burned area can
provide more insights into the severity and intensity of forest fires.

5. The correlation coefficient between LFFE and the average burned area is 0.412, indi-
cating a moderate positive relationship. This means that as LFFE increase, the average
burned area also tends to increase, but the relationship is not very strong. It is crucial
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to take into consideration other factors that could affect the area burned by a forest
fire, such as topography, climate, vegetation type, and human activity.

6. Overall, the correlations among the different metrics highlight their validity and value
in analyzing forest fires from various perspectives. By considering multiple indicators,
we can gain comprehensive insights that help to improve our understanding of forest
fire dynamics, enhance our ability to mitigate and prevent such events, and assist in
the development of more effective strategies for their management.

Table 1. Results of Pearson analysis of the frequency of forest fires, and the average burned area for
all years and months in the five regions.

Metrics FFS FFE LFFE Average Burned Area

FFS 1 0.957 0.666 0.298
FFE 0.957 1 0.772 0.347

LFFE 0.666 0.772 1 0.412
Average burned area 0.298 0.347 0.412 1

3.2. Spatial Characteristics
3.2.1. Five Regional Scales

We summarized four metrics (i.e., FFS, FFE, LFFE, and burned area) based on the five
regions in Table 2 and conducted a comparative analysis of metrics data across regions to
investigate regional differences in forest fires.

Table 2. Statistics on the frequency of forest fires and burned area for China and five regions.

Regions Forest Area
(106 ha)

Forest Cover
(%) FFS (104) FFE LFFE Burned Area

(104 ha)

Southern Region 81.19 49.10 35.5 3094 249 9.3
Southwest Region 43.00 45.30 18.6 2582 552 38.1
Northeast Region 33.47 42.40 10.9 1221 132 4.5

N-E-China 42.02 22.30 6.3 725 153 5.6
Northwest Region 41.75 9.70 1.2 106 32 0.81

China 220.45 22.96 72.41 7728 1118 58.4

In terms of the FFS and FFE metrics, the Southern Region had the highest values
of 35.5 × 104 and 3094, accounting for 49.0% and 40.0% of the total, respectively. The
Southwest Region ranked second with values of 18.6 × 104 and 2582, accounting for 25.6%
and 33.4% of the total, respectively. The Northeast Region ranked third with values of
10.9 × 104 and 1221, followed by the N-E-China Region with values of 6.3 × 104 and 725,
respectively. The Northwest Region had the lowest values of 1.2 × 104 and 106, respectively.

In terms of the LFFE and burned area metrics, the Southwest Region had the highest
values of 552 and 38.1 × 104 ha, accounting for 49.3% and 65.3% of the total, respectively;
the Southern Region ranked second with values of 249 and 9.3 × 104 ha, accounting for
22.4% and 16.0% of the total, respectively; the N-E-China Region ranked third with values
of 153 and 5.6 × 104 ha, followed by the Northeast Region with values of 132 and 4.5 × 104

ha, respectively. The Northwest Region still had the lowest values of 32 and 0.81 × 104 ha,
respectively.

There are obvious differences among the regional indicators in China, both in terms of
frequency and scale. The sum of the four metrics (FFS, FFE, LFFE, burned area) in the South-
ern and Southwest Regions accounted for 74.6%, 73.4%, 71.7%, and 81.3%, respectively,
indicating a distinct spatial aggregation of forest fires in China and exhibiting distribution
patterns between more in the south and less in the north, and more in the east and less in
the west. While forest fires are more frequent in the South Region, they tend to cause more
extensive damage in the Southwest Region. These findings highlight significant regional
variations in the characteristics and intensity of forest fire.
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To further analyze the risk level of forest fires, we also calculated the proportion of
large forest fires to forest fire events (defined as LFFE divided by FFE) as an expression of
the probability of a forest fire developing into a large forest fire. The highest probability
was in the Northwest Region at 30.2%, followed by 21.4% in the Southwest Region, 21.1%
in the N-E-China Region, 10.8% in the Northeast Region, and surprisingly the lowest in
the Southern Region at 8.0%. These findings suggest that forest fires in the Northwest
Region are more prone to spreading and becoming large fires compared to other regions.
In contrast, although the Southern Region has a high frequency of forest fires, most of them
are small in size and have a lower chance of developing into large forest fires.

