Biomonitoring of Heavy Metal and Metalloid Contamination in Industrial Wastewater Irrigated Areas Using Sugar Beet (Brassica oleracea L.)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sample Collection
2.3. Sample Preparation
2.4. Analysis of Physicochemical Properties of Soil Samples
2.5. Metal(loid) Analysis
2.6. Quality Control
2.7. Statistical Analysis
2.8. Bioconcentration Factor
2.9. Enrichment Factor
2.10. Daily Intake of Metals
2.11. Health Risk Index
3. Results and Discussion
3.1. Toxicity of Heavy Metal(loid)s in Water
3.2. Biochemical Composition and Toxicity of Heavy Metal(loid)s in Soil
3.3. Toxicity of Heavy Metal(loid)s on Sugar Beet
3.4. Assessments of Contamination and Associated Health Risk
3.4.1. Hierarchical Clustering Analysis
3.4.2. Bioconcentration Factor
3.4.3. Enrichment Factor
3.4.4. Daily Intake of Metals and Health Risk Index
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Deh-Haghi, Z.; Bagheri, A.; Fotourehchi, Z.; Damalas, C.A. Farmers’ acceptance and willingness to pay for using treated wastewater in crop irrigation: A survey in western Iran. Agric. Water Manag. 2020, 239, 106262. [Google Scholar] [CrossRef]
- Nawaz, H.; Anwar-ul-Haq, M.; Akhtar, J.; Arfan, M. Cadmium, chromium, nickel and nitrate accumulation in wheat (Triticum aestivum L.) using wastewater irrigation and health risks assessment. Ecotoxicol. Environ. Saf. 2021, 208, 111685. [Google Scholar] [CrossRef]
- Di Baccio, D.; Kopriva, S.; Sebastiani, L.; Rennenberg, H. Does glutathione metabolism have a role in the defence of poplar against zinc excess? New Phytologist. 2005, 167, 73–80. [Google Scholar] [CrossRef] [PubMed]
- Alengebawy, A.; Abdelkhalek, S.T.; Qureshi, S.R.; Wang, M.-Q. Heavy metals and pesticides toxicity in agricultural soil and plants: Ecological risks and human health implications. Toxics 2021, 9, 42. [Google Scholar] [CrossRef] [PubMed]
- Seaman, J.C.; Arey, J.; Bertsch, P.M. Immobilization of Nickel and Other Metals in Contaminated Sediments by Hydroxyapatite Addition. J. Environ. Qual. 2001, 30, 460–469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ofori, S.; Puskacova, A.; Růzickova, I.; Wanner, J. Treated wastewater reuse for irrigation: Pros and Cons. Sci. Total Environ. 2020, 760, 144026. [Google Scholar] [CrossRef]
- Lorestani, B.; Cheraghi, M.; Yousefi, N. Accumulation of Pb, Fe, Mn, Cu and Zn in plants and choice of hyper accumulator plants in the industrial town of Vian, Iran. Arch. Biol. Sci. 2011, 63, 739–745. [Google Scholar] [CrossRef]
- Karak, T.; Paul, R.K.; Sonar, I.; Sanyal, S.; Ahmed, K.Z.; Boruah, R.K.; Das, D.K.; Dutta, A.K. Chromium in soil and tea (Camellia sinensis L.) infusion: Does soil amendment with municipal solid waste compost make sense? Food Res. Int. 2014, 64, 114–124. [Google Scholar] [CrossRef]
- Yap, D.W.; Adezrian, J.; Khairiah, J.; Ismail, B.S.; Ahmad-Mahir, R. The uptake of heavy metals by paddy (Oryza sativa) in Kota Marudu, Sabah, Malaysia. Am.-Eurasian J. Agric. Environ. Sci. 2009, 6, 16–19. [Google Scholar]
- Atamaleki, A.; Yazdanbakhsh, A.; Fakhri, Y.; Mahdipour, F.; Khodakarim, S.; Khaneghah, A.M. The concentration of potentially toxic elements (PTEs) in the onion and tomato irrigated by wastewater: A systematic review; meta-analysis and health risk assessment. Food Res. Int. 2019, 125, 108518. [Google Scholar] [CrossRef]
