Green Synthesis of Nanoparticles Mediated by Deep Eutectic Solvents and Their Applications in Water Treatment
Abstract
:1. Introduction
2. DES in Nanoparticles Synthesis
- DES are low in cost and easy to produce.
- Functionalizing nanoparticles with DES is an efficient and environmentally friendly method for the surface and properties modification of the material. By using a DES, it is possible to attach various functional groups to the NP´s surface. Functionalization can change the nanoparticle’s surface reactivity or add functionality for further processing or characterization.
- DES are effective in the removal of surface contaminants from NPs.
- DES help to stabilize NPs and keep them from clumping together.
3. Application of DES NPs in Waste Water Treatment
3.1. DES-Modified Carbon Nanotubes for Waste Water Treatment
DES Type | Molar Ratio | Nanomaterial | Functionalization/Solvent Methods | Remarks and Details | Application | Ref. | |
---|---|---|---|---|---|---|---|
Salt | HBD | (Salt:HBD) | |||||
ChCl | EG | 1:2 | CNTs | Sonication with DES Oxidation with KMnO4 + sonication with DES | Significant purification of CNTs. Addition of more oxygen-containing groups Increment of the surface area | Novel adsorbents for methyl orange removal Optimal conditions: pH = 2.0, adsorbent dosage > 10 mg, contact time > 60 min. | [53] |
N,N-diethylethanolammonium chloride | EG | 1:3 | |||||
Tetra-n-butyl ammonium bromide (TBAB) | Glycerol | 1:4 | MWCNT | Oxidation with KMnO4 + sonication with DES | High adsorption efficiency | Highly efficient adsorbent for nickel removal 115.8 mg g−1 and 93% of adsorption capacity and maximum removal percentage, respectively. | [57] |
ChCl | EG | 1:2 | CNTs | Acidification with H2SO4 + mixed with DES | Functionalization without CNT structure damage | Adsorbent for 2,4-DCP from water Maximum adsorption capacity 390.35 mg g−1 A neuronal network model was applied to predict 2,4-DCP adsorption | [54] |
Methyl-triphenylphosphonium bromide (MTPB) | Glycerol | 1:3 | CNTs | Oxidation with KMnO4 + Sonication with DES Acidification with HNO3 + sonication with DES | Significant surface area increment | Novel adsorbents for As3+ Maximum adsorption capacity 23.4 mg g−1 for KMNO4 and MTPB DES-functionalized CNTs | [51] |
Benzyltriphenylphosphonium chloride (BTPC) | 1:16 | ||||||
ChCl | Glycerol | 1:2 | CNTs | Oxidation with KMnO4 + sonication with DESAcidification with HNO3/H2SO4 + sonication with DES | Uptake capacities were optimized by RSM-CCD experimental design | Novel adsorbent for Pb(II) removal Optimum conditions: pH = 5, dosage = 5 mg, contact time = 15 min Maximum adsorption capacity of 288.4 mg g−1 | [52] |
Ethylene glycol | 1:2 | ||||||
Triethylene glycol | 1:3 | ||||||
Diethylene glycol | 1:3 | ||||||
Urea | 1:2 | ||||||
Maleonic acid | 1:1 | ||||||
Tetra-n-butyl ammonium bromide (TBAB) | Glycerol | 1:1–1:10 | CNTs | Oxidation with KMnO4 + Sonication with DESAcidification with HNO3+ Sonication with DES | Significantly increase in CNT surface area from 123 to 204 m2 g−1 Presence of new functional groups | Novel adsorbents for Hg2+ removal Maximum adsorption capacity 177.76 mg g−1 Optimal removal conditions: pH = 6.4, adsorbent dosage = 6.0 mg, contact time = 45 min | [56] |
Cetyltrimethylammonium bromide | Glycerol | 1:2 | CNT/ZnCo2O4 | DES functionalization | The material can be reused up to 5 times with little or no destruction | Eosin dye adsorption in an aqueous medium Adsorption was favored between pH range 2–7 | [55] |
3.2. DES-Modified Graphene Oxide for Waste Water Treatment
DES Type | Molar Ratio | Nanomaterial | Functionalization/Solvent Methods | Remarks and Details | Application | Ref. | |
---|---|---|---|---|---|---|---|
Salt | HBD | (Salt:HBD) | |||||
ChCl | Urea | 1:2 | Fe3O4, graphene oxide nanosheets | DES as coupling agent for GO-Fe3O4 nanohybrids (GO to Fe3O4 mass ratios of 1:1, 1:2, 1:5) | Successful coupling of GO and Fe3O4 NPs | Used for the removal of organic dyes and lead (II) Complete removal of 25 mg L−1 of MB within 5 min Lead (II): maximum adsorption capacity of 120.5 mg g−1 | [50] |