To better understand the relationship between forest fires and forest resources in
China, Table 2 also includes information on forest area and forest cover. The South Region
and Southwest Region have a combined forest area of 81.19 × 106 ha (with an average
cover of 49.10%) and 43.00 × 106 ha (with an average cover of 45.30%), respectively, with
a total proportion of 71.5%, and the percentage of the four metrics in the two regions is
greater than 70%, which is consistent with the percentage of forest area. However, while the
Southwest Region, N-E-China Region, and Northwest Region have similar forest areas of
43.00 × 106 ha, 42.02 × 106 ha, and 41.75 × 106 ha, respectively, the four forest fire metrics
vary significantly, indicating a gradual decrease in forest cover. The Northeast Region has
the smallest forest area of 33.47 × 106 ha, but its four forest fire metrics are relatively high,
primarily due to its high forest cover. Therefore, the spatial distribution of forest fires in
China is not only related to the area of forests in each region but also to their forest cover.

To analyze regional differences in forest fires from a more diverse perspective, we
calculated forest fire frequency densities (defined as FFS, FFE, and LFFE divided by forest
area) for each region. We found similar values of FFS in the Southern and Southwest
Regions, and the highest values of FFE and LFFE in the Southwest Region. The FFE were
comparable in the Southern and Northeast Regions, while the LFFE were higher in the
Northeast and N-E-China Regions.

In conclusion, these data clearly demonstrate the spatial distribution differences of
forest fires and the distinct characteristics they exhibit in terms of frequency and scale. For
instance, the Southern Region shows a higher frequency of forest fires, but with smaller
scales and a lower probability of developing into large forest fire events. Forest fire events
in the Southwest Region are more likely to cause damage to forest resources. Although
forest fire events in the Northwest Region occur less frequently, they have a higher potential
to develop into large fires.

3.2.2. Provincial Scale

We counted and geographically visualized the four indicators (FFS, FFE, LFFE, and
area burned) by provinces/municipalities, as shown in Figure 5. Comparisons among
provinces for each indicator illustrate the distribution of forest fires at the provincial level.
Within each province, comparisons among indicators reveal different perspectives of forest
fires, such as frequency and size.

According to the FFS indicator map (Figure 5a), Yunnan Province, Guangxi Province,
Heilongjiang Province, Guangdong Province, and Hunan Province were identified as
the top provinces with values above 50,000, i.e., 14.4 × 104 (19.9%), 8.2 × 104, 6.7 × 104,
6.0 × 104, and 5.1 × 104, respectively. Similarly, based on the FFE indicator map (Figure 5b),
Yunnan Province, Heilongjiang Province, Sichuan Province, and Guangdong Province
emerged as the provinces with values above 500, i.e., 1994 (25.8%), 922, 584, and 562,
respectively. Moreover, when examining the LFFE indicator map (Figure 5c) and the
burned area indicator map (Figure 5d), Yunnan Province and Sichuan Province were found
to have values above 100 and above 5 × 104 ha, i.e., 412 and 24 × 104 ha (36.9% and 41.8%)
and 140 and 13.8 × 104 ha, respectively.
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The FFS indicator map (Figure 5a) shows that the provinces with a high frequency of
forest fire spots are concentrated in the northeast and south of China, while the provinces in
the northwest have a very low frequency of forest fire spots. A similar pattern applies to the
other indicator maps (Figure 5b–d). However, there are also intensity differences between
these indicators. When comparing the indicators for each province, Yunnan Province stands
out as the most prominent province, exhibiting the highest values across all four indicators
and exerting a substantial influence on the overall characteristics of forest fires. There are
also differences in the intensities of the four indicators in the same province. For instance,
in Sichuan Province, there is a progressive increase in intensity from FFS (Figure 5a) to
burned area (Figure 5d), as indicated by the color shades. Additionally, provinces in the
Southern Region generally display higher intensities in terms of FFS and FFE (Figure 5a,b),
while exhibiting a distinctly lower intensity in terms of LFFE (Figure 5c).