- Khanam, R.; Kumar, A.; Nayak, A.K.; Shahid, M.; Tripathi, R.; Vijayakumar, S.; Bhaduri, D.; Kumar, U.; Mohanty, S.; Panneerselvam, P.; et al. Metal (loid) s (As, Hg, Se, Pb and Cd) in paddy soil: Bioavailability and potential risk to human health. Sci. Total Environ. 2020, 699, 134330. [Google Scholar] [CrossRef]
- Ugulu, I.; Baslar, S.; Dogan, Y.; Aydin, H. The determination of colour intensity of Rubia tinctorum and Chrozophora tinctoria distributed in Western Anatolia. Biotechnol. Biotechnol. Equip. 2009, 23, 410–413. [Google Scholar] [CrossRef] [Green Version]
- Hussain, M.I.; Muscolo, A.; Farooq, M.; Ahmad, W. Sustainable use and management of non-conventional water resources for rehabilitation of marginal lands in arid and semiarid environments. Agric. Water Manag. 2019, 221, 462–476. [Google Scholar] [CrossRef]
- Khan, Z.I.; Ugulu, I.; Zafar, A.; Mehmood, N.; Bashir, H.; Ahmad, K.; Sana, M. Biomonitoring of heavy metals accumulation in wild plants growing at soon valley, Khushab, Pakistan. Pak. J. Bot. 2021, 53, 247–252. [Google Scholar] [CrossRef] [PubMed]
- Ugulu, I.; Bibi, S.; Khan, Z.I.; Ahmad, K.; Munir, M.; Malik, I.S. Potentially Toxic Metal Accumulation in Spinach (Spinacia oleracea L.) Irrigated with Industrial Wastewater and Health Risk Assessment from Consumption. Bull. Environ. Contam. Toxicol. 2022, 109, 1117–1125. [Google Scholar] [CrossRef] [PubMed]
- Eticha, T.; Hymete, A. Determination of some heavy metals in barley locally grown for brewing and its malt in Ethiopia. J. Bioanal. Biomed. 2015, 7, 171–173. [Google Scholar]
- Atabaki, N.; Shaharuddin, N.A.; Ahmad, S.A.; Nulit, R.; Abiri, R. Assessment of water mimosa (Neptunia oleracea lour.) morphological, physiological, and removal efficiency for phytoremediation of arsenic-polluted water. Plants 2020, 9, 1500. [Google Scholar] [CrossRef]
- Mclean, E.O. Soil pH and lime requirement. In Methods of Soil Analysis, Part 2. Chemical and Microbiological Properties; Page, A.L., Miller, R.H., Keeney, D.R., Eds.; American Society of Agronomy: Madison, WI, USA, 1982; pp. 199–223. [Google Scholar]
- Page, A.L. Methods of Soil Analysis, Part 2. Chemical and Microbiological Properties; Agronomy Society of America; Soil Science Society of America: Madison, WI, USA, 1982. [Google Scholar]
- Richard, L.A. Diagnosis and improvement of saline and alkali soils. In Agriculture Handbook; United States Department of Agriculture: Washington, DC, USA, 1954; Volume 60. [Google Scholar]
- Armbruster, D.A.; Tillman, M.D.; Hubbs, L.M. Limit of detection (LQD)/limit of quantitation (LOQ): Comparison of the empirical and the statistical methods exemplified with GC–MS assays of abused drugs. Clin. Chem. 1994, 40, 1233–1238. [Google Scholar] [CrossRef]
- Ugulu, I. A quantitative investigation on recycling attitudes of gifted/talented students. Biotechnol. Biotechnol. Equip. 2015, 29, 20–26. [Google Scholar] [CrossRef]
- Zhuang, P.; McBride, M.B.; Xia, H.; Li, N.; Li, Z. Health risk from heavy metals via consumption of food crops in the vicinity of Dabaoshan mine, South China. Sci. Total Environ. 2009, 407, 1551–1561. [Google Scholar] [CrossRef]