ChCl | Oxalic acid | 1:2 | Ni3V2O8, N-doped reduced graphene oxide | DES as a coupling agent | Improved structural and morphological characteristics. Enhanced activity for H2 evolution and dye degradation Increased band gap and conductivity | The efficiency of degradation under Vis was higher than under UV irradiation (94.6 and 96.7% removal capacity for MO and CV, respectively) | [63] |
ChCl | Itaconic acid/3-mercaptopropionic acid | 2:1:1 | Magnetic graphene nanoparticles | THS-DES@M-GO functionalization | Addition of -SH groups Composites have good stability and are easily regenerated | Better removal of Hg2+ than not functionalized particlesMaximum adsorption capacity of 215.1 mg g−1 | [61] |
ChCl | Ethylene glycol | 1:2 | GO nanosheets, ZnO | All materials mixed | Efficient photocatalyst under UVA irradiation | Cefixime trihydrate degradation (86.2% removal at 4.03 pH) | [62] |
3.3. DES for Iron Oxide Nanoparticles for Waste Water Treatment
DES Type | Molar Ratio | Nanomaterial | Functionalization/Solvent Methods | Remarks and Details | Application | Ref. | |
---|---|---|---|---|---|---|---|
Salt | HBD | (Salt:HBD) | |||||
Tetraethylammonium chloride (TEAC) | Lactic acid | 1:2 | Magnetic (Fe3O4) metal-organic framework (MUiO-66-NH2) composites | Previous EDC/NHS chemistry treatment then stirred with DES | Good adsorption capacity, prominent anti-interference ability and outstanding renewability and re-usability DES-MUiO-66-NH2 adsorbed pharmaceuticals and personal care products (PPCPs) through electrostatic interaction, chelation, hydrophobic interaction, π-π stacking, and hydrogen bonding. | Used in the adsorption of PPCPs PPCP: solutions of mefenamic acid, ibuprofen, indomethacin and diclofenac | [64] |
Tetrabutylammonium chloride (TBAC) | 1:2 | ||||||
Benzyltributylammonium chloride (BTBAC) | 1:2 | ||||||
Benzyl tributyl ammonium bromide (BTBAB) | 1:2 | ||||||
Dodecyltributylammonium chloride (DTBAC) | 1:2 | ||||||
Tetrabutylammonium chloride (TBAC) | Glycolic acid | 1:2 | |||||
Benzyltributylammonium chloride (BTBAC) | 1:2 | ||||||
ChCl | BuIM | 1:1 | Fe3O4@MIP | DES as co-monomer for template pre-polymerization | The presence of ChCl-BuIM resulted in the strong formation of stable complexes through the π−π interaction and hydrogen bonding between adsorbents and adsorbatesMultilayer adsorption occurred | Used as adsorbent for naproxen They could be applied to imprint other non-steroidal anti-inflammatory drugs | [65] |
ChCl | p-aminophenol | 1:2 | Cobalt ferrite nanoparticles | Pre-treated of NPs with sodium dodecyl + DES sonication | DES had two important roles; as a coating for the nanoparticles and as a complexing agent | Used as nano-sorbent for the extraction of Zn(II), Ni(II), Cu(II), Pb(II), and Hg(II) | [72] |
ChCl | Citric acid | 2:1 | Iron oxide NPs | DES as a non-toxic solvent for NP synthesis | Superparamagnetic Fe3O4 nanocubes DES played a crucial role in the control of size and morphology | Used for photo-degradation of Rhodamine B 94% dye degradation in 180 min under UV irradiation Stable up to five successive cycles | [68] |
ChCl | Urea | 1:2 | Cu-Fe3O4 metal NPs | DES as a non-toxic solvent for NP synthesis | Evidence of substitution of Fe2+ with Cu2+ at octahedral sites Cu2+ ions enhance the regeneration of Fenton active species Fe2+ by reduction of Fe3+ Higher peroxidase-like activity | Exemplary degradation of Rhodamine B Faster decomposition compared to undoped materials (0.584 vs. 0.153 h−1, respectively) Enhanced H2O2-activation at pH = 7 and 25 °C | [69] |
ChCl | Urea | 1:2 | Fe3O4 magnetic NPs | Oxidative precipitation + ionothermal synthesis | Magnetic NPs as efficient and stable catalysts | A Fenton-like catalyst for Rhodamine B degradation First order rate constant 0.0376 min−1) >98% degradation efficiency of Rhodamine B in 2 h | [70] |