In the Southern Region, Guangxi Province has the highest FFS, with 8.2 × 104, account-
ing for 23% of the region; Guangdong Province has the highest FFE with 562, accounting
for 18.2% of the region; Anhui Province has the highest LFFE with 62, accounting for 24.8%
of the region; Hubei Province has the largest burned area with 2.2 × 104 ha, accounting
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for 23.9% of the region. In contrast, the lowest FFS, FFE, LFFE, and burned area are from
Jiangsu Province with 0.6 × 104, 31, 1, and 19 ha, respectively. As a result, the intensity of
the indicators is not consistent across the provinces in the region’s performance.

In the Southwest Region, Yunnan Province has the highest values of the four metrics,
accounting for 77.6%, 77.2%, 74.6%, and 64.0% of the region, respectively. The average
burned area in Yunnan is 592 ha. The metrics in Sichuan Province are smaller than in
Yunnan Province, but the average burned area is 979 ha, indicating that the average size of
forest fires in Sichuan is larger than in Yunnan.

In the Northeast Region, forest fires are primarily concentrated in Heilongjiang, where
the four metrics of 6.7 × 104, 922, 75 and 4.0 × 104 ha, respectively, accounting for 61.4%,
75.5%, 56.8%, and 88.8% of the region, with an average burned area of 537 ha. In the N-E-
China Region, Inner Mongolia has the highest values of the four metrics, with 3.0 × 104,
382, 75, and 3.3 × 104 ha, respectively, accounting for 47.6%, 52.7%, 49.0%, and 59.3% of
the region, with an average burned area of 444 ha. In the Northwest Region, Shaanxi has
the highest FFS, with 4000, accounting for 32.6% of the region; Xinjiang has the highest
FFE and LFFE at 50 and 21, respectively, accounting for 47.2% and 65.5% of the region; and
Tibet has the largest burned area with 3292 ha.

As a result, forest fires exhibit a high degree of inter-provincial aggregation and incon-
sistent intensity among the indicators within provinces. In addition, there are provinces in
each region where the frequency of forest fires and the area burned are prominent.

3.3. Spatiotemporal Characteristics
3.3.1. Annual Analyses

The FFS, FFE, LFFE, and burned area metrics of China and the five regions were
counted over the years to analyze the trend and characteristics of inter-annual forest fires
(Figure 6).

In China (all the red bar charts in Figure 6 correspond to the right axis), the peak year
for all four metrics (i.e., FFS, FFE, LFFE, burned area) was 2014, with values of 11.5 × 104,
1344, 202, and 11.0 × 104 ha that accounted for 15.9%, 15.4%, 18.1%, and 18.9% of the total,
respectively. The lowest year for all four metrics was 2018, with values of 5.2 × 104, 480, 67,
and 2.0 × 104 ha that accounted for 7.1%, 6.2%, 6.0%, and 3.5% of the total, respectively.
Although the FFS, FFE, LFFE metrics had subpeaks in 2013, with values of 10.5 × 104, 1158,
and 185 that accounted for 14.5%, 15.0%, and 16.5% of the total, respectively, the subpeak
year for burned area was in 2020, with a value of 10.8 × 104 ha that accounted for 18.4% of
the total.