- Yorek, N.; Sahin, M.; Ugulu, I. Students’ representations of the cell concept from 6 to 11 grades: Persistence of the “fried-egg model”. Int. J. Physic. Sci. 2010, 5, 15–24. [Google Scholar]
- Praspaliauskas, M.; Pedišius, N. A review of sludge characteristics in Lithuania’s wastewater treatment plants and perspectives of its usage in thermal processes. Renew. Sustain. Energy Rev. 2017, 67, 899–907. [Google Scholar] [CrossRef]
- Ugulu, I. Efficacy of recycling education integrated with ecology course prepared within the context of enrichment among gifted students. Int. J. Educ. Sci. 2019, 26, 49–58. [Google Scholar] [CrossRef] [Green Version]
- Domańska, J.; Leszczyńska, D.; Badora, A. The Possibilities of Using Common Buckwheat in Phytoremediation of Mineral and Organic Soils Contaminated with Cd or Pb. Agriculture 2021, 11, 562. [Google Scholar] [CrossRef]
- Rocha, C.S.; Rocha, D.C.; Kochi, L.Y.; Carneiro, D.N.M.; dos Reis, M.V.; Gomes, M.P. Phytoremediation by ornamental plants: A beautiful and ecological alternative. Environ. Sci. Pollut. Res. Int. 2022, 29, 3336–3354. [Google Scholar] [CrossRef]
- Gohain, S.B.; Bordoloi, S. Impact of municipal solid waste disposal on the surface water and sediment of adjoining wetland Deepor Beel in Guwahati, assam, India. Environ. Monit. Assess. 2021, 193, 278. [Google Scholar] [CrossRef]
- Dutch Standard. Circular on Target Values and Intervention Values for Soil Remediation; Dutch Standard: Amsterdam, The Netherlands, 2000. [Google Scholar]
- Singh, A.; Sharma, R.K.; Agrawal, M.; Marshall, F.M. Health risk assessment of heavy metals via dietary intake of foodstuffs from the wastewater irrigated site of a dry tropical area of India. Food Chem. Toxicol. 2010, 48, 611–619. [Google Scholar] [CrossRef]
- ALINORM 01/ 12A; Food Additive and Contaminants. Joint FAO/WHO Food Standards Programme. Codex Alimentarius Commission: Rome, Italy, 2001; pp. 1–289.
- Sajjad, K.; Farooq, R.; Shahbaz, S.; Khan, M.A.; Sadique, M. Health risk assessment of heavy metals for population via consumption of vegetables. World Appl. Sci. J. 2009, 6, 1602–1606. [Google Scholar]
- Wajid, K.; Ahmad, K.; Khan, Z.I.; Nadeem, M.; Bashir, H.; Chen, F.; Ugulu, I. Effect of organic manure and mineral fertilizers on bioaccumulation and translocation of trace metals in maize. Bull. Environ. Contam. Toxicol. 2020, 104, 649–657. [Google Scholar] [CrossRef]
- Ippolito, J.A.; Laird, D.A.; Busscher, W.J. Environmental Benefits of Biochar. J. Environ. Qual. 2012, 41, 967–972. [Google Scholar] [CrossRef] [Green Version]
- USEPA. Volume II-Food Ingestion Factors. In Exposure Factors Handbook; EPA/ 600//P-95/002Fa; Office of Research and Development; US Environmental Protection Agency: Washington, DC, USA, 1997. [Google Scholar]
- Olaniran, A.O.; Balgobind, A.; Pillay, B. Bioavailability of Heavy Metals in Soil: Impact on Microbial Biodegradation of Organic Compounds and Possible Improvement Strategies. Int. J. Mol. Sci. 2013, 14, 10197–10228. [Google Scholar] [CrossRef] [Green Version]