d-l-menthol | Pyruvic acid | 1:2 | Magnetic monoliths composed of polyacrylamide-ϒ– Fe2O3 NPs | Green internal phase for the formulation of high internal phase formulations | Allowed formulation of stable emulsions used as templates in the fabrication of polyacrylamide macroporous materials | Used for methylene blue adsorption Maximum adsorption capacity reported (>350 mg g−1) Reusable materials for more than 6 adsorption-desorption cycles | [71] |
Acetic acid | 1:1 | ||||||
Lactic acid | 1:2 | ||||||
Lauric acid | 2:1 | ||||||
Dimethyl ammonium chloride | 4-chlorophenol | 1:5 | Fe3O4@PDA | DES functionalization | This method has low limit of detection (LOD), good repeatability, high pre-concentration factor, and extraction recoveries | For detecting sulfonylurea herbicides in water samples | [66] |
Menthol | Acrylic acid | 2:1 | Magnetic poly (AA-menthol DES) hydrogel | DES used as a functional monomer | Hydrogels with large specific surface area and enhanced selectivity Its use can be considered a green extraction technique The average enrichment factor (58) indicates the effectiveness of the hydrogel for extracting the analytes. Low LODs and a relatively wide linear range show the sensitivity of this method | Use for pesticides extraction, such as including lindane, alachlor, aldrin, bromophos methyl, heptachlor epoxide, α-endosulfan, hexaconazole, dieldrin, endrin, β- endosulfan, diazinon, endosulfan sulfate, bromopropylate, fenpropathrin, tetradifon, and fenvalerate | [67] |
ChCl | Urea | 1:2 | Spherical Fe3O4 magnetic NPs | DES for co-precipitation | Spherical Fe3O4 magnetic NPs (Fe3O4-DES) with an average particle size of ca. 10.5 nm | Compared to Fe3O4 made in water, Fe3O4-DES nanoparticles show significantly improved adsorption capacity of Cu2þ after surface modification with EDTA (28.0 vs. 21.0 mg/ gFe3O4) and are easy to be recovered by an external magnet | [73] |
ChCl | Sucrose | 2:1 | Iron nanoparticles (Fe NPs) | DES as a stabilizing and capping agent | Synthesis of amorphous Fe NPsusing cane sugar-based DES as a bio-reductant and a capping agent by a one-pot co-precipitation method | The nanocatalyst displays excellent dye degradation efficiency (96.06%) within 30 min | [74] |
3.4. Miscellaneous Materials
4. Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yavuz, Y.; Ögütveren, B. Treatment of Industrial Estate Wastewater by the Application of Electrocoagulation Process Using Iron Electrodes. J. Environ. Manage. 2018, 207, 151–158. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.; Mittal, Y.; Panja, R.; Prajapati, K.B.; Yadav, A.K. Conventional Wastewater Treatment Technologies. Curr. Dev. Biotechnol. Bioeng. Strateg. Perspect. Solid Waste Wastewater Manag. 2021, 47–75. [Google Scholar] [CrossRef]
- Zamora-Ledezma, C.; Negrete-Bolagay, D.; Figueroa, F.; Zamora-Ledezma, E.; Ni, M.; Alexis, F.; Guerrero, V.H. Heavy Metal Water Pollution: A Fresh Look about Hazards, Novel and Conventional Remediation Methods. Environ. Technol. Innov. 2021, 22, 101504. [Google Scholar] [CrossRef]
- Guerra, F.D.; Attia, M.F.; Whitehead, D.C.; Alexis, F. Nanotechnology for Environmental Remediation: Materials and Applications. Molecules 2018, 23, 1760. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gnanamoorthy, G.; Ali, H.; Yadav, V.K.; Ali, D.; Kumar, G.; Narayanan, V. New Development and Photocatalytic Performance and Antimicrobial Activity of α-NH4(VO2)(HPO4) Nanosheets. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2022, 276, 121250. [Google Scholar] [CrossRef] [PubMed]
- Gnanamoorthy, G.; Yadav, V.K.; Ali, D.; Ramar, K.; Kumar, G.; Narayanan, V. New Designing (NH4)2SiP4O13 Nanowires and Effective Photocatalytic Degradation of Malachite Green and Antimicrobial Properties. Chem. Phys. Lett. 2022, 803, 139817. [Google Scholar] [CrossRef]
- Monsef Khoshhesab, Z.; Souhani, S. Adsorptive Removal of Reactive Dyes from Aqueous Solutions Using Zinc Oxide Nanoparticles. J. Chin. Chem. Soc. 2018, 65, 1482–1490. [Google Scholar] [CrossRef]