The average annual values of FFS, FFE, and LFFE for China were calculated, and the
average FFS was 7.2 × 104. The years 2012–2015 represented a concentrated period of high
forest fires in China, with a cumulative FFS of 37.4 × 104, accounting for 51.6% of the total.
The annual average during that period was 9.3 × 104. From 2016 to 2021, the cumulative
FFS was 35.0 × 104, with an annual average of 5.8 × 104, representing a decrease of 37.5%
compared to the annual average for 2012–2015. Similar trends were observed for FFE and
LFFE, i.e., the metrics from 2012 to 2015 were higher (4286 and 604, respectively) compared
to the metrics from 2016 to 2021 (i.e., 1071 vs. 151, respectively). This indicates a significant
decline in both forest fire events and large forest fire events in China since 2015.Therefore,
at a national scale, the overall trends for FFS, FFE, and LFFE were similar from 2012 to 2021,
with an initial increase followed by a decrease, reaching a peak in 2014, and exhibiting
slight fluctuations in 2017 and 2019, but showing an overall decreasing trend. The overall
inter-annual trend in burned area substantially differs from the three metrics mentioned
above. In 2020, the burned area exhibited notably higher values and displayed sharp
differences from nearby years, suggesting the occurrence of larger fires and indicating that
burned area is episodic.
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Figure 6. Annual frequencies of forest fire spots (FFS), forest fire events (FFE), and large forest fire
events (LFFE), and burned area values of China and the five regions.

In five regions (all the line charts in Figure 6 correspond to the left axis), we obtained
three main pieces of information. Firstly, excluding 2012 and 2020, the Southern Region had
the highest FFS and FFE in other years, accounting for 42.5–55.3% of FFS and 31.2%–51.7%
of FFE. Additionally, the Southwest Region had the highest LFFE, burned area (except
for 2015 and 2018) in other years, accounting for 35–68.6% of the LFFE in calendar years
and 52.9–88.7% of the burned area in calendar years. It is evident that forest fires in the
Southern and Southwestern Regions were extremely conspicuous in all years and had a
decisive influence on the national inter-annual trends. Secondly, the Northeast Region
shows fluctuating inter-annual variations in each metric. The FFS and FFE both show
peaks in 2015, 2017, and 2019 and troughs in 2016, 2018, and 2020, and the overall 10-year
variation is small, with the FFS from 5.8% to 16.2%, showing only a difference between the
maximum and minimum values of 10.4%. Thirdly, there are differences in the years of high
forest fires among the five regions. The peak year for FFS, FFE, and LFFE in the Southern
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and Southwest Regions was 2014, the peak year for the metrics in the Northeast Region
was 2015, and the peak year for the metrics in the N-E-China Region and the Northwest
Region was 2013.

Furthermore, it is worth noting that the Northwest and Northeast Regions consistently
had lower FFS and FFE values with relatively minor fluctuations over the decade. In
contrast, the Southwest Region experienced a significantly higher burned area in 2020,
reaching 9.5 × 104 ha, which accounted for 88.7% of the total burned area for that year.
This indicates a severe outbreak of forest fires in the Southwest Region in 2020. Notably,
2020 also marked the peak year for burned area in the Southwest Region, comprising 25.0%
of the total burned area for that region.

3.3.2. Monthly Analyses

We summarized the monthly metrics (FFS, FFE, LFFE, and burned area) for China and
five regions (Figure 7) to analyze and discuss the monthly distribution characteristics of
forest fires.
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In China (left chart in Figure 7), the months of March and April exhibit high con-
centrations of forest fires. The metrics for these months include FFS (12.2 × 104 (16.9%)),
FFE (1389 (18.0%)), LFFE (216 (19.7%)), and burned area (14.1 × 104 ha (24.5%)) in March
and FFS (12.8 × 104 (17.7%)), FFE (1579 (20.4%)), LFFE (220 (19.7%)), and burned area
(12.3 × 104 ha (24.1%)) in April. Together, March and April account for a significant per-
centage of forest fires throughout the year, with a total of 34.6%, 38.4%, 39.4%, and 48.6% for
the respective metrics. This indicates a higher concentration of forest fire events and large
forest fires during these two months, with nearly half of the total burned area occurring
in March and April. Additionally, January, February, May, October, and December also
exhibit higher metrics for forest fires in China. The values for FFS for these months were
8.8 × 104, 9.0 × 104, 5.1 × 104, 5.8 × 104, and 5.6 × 104 respectively. Conversely, the period
from June to September shows lower forest fire metrics, with the highest value of FFS being
2.7 × 104, the highest value of FFE being 230, the highest value of LFFE being 54, and the
highest value of burned area being 1.0 × 104 ha.