- Badawy, K.R.; Abd El-Gawad, A.M.; Osman, H.E. Health risks assessment of heavy metals and microbial contamination in water, soil and agricultural foodstuff from wastewater irrigation at Sahl El-Hessania area, Egyptian. J. Appl. Sci. Res. 2013, 9, 3091–3107. [Google Scholar]
- Chabukdhara, M.; Nema, A.K. Heavy Metals in Water, Sediments, and Aquatic Macrophytes: River Hindon, India. J. Hazard. Toxic Radioact. Waste 2012, 16, 273–281. [Google Scholar] [CrossRef]
- Vardhan, K.H.; Ponnusamy, S.K.; Panda, R.C. A review on heavy metal pollution, toxicity and remedial measures: Current trends and future perspectives. J. Mol. Liq. 2019, 290, 111197. [Google Scholar] [CrossRef]
- Tariq, F.; Wang, X.; Saleem, M.H.; Khan, Z.I.; Ahmad, K.; Saleem Malik, I.; Munir, M.; Mahpara, S.; Mehmood, N.; Ahmad, T.; et al. Risk Assessment of Heavy Metals in Basmati Rice: Implications for Public Health. Sustainability 2021, 13, 8513. [Google Scholar] [CrossRef]
- Chary, N.; Kamala, C.T.; Raj, D.S. Assessing risk of heavy metals from consuming food grown on sewage irrigated soils and food chain transfer. Ecotoxicol. Environ. Saf. 2008, 69, 513–524. [Google Scholar] [CrossRef]
- Othman, A.A.; Ali, R.; Othman, A.M.; Ali, J.; Habila, M.A. Assessment of toxic metals in wheat crops grown in selected soils, irrigated by different water sources. Arab. J. Chem. 2016, 9, 1555–1562. [Google Scholar] [CrossRef] [Green Version]
- Chiroma, T.M.; Ebewele, R.O.; Hymore, F.K. Comparative assessment of heavy metal levels in soil, vegetables and urban grey wastewater used for irrigation in Yola and Kano. Int. Ref. J. Eng. Sci. 2014, 3, 1–9. [Google Scholar]
- Zuo, S.; Dai, S.; Li, Y.; Tang, J.; Ren, Y. Analysis of heavy metal sources in the soil of riverbanks across an urbanization gradient. Int. J. Environ. Res. Public Health 2018, 15, 2175. [Google Scholar] [CrossRef] [Green Version]
- Clemens, S.; Ma, J.F. Toxic Heavy Metal and Metalloid Accumulation in Crop Plants and Foods. Annu. Rev. Plant Biol. 2016, 67, 489–512. [Google Scholar] [CrossRef] [Green Version]
- Barčauskaitė, K.; Mažeika, R. Chemical composition and risk assessment of spring barley grown in artificially contaminated soil. Environ. Sci. Pollut. Res. 2021, 28, 21684–21695. [Google Scholar] [CrossRef]
- Vymazal, J. Concentration is not enough to evaluate accumulation of heavy metals and nutrients in plants. Sci. Total Environ. 2016, 544, 495–498. [Google Scholar] [CrossRef]
- Ugulu, I.; Unver, M.C.; Dogan, Y. Potentially toxic metal accumulation and human health risk from consuming wild Urtica urens sold on the open markets of Izmir. Euro-Mediterr. J. Environ. Integr. 2019, 4, 36. [Google Scholar] [CrossRef]
- Teschke, R. Aluminum, Arsenic, Beryllium, Cadmium, Chromium, Cobalt, Copper, Iron, Lead, Mercury, Molybdenum, Nickel, Platinum, Thallium, Titanium, Vanadium, and Zinc: Molecular Aspects in Experimental Liver Injury. Int. J. Mol. Sci. 2022, 23, 12213. [Google Scholar] [CrossRef]
- Masindi, V.; Muedi, K.L. Environmental contamination by heavy metals. Heavy Met. 2018, 10, 115–132. [Google Scholar]
- Qadir, M.; Ghafoor, A.; Murtaza, G.; Murtaza, G. Cadmium concentration in vegetables grown on urban soils irrigated with untreated municipal sewage. Environ. Dev. Sustain. 2000, 2, 13–21. [Google Scholar] [CrossRef]