- Jamkhande, P.G.; Ghule, N.W.; Bamer, A.H.; Kalaskar, M.G. Metal Nanoparticles Synthesis: An Overview on Methods of Preparation, Advantages and Disadvantages, and Applications. J. Drug Deliv. Sci. Technol. 2019, 53, 101174. [Google Scholar] [CrossRef]
- Mittal, A.K.; Chisti, Y.; Banerjee, U.C. Synthesis of Metallic Nanoparticles Using Plant Extracts. Biotechnol. Adv. 2013, 31, 346–356. [Google Scholar] [CrossRef]
- Panigrahi, S.; Kundu, S.; Ghosh, S.K.; Nath, S.; Pal, T. General Method of Synthesis for Metal Nanoparticles. J. Nanopart. Res. 2004, 6, 411–414. [Google Scholar] [CrossRef]
- Tomé, L.C.; Mecerreyes, D. Emerging Ionic Soft Materials Based on Deep Eutectic Solvents. J. Phys. Chem. B 2020, 124, 8465–8478. [Google Scholar] [CrossRef] [PubMed]
- Kamat, P.V.; Meisel, D. Nanoparticles in Advanced Oxidation Processes. Curr. Opin. Colloid Interface Sci. 2002, 7, 282–287. [Google Scholar] [CrossRef]
- Bethi, B.; Sonawane, S.H.; Bhanvase, B.A.; Gumfekar, S.P. Nanomaterials-Based Advanced Oxidation Processes for Wastewater Treatment: A Review. Chem. Eng. Process.—Process Intensif. 2016, 109, 178–189. [Google Scholar] [CrossRef]
- Chan, S.H.S.; Wu, T.Y.; Juan, J.C.; Teh, C.Y. Recent Developments of Metal Oxide Semiconductors as Photocatalysts in Advanced Oxidation Processes (AOPs) for Treatment of Dye Waste-Water. J. Chem. Technol. Biotechnol. 2011, 86, 1130–1158. [Google Scholar] [CrossRef]
- Bokare, A.D.; Choi, W. Review of Iron-Free Fenton-like Systems for Activating H2O2 in Advanced Oxidation Processes. J. Hazard. Mater. 2014, 275, 121–135. [Google Scholar] [CrossRef]
- Miklos, D.B.; Remy, C.; Jekel, M.; Linden, K.G.; Drewes, J.E.; Hübner, U. Evaluation of Advanced Oxidation Processes for Water and Wastewater Treatment—A Critical Review. Water Res. 2018, 139, 118–131. [Google Scholar] [CrossRef] [PubMed]
- Jiang, P.; Ren, D.; He, D.; Fu, W.; Wang, J.; Gu, M. An Easily Sedimentable and Effective TiO2 Photocatalyst for Removal of Dyes in Water. Sep. Purif. Technol. 2014, 122, 128–132. [Google Scholar] [CrossRef]
- Pan, Y.; Zhang, Y.; Huang, Y.; Jia, Y.; Chen, L. Enhanced Photocatalytic Oxidation Degradability for Real Cyanide Wastewater by Designing Photocatalyst GO/TiO2/ZSM-5: Performance and Mechanism Research. Chem. Eng. J. 2022, 428, 131257. [Google Scholar] [CrossRef]
- Asencios, Y.J.O.; Lourenço, V.S.; Carvalho, W.A. Removal of Phenol in Seawater by Heterogeneous Photocatalysis Using Activated Carbon Materials Modified with TiO2. Catal. Today 2022, 388–389, 247–258. [Google Scholar] [CrossRef]
- Si, H.; Zhou, M.; Fang, Y.; He, J.; Yang, L.; Wang, F. Photocatalytic Concrete for NOx Degradation: Influence Factors and Durability. Constr. Build. Mater. 2021, 298, 123835. [Google Scholar] [CrossRef]
- Hwang, J.Y.; Moon, G.H.; Kim, B.; Tachikawa, T.; Majima, T.; Hong, S.; Cho, K.; Kim, W.; Choi, W. Crystal Phase-Dependent Generation of Mobile OH Radicals on TiO2: Revisiting the Photocatalytic Oxidation Mechanism of Anatase and Rutile. Appl. Catal. B Environ. 2021, 286, 119905. [Google Scholar] [CrossRef]
- Conde-Rivera, L.R.; Suarez-Escobar, A.F.; Marin-Perez, J.J.; Junco-Rodriguez, M.J.; Lopez-Suarez, F.E. TiO2 Supported on Activated Carbon from Tire Waste for Ibuprofen Removal. Mater. Lett. 2021, 291, 129590. [Google Scholar] [CrossRef]
- Wang, L.; Ali, J.; Zhang, C.; Mailhot, G.; Pan, G. Simultaneously Enhanced Photocatalytic and Antibacterial Activities of TiO2/Ag Composite Nanofibers for Wastewater Purification. J. Environ. Chem. Eng. 2020, 8, 102104. [Google Scholar] [CrossRef]
- Abodif, A.M.; Abodif, A.M.; Meng, L.; Ma, S.; Ahmed, A.S.A.; Belvett, N.; Wei, Z.Z.; Ning, D. Mechanisms and Models of Adsorption: TiO2-Supported Biochar for Removal of 3,4-Dimethylaniline. ACS Omega 2020, 5, 13630–13640. [Google Scholar] [CrossRef] [PubMed]