We analyzed the indicators by season in China and observed significant seasonal
differences in forest fires as follows: Spring (March, April, and May) has the highest values
of the metrics, followed by winter (December, January, and February), autumn (September,
October, and November), and summer (June, July, and August). As an illustration, the
value of FFS reaches 30.2 × 104 (41.6%) in spring, followed by 23.4 × 104 (32.3%) in winter,
12.6 × 104 (17.4%) in autumn, and 6.7 × 104 (8.7%) in summer. Therefore, most forest
fires in China occur in spring and winter. The higher incidence in these seasons can be
attributed to the dry and cold climate, low rainfall, and the presence of dead branches on
forested land.

In five regions (middle and right chart in Figure 7), variations in the peak month and
duration of concentrated high occurrence months are observed. Taking FFS as an example,
in the Southern Region, the peak month was January with 5.9 × 104 (16.7% of the total),
followed by March, April, February, and December. The concentrated high occurrence
months span from December to April, accounting for 69.2% of the total. In the Southwest
Region, the peak month was March with 4 × 104 (21.5% of the total), followed by February,
April, January, and May. The concentrated high occurrence months were five months in
total (January to May), accounting for a combined total of 83.2%. In the Northeast Region,
the peak month was April with 3.4 × 104 (31.0% of the total), followed by October. The
concentrated high occurrence months span from April to October, accounting for 50.1% of
the total. In the N-E-China Region, the highest occurrence months were March and April,
with metrics of 1.3 × 104 and 1.4 × 104, respectively, which accounted for a combined
total of 43.9%. In the Northwest Region, the highest occurrence month was March, with
0.2 × 104 (16.3% of the total).

Overall, the peak months and concentrated high occurrence months for the remaining
metrics were generally consistent with those of FFS, with some minor differences, such as
that the LFFE and burned area in the Southern Region did not show a high occurrence in
February. Additionally, the Northeast Region had a larger burned area in March, and the
peak month of burned area in the N-E-China Region was also in March.

In December, the metrics for FFS, FFE, and LFFE were not significant, but the burned
area was relatively high. The FFS only accounted for 7.8% of the total, with a value
of 5.6 × 104, while the burned area accounted for 13.2% of the total, with a value of
7.7 × 104 ha. However, in the Southwest Region, the burned area in December was
6.8 × 104 ha, accounting for 88.7% in that month. The average burned area in Decem-
ber for the region was 1267 ha, which was 1.8 times higher than the average burned area
(691 ha) for the entire region. Moreover, this was also the highest monthly average burned
area among all regions. Through comprehensive annual and monthly analysis, it can be
concluded that a large forest fire occurred in the Southwest Region in December 2020.
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3.3.3. Duration Analyses

The total frequency of forest fire events was 7728, of which 10.9% lasted less than 12
h, 29.4% lasted between 12 h and 2 d, 34.3% lasted between 2 d and 5 d, and 25.3% lasted
longer than 5 d, with 851, 2270, 2653, and 1954 forest fire events, respectively (Figure 8).
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Figure 8. Inter-annual distribution of FFE in China for different durations; inter-monthly distribution
of FFE in five regions for different durations.

On the one hand, the majority of FFE in all years had a duration ranging from 12 h to
5 days, with proportions ranging from 51.2% to 73.7%. These fires impacted the overall
trends of forest fires in China and exhibited consistent annual and monthly distributions.
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On the other hand, forest fires with a duration of less than 12 h in all year were the least,
ranging from 7.9% to 15.0%. This can be attributed to the filtering process that removes
short duration burning fires with fewer than 10 spots during spatiotemporal clustering.