- Rai, P.K.; Lee, S.S.; Zhang, M.; Tsang, Y.F.; Kim, K.-H. Heavy metals in food crops: Health risks, fate, mechanisms, and management. Environ. Int. 2019, 125, 365–385. [Google Scholar] [CrossRef]
- Song, T.; An, Y.; Cui, G.; Tong, S.; He, J. Bioconcentrations and health risk assessment of heavy metals in crops in the Naoli River Basin agricultural area, Sanjiang Plain, China. Environ. Earth Sci. 2021, 80, 452. [Google Scholar] [CrossRef]
- Dvořáková, T.B.; Vymazal, J. Distribution of heavy metals in Phragmites australis growing in constructed treatment wetlands and comparison with natural unpolluted sites. Ecol. Eng. 2022, 175, 106505. [Google Scholar]
- Alloway, B.J. Heavy Metals in Soils; Springer: Dordrecht, The Netherlands, 2013. [Google Scholar]
- Rattan, R.K.; Datta, S.P.; Chhonkar, P.K.; Suribabu, K.; Singh, A.K. Long-term impact of irrigation with sewage effluents on heavy metal content in soils, crops and groundwater—A case study. Agric. Ecosyst. Environ. 2005, 109, 310–322. [Google Scholar] [CrossRef]
- Klink, A. A comparison of trace metal bioaccumulation and distribution in Typha latifolia and Phragmites australis: Implication for phytoremediation. Environ. Sci. Pollut. Res. 2017, 24, 3843–3852. [Google Scholar] [CrossRef]
- Mondal, S.C.; Sarma, B.; Farooq, M.; Nath, D.J.; Gogoi, N. Cadmium bioavailability in acidic soils under bean cultivation: Role of soil additives. Int. J. Environ. Sci. Technol. 2020, 17, 153–160. [Google Scholar] [CrossRef]
- Ugulu, I.; Khan, Z.I.; Rehman, S.; Ahmad, K.; Munir, M.; Bashir, H.; Nawaz, K. Trace metal accumulation in Trigonella foenum-graecum irrigated with wastewater and human health risk of metal access through the consumption. Bull. Environ. Contam. Toxicol. 2019, 103, 468–475. [Google Scholar] [CrossRef]
- Briffa, J.; Sinagra, E.; Blundell, R. Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon 2020, 6, e04691. [Google Scholar] [CrossRef]
- EFSA, European Food Safety Authority. Panel on Additives and Products or Substances used in Animal Feed (FEEDAP). EFSA J. 2013, 11, 3287. [Google Scholar]
- WHO. Trace Elements in Human Nutrition and Health; World Health Organization: Geneva, Switzerland, 1996.
- Khan, S.; Cao, Q.; Zheng, Y.M.; Huang, Y.Z.; Zhu, Y.G. Health risks of heavy metals in contaminated soils and food crops irrigated with wastewater in Beijing, China. Environ. Pollut. 2008, 152, 686–692. [Google Scholar] [CrossRef]
Element | Detection Limit |
---|---|
Lead (Pb) | 0.008 (Flame AA) |
Cadmium (Cd) | 0.001 (Flame AA) |
Nickel (Ni) | 0.003 (Flame AA) |
Iron (Fe) | 0.006 (Flame AA) |
Copper (Cu) | 0.002 (Flame AA) |
Manganese (Mn) | 0.002 (Flame AA) |
Zinc (Zn) | 0.001 (Flame AA) |
Cobalt (Co) | 0.003 (Flame AA) |
Source of Variation | Degree of Freedom | Mean Squares | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Cd | Co | Cr | Cu | Fe | Mn | Ni | Pb | Zn | ||
Treatments | 1 | 0.244 ns | 0.002 ns | 0.004 ns | 0.482 ns | 7.964 * | 0.388 ns | 0.246 ns | 0.001 ns | 0.009 *** |
Error | 6 | 0.027 | 0.066 | 0.003 | 0.031 | 0.531 | 0.071 | 0.239 | 0.022 | 0.003 |
Source of Variation | Degree of Freedom | Metal | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Pb | Cd | Ni | Fe | Cu | Mn | Cr | Zn | Co | ||