- Xu, N.; Cheng, X.; Zhou, K.; Xu, X.; Li, Z.; Chen, J.; Wang, D.; Li, D. Facilitated Transport of Titanium Dioxide Nanoparticles via Hydrochars in the Presence of Ammonium in Saturated Sands: Effects of PH, Ionic Strength, and Ionic Composition. Sci. Total Environ. 2018, 612, 1348–1357. [Google Scholar] [CrossRef] [PubMed]
- Dong, H.; Zeng, G.; Tang, L.; Fan, C.; Zhang, C.; He, X.; He, Y. An Overview on Limitations of TiO2-Based Particles for Photocatalytic Degradation of Organic Pollutants and the Corresponding Countermeasures. Water Res. 2015, 79, 128–146. [Google Scholar] [CrossRef] [PubMed]
- Abbott, A.P.; Capper, G.; Davies, D.L.; Rasheed, R.K.; Tambyrajah, V. Novel Solvent Properties of Choline Chloride/Urea Mixtures. Chem. Commun. 2003, 39, 70–71. [Google Scholar] [CrossRef] [Green Version]
- Del Monte, F.; Carriazo, D.; Serrano, M.C.; Gutiérrez, M.C.; Ferrer, M.L. Deep Eutectic Solvents in Polymerizations: A Greener Alternative to Conventional Syntheses. ChemSusChem 2014, 7, 999–1009. [Google Scholar] [CrossRef] [Green Version]
- Cooper, E.R.; Andrews, C.D.; Wheatley, P.S.; Webb, P.B.; Wormald, P.; Morris, R.E. Ionic Liquids and Eutectic Mixtures as Solvent and Template in Synthesis of Zeolite Analogues. Nature 2004, 430, 1012–1016. [Google Scholar] [CrossRef]
- Smith, E.L.; Abbott, A.P.; Ryder, K.S. Deep Eutectic Solvents (DESs) and Their Applications. Chem. Rev. 2014, 114, 11060–11082. [Google Scholar] [CrossRef] [Green Version]
- Hansen, B.B.; Spittle, S.; Chen, B.; Poe, D.; Zhang, Y.; Klein, J.M.; Horton, A.; Adhikari, L.; Zelovich, T.; Doherty, B.W.; et al. Deep Eutectic Solvents: A Review of Fundamentals and Applications. Chem. Rev. 2021, 121, 1232–1285. [Google Scholar] [CrossRef]
- Liu, Y.; Friesen, J.B.; McAlpine, J.B.; Lankin, D.C.; Chen, S.N.; Pauli, G.F. Natural Deep Eutectic Solvents: Properties, Applications, and Perspectives. J. Nat. Prod. 2018, 81, 679–690. [Google Scholar] [CrossRef]
- Carrera, S.A.; Villarreal, J.S.; Acosta, P.I.; Noboa, J.F.; Gallo-Cordova, A.; Mora, J.R. Designing an Efficient and Recoverable Magnetic Nanocatalyst Based on Ca, Fe and Pectin for Biodiesel Production. Fuel 2022, 310, 122456. [Google Scholar] [CrossRef]
- Gangotena, P.A.; Ponce, S.; Gallo-Córdova, Á.; Streitwieser, D.A.; Mora, J.R. Highly Active MgP Catalyst for Biodiesel Production and Polyethylene Terephthalate Depolymerization. ChemistrySelect 2022, 7, e202103765. [Google Scholar] [CrossRef]
- Munoz, M.; Ponce, S.; Zhang, G.R.; Etzold, B.J.M. Size-Controlled PtNi Nanoparticles as Highly Efficient Catalyst for Hydrodechlorination Reactions. Appl. Catal. B Environ. 2016, 192, 1–7. [Google Scholar] [CrossRef]
- Ponce, S.; Hernandez, M.; Vizuete, K.; Streitwieser, D.A.; Debut, A. Fast Synthesis of Silver Colloids with a Low-Cost 3D Printed Photo-Reactor. Colloid Interface Sci. Commun. 2021, 43, 100457. [Google Scholar] [CrossRef]
- Lee, J.S. Deep Eutectic Solvents as Versatile Media for the Synthesis of Noble Metal Nanomaterials. Nanotechnol. Rev. 2017, 6, 271–278. [Google Scholar] [CrossRef]
- Tomé, L.I.N.; Baião, V.; da Silva, W.; Brett, C.M.A. Deep Eutectic Solvents for the Production and Application of New Materials. Appl. Mater. Today 2018, 10, 30–50. [Google Scholar] [CrossRef]
- Abo-Hamad, A.; Hayyan, M.; AlSaadi, M.A.H.; Hashim, M.A. Potential Applications of Deep Eutectic Solvents in Nanotechnology. Chem. Eng. J. 2015, 273, 551–567. [Google Scholar] [CrossRef]
- Karimi, M.; Hesaraki, S.; Alizadeh, M.; Kazemzadeh, A. One-Pot and Sustainable Synthesis of Nanocrystalline Hydroxyapatite Powders Using Deep Eutectic Solvents. Mater. Lett. 2016, 175, 89–92. [Google Scholar] [CrossRef]
- Liao, H.G.; Jiang, Y.X.; Zhou, Z.Y.; Chen, S.P.; Sun, S.G. Shape-Controlled Synthesis of Gold Nanoparticles in Deep Eutectic Solvents for Studies of Structure–Functionality Relationships in Electrocatalysis. Angew. Chem. Int. Ed. 2008, 47, 9100–9103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adhikari, L.; Larm, N.E.; Bhawawet, N.; Baker, G.A. Rapid Microwave-Assisted Synthesis of Silver Nanoparticles in a Halide-Free Deep Eutectic Solvent. ACS Sustain. Chem. Eng. 2018, 6, 5725–5731. [Google Scholar] [CrossRef]