The annual variation in FFE for durations greater than 5 d was relatively stable, i.e.,
from 8.0% to 13.8%, with a variation of only 5.8%. The monthly variation in these forest
fires was also relatively stable, increasing from 4.7% to 12.2%, with a variation of only
7.5%. As a result, there is an episodic characteristic to the long-burning forest fires, with no
obvious annual or monthly concentration.

When analyzing the duration of forest fires lasting between 12 h and 5 days in different
regions, the Southern, Southwest, and Northeast Regions have a higher proportion of forest
fires within this duration, with 63.2%, 72.8%, and 56.8% of forest fires in this duration,
respectively, and their monthly distribution is consistent with the monthly distribution
of overall FFE in each region, with the proportion of forest fires exceeding 50%. The
proportions of forest fires within this duration were relatively smaller in the N-E-China
Region and Northwest Region, at 49.4% and 35.8%, respectively. Those in the N-E-China
Region were concentrated in March and April, with a total of 67.3%. Those in the Northwest
Region were concentrated in March, April, and May, with a total of 65.8%.

Regarding forest fires lasting more than 5 days, the Southern, Southwest, Northeast,
N-E-China, and Northwest Regions experienced 759, 595, 248, 287, and 65 such forest fire
events, accounting for 24.5%, 23%, 20.3%, 39.6%, and 61.3%, respectively. In the Southern
Region, the monthly average is 63 forest fire events, with the percentage of calendar months
varying from 2.4% to 14.6%, with a variation of only 12.2%, and the fewest forest fire events
occurred in June, with 18 FFE. In the Southwest Region, the monthly average was 49 FFE,
with the majority occurring between October and May. There were over 30 forest fire
events in all months during this period, but less than 10 FFE in all other months, with
considerably variation. In the Northeast Region, the monthly average was 20 FFE, with
most fires occurring between April and October. In the N-E-China Region, the monthly
average was 23 FFE, with the majority of fires occurring between March and October. The
Northwest Region had 61.3% of such forest fires, indicating that they were more likely
to spread and to burn continuously here; the monthly average was 5 FFE, concentrated
mainly between May and October. In summary, the concentration of forest fire events in
this category spans a wide range of months, with little monthly concentration and relatively
minor differences between months.

3.3.4. Spread Rate Analyses

The average spread rate of large forest fire events in China shows considerable vari-
ation from month to month (Figure 9), with the overall peak spread rate in March at
1808 m/d, followed by higher spread rates in January (1622 m/d), February (1567 m/d),
April (1249 m/d), and December (1393 m/d), with an average spread rate of 1523 m/d
for these seven months and 310 m/d for the remaining five lower months, which is only
20% of the former. The monthly distribution of higher rates is broadly consistent with the
monthly distribution of FFS, FFE, and LFFE in China (Figure 6), where forest fires also have
high rates of spread during periods of high forest fire concentration.

This study examined the average rates of forest fire spread in five regions. In the
Southwest Region, the average spread rate was 1315 m/d, and the peak spread rate
was in February at 1663 m/d, followed by December (1650 m/d), January (1597 m/d),
June (1545 m/d), May (1466 m/d), March (1304 m/d), and April (1211 m/d). In the
Southern Region, the average spread rate was 697 m/d, and the peak spread rate was in
May at 2684 m/d, followed by March (1965 m/d), January (1859 m/d), April (1821 m/d),
February (1374 m/d), and December (1013 m/d), In the Northeast Region, spread rates
exceeding 1000 m/d were concentrated in March (4341 m/d), April (1498 m/d), and
October (1206 m/d), with an average spread rate of 856 m/d. In the N-E-China Region,
with an average spread rate of 539 m/d, only March (2382 m/d) and February (1626 m/d)
exceeded 1000 m/d. The Northwest Region had the lowest average spread rate of 368 m/d,
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but with a peak spread rate of 2431 m/d in March. March had the fastest spread rate in the
Northeast Region, and seven months in the Southwest Region had high values for spread
rates exceeding 1000 m/d.
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Figure 9. Monthly averages of forest fire spread rate for counter performances in China and in
five regions.