Sites | 1 | 0.03 *** | 0.13 ns | 0.08 ns | 121.41 ns | 1.04 ns | 0.16 ns | 0.79 ns | 0.84 ns | 0.03 *** |
Error | 6 | 0.003 | 0.003 | 0.006 | 1.409 | 0.033 | 0.090 | 0.032 | 0.195 | 0.002 |
Physico-Chemical Parameters | pH | EC (dsm−1) | Organic Matter (%) | Texture Class |
---|---|---|---|---|
Site 1 | 8.060 ± 0.0129 | 1.8040 ± 0.0012 | 0.5565 ± 0.0006 | Loamy soil |
Site 2 | 7.640 ± 0.0129 | 7.660 ± 0.0129 | 0.694 ± 0.0020 | Loamy soil |
MS | 0.353 ns | 68.585 ns | 0.038 ** | Loamy soil |
Source of Variation | Degree of Freedom | Metal | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Pb | Cd | Ni | Fe | Cu | Mn | Cr | Zn | Co | ||
Sites | 1 | 0.006 *** | 0.01 * | 0.03 ** | 0.2 ns | 0.06 ns | 0.23 ns | 0.007 *** | 0.06 ns | 0.008 *** |
Error | 6 | 0.000 | 0.002 | 0.007 | 0.034 | 0.033 | 0.026 | 0.003 | 0.042 | 0.001 |
Study Site | Metal/Metalloid | ||||||||
---|---|---|---|---|---|---|---|---|---|
Pb | Cd | Ni | Fe | Mn | Cu | Cr | Zn | Co | |
Site 1 | 0.256 | 0.687 | 0.498 | 0.284 | 0.615 | 0.527 | 0.337 | 5.702 | 0.070 |
Site 2 | 0.374 | 0.644 | 0.520 | 0.317 | 0.763 | 0.439 | 0.253 | 1.836 | 0.149 |
Study Site | Metal/Metalloid | ||||||||
---|---|---|---|---|---|---|---|---|---|
Pb | Cd | Ni | Fe | Mn | Cu | Cr | Zn | Co | |
Site 1 | 0.416 | 22.91 | 3.007 | 0.038 | 1.407 | 0.516 | 0.675 | 4.199 | 0.070 |
Site 2 | 0.610 | 21.48 | 3.144 | 0.042 | 1.172 | 0.640 | 0.506 | 1.352 | 0.149 |
Study Site | Metal | Pb | Cd | Ni | Fe | Mn | Cu | Cr | Zn | Co |
---|---|---|---|---|---|---|---|---|---|---|
Site 1 | DIM (mg/kg/day) | 0.003 | 0.135 | 0.015 | 0.698 | 0.143 | 0.024 | 0.007 | 1.482 | 7.000 |
HRI | 0.090 | 135.6 | 0.781 | 0.997 | 3.504 | 0.623 | 0.004 | 4.941 | 0.002 | |
Site 2 | DIM (mg/kg/day) | 0.005 | 0.144 | 0.018 | 0.966 | 0.178 | 0.041 | 0.008 | 1.666 | 0.002 |
HRI | 0.146 | 144.8 | 0.939 | 1.380 | 4.337 | 1.046 | 0.005 | 5.554 | 0.003 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ugulu, I.; Bibi, S.; Khan, Z.I.; Ahmad, K.; Munir, M.; Malik, I.S.; Ejaz, A.; Alrefaei, A.F. Biomonitoring of Heavy Metal and Metalloid Contamination in Industrial Wastewater Irrigated Areas Using Sugar Beet (Brassica oleracea L.). Sustainability 2023, 15, 9694. https://doi.org/10.3390/su15129694
Ugulu I, Bibi S, Khan ZI, Ahmad K, Munir M, Malik IS, Ejaz A, Alrefaei AF. Biomonitoring of Heavy Metal and Metalloid Contamination in Industrial Wastewater Irrigated Areas Using Sugar Beet (Brassica oleracea L.). Sustainability. 2023; 15(12):9694. https://doi.org/10.3390/su15129694
Chicago/Turabian StyleUgulu, Ilker, Shehnaz Bibi, Zafar Iqbal Khan, Kafeel Ahmad, Mudasra Munir, Ifra Saleem Malik, Abid Ejaz, and Abdulwahed Fahad Alrefaei. 2023. "Biomonitoring of Heavy Metal and Metalloid Contamination in Industrial Wastewater Irrigated Areas Using Sugar Beet (Brassica oleracea L.)" Sustainability 15, no. 12: 9694. https://doi.org/10.3390/su15129694
APA StyleUgulu, I., Bibi, S., Khan, Z. I., Ahmad, K., Munir, M., Malik, I. S., Ejaz, A., & Alrefaei, A. F. (2023). Biomonitoring of Heavy Metal and Metalloid Contamination in Industrial Wastewater Irrigated Areas Using Sugar Beet (Brassica oleracea L.). Sustainability, 15(12), 9694. https://doi.org/10.3390/su15129694