- Zhang, Q.B.; Hua, Y.X. Electrochemical Synthesis of Copper Nanoparticles Using Cuprous Oxide as a Precursor in Choline Chloride–Urea Deep Eutectic Solvent: Nucleation and Growth Mechanism. Phys. Chem. Chem. Phys. 2014, 16, 27088–27095. [Google Scholar] [CrossRef] [PubMed]
- Jia, H.; Sun, J.; Dong, M.; Dong, H.; Zhang, H.; Xie, X. Deep Eutectic Solvent Electrolysis for Preparing Water-Soluble Magnetic Iron Oxide Nanoparticles. Nanoscale 2021, 13, 19004–19011. [Google Scholar] [CrossRef] [PubMed]
- Gontrani, L.; Donia, D.T.; Maria Bauer, E.; Tagliatesta, P.; Carbone, M. Novel Synthesis of Zinc Oxide Nanoparticles from Type IV Deep Eutectic Solvents. Inorg. Chim. Acta 2023, 545, 121268. [Google Scholar] [CrossRef]
- Mahmoud, M.A. Simultaneous Reduction of Metal Ions by Multiple Reducing Agents Initiates the Asymmetric Growth of Metallic Nanocrystals. Cryst. Growth Des. 2015, 15, 4279–4286. [Google Scholar] [CrossRef]
- Huang, Y.; Shen, F.; La, J.; Luo, G.; Lai, J.; Liu, C.; Chu, G. Synthesis and Characterization of CuCl Nanoparticles in Deep Eutectic Solvents. Part. Sci. Technol. 2013, 31, 81–84. [Google Scholar] [CrossRef]
- Aruchamy, K.; Maalige, R.N.; Halanur, M.M.; Mahto, A.; Nagaraj, R.; Kalpana, D.; Ghosh, D.; Mondal, D.; Nataraj, S.K. Ultrafast Synthesis of Exfoliated Manganese Oxides in Deep Eutectic Solvents for Water Purification and Energy Storage. Chem. Eng. J. 2020, 379, 122327. [Google Scholar] [CrossRef]
- Anjum, M.; Miandad, R.; Waqas, M.; Gehany, F.; Barakat, M.A. Remediation of Wastewater Using Various Nano-Materials. Arab. J. Chem. 2019, 12, 4897–4919. [Google Scholar] [CrossRef] [Green Version]
- Mehrabi, N.; Haq, U.F.A.; Reza, M.T.; Aich, N. Application of Deep Eutectic Solvent for Conjugation of Magnetic Nanoparticles onto Graphene Oxide for Lead(II) and Methylene Blue Removal. J. Environ. Chem. Eng. 2020, 8, 104222. [Google Scholar] [CrossRef]
- AlOmar, M.K.; Alsaadi, M.A.; Hayyan, M.; Akib, S.; Hashim, M.A. Functionalization of CNTs Surface with Phosphonuim Based Deep Eutectic Solvents for Arsenic Removal from Water. Appl. Surf. Sci. 2016, 389, 216–226. [Google Scholar] [CrossRef]
- AlOmar, M.K.; Alsaadi, M.A.; Hayyan, M.; Akib, S.; Ibrahim, R.K.; Hashim, M.A. Lead Removal from Water by Choline Chloride Based Deep Eutectic Solvents Functionalized Carbon Nanotubes. J. Mol. Liq. 2016, 222, 883–894. [Google Scholar] [CrossRef]
- Ibrahim, R.K.; El-Shafie, A.; Hin, L.S.; Mohd, N.S.B.; Aljumaily, M.M.; Ibraim, S.; AlSaadi, M.A. A Clean Approach for Functionalized Carbon Nanotubes by Deep Eutectic Solvents and Their Performance in the Adsorption of Methyl Orange from Aqueous Solution. J. Environ. Manage. 2019, 235, 521–534. [Google Scholar] [CrossRef]
- Ibrahim, R.K.; Fiyadh, S.S.; AlSaadi, M.A.; Hin, L.S.; Mohd, N.S.; Ibrahim, S.; Afan, H.A.; Fai, C.M.; Ahmed, A.N.; Elshafie, A. Feedforward Artificial Neural Network-Based Model for Predicting the Removal of Phenolic Compounds from Water by Using Deep Eutectic Solvent-Functionalized CNTs. Molecules 2020, 25, 1511. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lawal, I.A.; Dolla, T.H.; Pruessner, K.; Ndungu, P. Synthesis and Characterization of Deep Eutectic Solvent Functionalized CNT/ZnCo2O4 Nanostructure: Kinetics, Isotherm and Regenerative Studies on Eosin Y Adsorption. J. Environ. Chem. Eng. 2019, 7, 102877. [Google Scholar] [CrossRef]
- AlOmar, M.K.; Alsaadi, M.A.; Jassam, T.M.; Akib, S.; Ali Hashim, M. Novel Deep Eutectic Solvent-Functionalized Carbon Nanotubes Adsorbent for Mercury Removal from Water. J. Colloid Interface Sci. 2017, 497, 413–421. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rahmati, N.; Rahimnejad, M.; Pourali, M.; Muallah, S.K. Effective Removal of Nickel Ions from Aqueous Solution Using Multi-Wall Carbon Nanotube Functionalized by Glycerol-Based Deep Eutectic Solvent. Colloid Interface Sci. Commun. 2021, 40, 100347. [Google Scholar] [CrossRef]