In summary, the Southwest Region had the longest period of high fire spread rate,
lasting 7 months, followed by the Southern Region, which lasted for 6 months. These
regions are both located in the southern part of China and have similar characteristics,
with stronger fire spread in spring and winter. The fastest fire spread rate in the Northeast
Region occurred in March, followed by October. Similar to this region, the N-E-China
Region and Northwest Region also experienced stronger forest fire spread in spring and
autumn. The spread of a forest fire can also represent the danger of a forest fire, and the
characteristics of the rate of spread can help to develop different levels of fire policy for
different months.

4. Conclusions

In this study, we utilize VIIRS active fire data in China from 2012 to 2021 to identify
forest fire spots, forest fire events, and large-scale forest fire events through spatial extrac-
tion, spatial and temporal clustering, and spread reconstruction. To filter out sporadic,
smaller, and incomplete fires, forest fire events were selected based on spots greater than
10, and reconstructed forest fire events were selected based on spots greater than 20 and a
duration of more than 2 days, representing larger forest fires. In practice, a reconstructed
forest fire event has a minimum burned area of 6.9 ha, which is classified as a larger forest
fire according to China’s forest fire classification.

This study represents a novel attempt aimed at extracting more fire information from
VIIRS active fire data to describe fire characteristics. However, there are several limitations
that need to be acknowledged.

Firstly, there is uncertainty associated with the VIIRS active fire data used in this
study [20,44], which is due to a traditional challenge with optical remote sensing products,
namely the difficulty in effectively observing in rainy, cloudy, and heavily hazy weather
conditions. In addition, due to the coarse temporal resolution of VIIRS data, some fast-
burning forest fires with durations less than 12 h may have been missed. There is also the
potential for misclassification due to problems with the fire detection algorithm. However,
these errors are unlikely to introduce significant bias into remote sensing monitoring
data [44], as shown in other studies [42,45]. Secondly, the data processing methods in this
study have certain uncertainties. For instance, the clustering of active fires to form forest
fire events and the reconstruction of spread have undifferentiated spatial and temporal
thresholds. These thresholds are empirical values that require further refinement and
optimization, taking into consideration the seasonal, regional, and size variations of forest
fires. The estimation of the duration of forest fire events may be biased due to the temporal
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resolution of the VIIRS data. The Delaunay triangle method used for reconstructing the
extent burned area may overestimate by including unburned patches, despite using island
thresholds. The average rate of spread may be underestimated, and estimating the origin
spot of a fire can be challenging. Despite these limitations, the estimates of various statistical
quantities provide objective and consistent insights into forest fire characteristics. Therefore,
future studies should consider these limitations and work towards refining and optimizing
the methods for processing forest fire data.

Furthermore, this study lacks additional historical information for validation and
assessment. The current records of ground-based observations of forest fires are incomplete
and inconsistent, making it challenging to accurately evaluate and calibrate the results of
forest fire statistics. Therefore, it is suggested that, in the future, a forest fire information
database should be established as a uniform standard of detailed observation records for
forest fires, which should be implemented nationwide to better support forest fire research
in China.

In summary, this study focuses on the spread rate and area of forest fires, but overlooks
other important characteristics such as spread direction and distance. Further research is
necessary to explore how these additional spread characteristics can enhance the charac-
terization of forest fires in China. Future studies can delve into analyzing the drivers of
forest fires and predicting their development using the data obtained. Overall, this study
provides valuable research ideas and serves as a foundational dataset for investigating fire
behavior and predicting forest fires. The methods used can also serve as a reference for
future forest fire research utilizing remote sensing data.
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