- Yao, Y.; Bing, H.; Feifei, X.; Xiaofeng, C. Equilibrium and Kinetic Studies of Methyl Orange Adsorption on Multiwalled Carbon Nanotubes. Chem. Eng. J. 2011, 170, 82–89. [Google Scholar] [CrossRef]
- Mohammadi, N.; Khani, H.; Gupta, V.K.; Amereh, E.; Agarwal, S. Adsorption Process of Methyl Orange Dye onto Mesoporous Carbon Material–Kinetic and Thermodynamic Studies. J. Colloid Interface Sci. 2011, 362, 457–462. [Google Scholar] [CrossRef]
- Darwish, A.A.A.; Rashad, M.; AL-Aoh, H.A. Methyl Orange Adsorption Comparison on Nanoparticles: Isotherm, Kinetics, and Thermodynamic Studies. Dye. Pigment. 2019, 160, 563–571. [Google Scholar] [CrossRef]
- Chen, J.; Wang, Y.; Wei, X.; Xu, P.; Xu, W.; Ni, R.; Meng, J. Magnetic Solid-Phase Extraction for the Removal of Mercury from Water with Ternary Hydrosulphonyl-Based Deep Eutectic Solvent Modified Magnetic Graphene Oxide. Talanta 2018, 188, 454–462. [Google Scholar] [CrossRef] [PubMed]
- Ciğeroğlu, Z.; Şahin, S.; Kazan, E.S. One-Pot Green Preparation of Deep Eutectic Solvent-Assisted ZnO/GO Nanocomposite for Cefixime Trihydrate Photocatalytic Degradation under UV-A Irradiation. Biomass Convers. Biorefinery 2022, 12, 73–86. [Google Scholar] [CrossRef]
- Alharthi, F.A.; Ababtain, A.S.; Aldubeikl, H.K.; Alanazi, H.S.; Hasan, I. Deep Eutectic Solvent-Mediated Synthesis of Ni3V2O8/N-Doped RGO for Visible-Light-Driven H2 Evolution and Simultaneous Degradation of Dyes. Inorganics 2023, 11, 67. [Google Scholar] [CrossRef]
- Wei, X.; Wang, Y.; Chen, J.; Xu, F.; Liu, Z.; He, X.; Li, H.; Zhou, Y. Adsorption of Pharmaceuticals and Personal Care Products by Deep Eutectic Solvents-Regulated Magnetic Metal-Organic Framework Adsorbents: Performance and Mechanism. Chem. Eng. J. 2020, 392, 124808. [Google Scholar] [CrossRef]
- Husin, N.A.; Muhamad, M.; Yahaya, N.; Miskam, M.; Kamal, N.N.S.N.K.; Asman, S.; Raoov, M.; Zain, N.N.M. Application of a New Choline-Imidazole Based Deep Eutectic Solvents in Hybrid Magnetic Molecularly Imprinted Polymer for Efficient and Selective Removal of Naproxen from Aqueous Samples. Mater. Chem. Phys. 2021, 261, 124228. [Google Scholar] [CrossRef]
- Wang, D.D.; Zhao, Y.; Ouyang, M.N.; Guo, H.M.; Yang, Z.H. Magnetic Polydopamine Modified with Deep Eutectic Solvent for the Magnetic Solid-Phase Extraction of Sulfonylurea Herbicides in Water Samples. J. Chromatogr. A 2019, 1601, 53–59. [Google Scholar] [CrossRef]
- Jamshidi, F.; Nouri, N.; Sereshti, H.; Shojaee Aliabadi, M.H. Synthesis of Magnetic Poly (Acrylic Acid-Menthol Deep Eutectic Solvent) Hydrogel: Application for Extraction of Pesticides. J. Mol. Liq. 2020, 318, 114073. [Google Scholar] [CrossRef]
- Sakthi Sri, S.P.; Taj, J.; George, M. Facile Synthesis of Magnetite Nanocubes Using Deep Eutectic Solvent: An Insight to Anticancer and Photo-Fenton Efficacy. Surf. Interfaces 2020, 20, 100609. [Google Scholar] [CrossRef]
- Huang, X.; Xu, C.; Ma, J.; Chen, F. Ionothermal Synthesis of Cu-Doped Fe3O4 Magnetic Nanoparticles with Enhanced Peroxidase-like Activity for Organic Wastewater Treatment. Adv. Powder Technol. 2018, 29, 796–803. [Google Scholar] [CrossRef]
- Chen, F.; Xie, S.; Huang, X.; Qiu, X. Ionothermal Synthesis of Fe3O4 Magnetic Nanoparticles as Efficient Heterogeneous Fenton-like Catalysts for Degradation of Organic Pollutants with H2O2. J. Hazard. Mater. 2017, 322, 152–162. [Google Scholar] [CrossRef]
- Vallejo-Macías, M.T.; Recio-Colmenares, C.L.; Pelayo-Vázquez, J.B.; Gómez-Salazar, S.; Carvajal-Ramos, F.; Soltero-Martínez, J.F.; Vázquez-Lepe, M.; Mota-Morales, J.D.; Pérez-García, M.G. Macroporous Polyacrylamide γ-Fe2O3 Nanoparticle Composites as Methylene Blue Dye Adsorbents. ACS Appl. Nano Mater. 2020, 3, 5794–5806. [Google Scholar] [CrossRef]
- Ali Mohammadzadeh Baghaei, P.; Afshar Mogaddam, M.R.; Farajzadeh, M.A.; Mohebbi, A.; Sorouraddin, S.M. Application of Deep Eutectic Solvent Functionalized Cobalt Ferrite Nanoparticles in Dispersive Micro Solid Phase Extraction of Some Heavy Metals from Aqueous Samples Prior to ICP-OES. J. Food Compos. Anal. 2023, 117, 105125. [Google Scholar] [CrossRef]
- Chen, F.; Xie, S.; Zhang, J.; Liu, R. Synthesis of Spherical Fe3O4 Magnetic Nanoparticles by Co-Precipitation in Choline Chloride/Urea Deep Eutectic Solvent. Mater. Lett. 2013, 112, 177–179. [Google Scholar] [CrossRef]
- Swathi Pon Sakthi Sri, V.; Manikandan, A.; Mathankumar, M.; Tamizhselvi, R.; George, M.; Murugaiah, K.; Kashmery, H.A.; Al-Zahrani, S.A.; Puttegowda, M.; Khan, A.; et al. Unveiling the Photosensitive and Magnetic Properties of Amorphous Iron Nanoparticles with Its Application towards Decontamination of Water and Cancer Treatment. J. Mater. Res. Technol. 2021, 15, 99–118. [Google Scholar] [CrossRef]
- Sadiq, A.C.; Olasupo, A.; Rahim, N.Y.; Ngah, W.S.W.; Suah, F.B.M. Comparative Removal of Malachite Green Dye from Aqueous Solution Using Deep Eutectic Solvents Modified Magnetic Chitosan Nanoparticles and Modified Protonated Chitosan Beads. J. Environ. Chem. Eng. 2021, 9, 106281. [Google Scholar] [CrossRef]
- Ali, J.K.; Chabib, C.M.; Abi Jaoude, M.; Alhseinat, E.; Teotia, S.; Patole, S.; Hussain Anjum, D.; Qattan, I. Enhanced Removal of Aqueous Phenol with Polyimide Ultrafiltration Membranes Embedded with Deep Eutectic Solvent-Coated Nanosilica. Chem. Eng. J. 2021, 408, 128017. [Google Scholar] [CrossRef]
- Shi, R.; Zhang, B.; Chen, W.; Lan, X.; Yang, Y.; Mu, T. Deep Eutectic Solvent-Assisted Synthesis of Porous Ni2CO3(OH)2/SiO2 Nanosheets for Ultra-Efficient Removal of Anionic Dyes from Water. J. Colloid Interface Sci. 2021, 604, 635–642. [Google Scholar] [CrossRef] [PubMed]
- Hou, Y.; Li, R.; Liang, J. Superhydrophilic Nickel-Coated Meshes with Controllable Pore Size Prepared by Electrodeposition from Deep Eutectic Solvent for Efficient Oil/Water Separation. Sep. Purif. Technol. 2018, 192, 21–29. [Google Scholar] [CrossRef]
- Iqbal, J.; Shah, N.S.; Sayed, M.; Muhammad, N.; Saif-ur-Rehman; Khan, J.A.; Khan, Z.U.H.; Howari, F.M.; Nazzal, Y.; Xavier, C.; et al. Deep Eutectic Solvent-Mediated Synthesis of Ceria Nanoparticles with the Enhanced Yield for Photocatalytic Degradation of Flumequine under UV-C. J. Water Process Eng. 2020, 33, 101012. [Google Scholar] [CrossRef]
- Li, N.; Chang, Z.; Dang, H.; Zhan, Y.; Lou, J.; Wang, S.; Attique, S.; Li, W.; Zhou, H.; Sun, C. Deep Eutectic Solvents Assisted Synthesis of MgAl Layered Double Hydroxide with Enhanced Adsorption toward Anionic Dyes. Colloids Surf. A Physicochem. Eng. Asp. 2020, 591, 124507. [Google Scholar] [CrossRef]
- Li, X.; Row, K.H. Preparation of Levofloxacin-Imprinted Nanoparticles Using Designed Deep Eutectic Solvents for the Selective Removal of Levofloxacin Pollutants from Environmental Waste Water. Analyst 2020, 145, 2958–2965. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, J.; Shah, N.S.; Sayed, M.; Ali Khan, J.; Muhammad, N.; Khan, Z.U.H.; Saif-ur-Rehman; Naseem, M.; Howari, F.M.; Nazzal, Y.; et al. Synthesis of Nitrogen-Doped Ceria Nanoparticles in Deep Eutectic Solvent for the Degradation of Sulfamethaxazole under Solar Irradiation and Additional Antibacterial Activities. Chem. Eng. J. 2020, 394, 124869. [Google Scholar] [CrossRef]
- Wang, N.; Xu, Q.; Yu, J.; Jia, S.; Zhai, L.; Yang, T.; Yang, C.; Zheng, B.; Xiong, W.W. Using Transition Metal-Based Deep Eutectic Solvents to Synthesize Transition Metal-Doped Carbon Nitrides for Photo-Fenton Degradation of Organic Dyes and Antibiotics. Appl. Surf. Sci. 2022, 597, 153718. [Google Scholar] [CrossRef]
- Anicai, L.; Petica, A.; Patroi, D.; Marinescu, V.; Prioteasa, P.; Costovici, S. Electrochemical Synthesis of Nanosized TiO2 Nanopowder Involving Choline Chloride Based Ionic Liquids. Mater. Sci. Eng. B 2015, 199, 87–95. [Google Scholar] [CrossRef]
- Sun, X.; Yu, Q.; Yang, H.; Wang, X.; Yang, Z.; Li, Y.; Wang, C. Life Cycle Assessment Instructed Preparation of Wood-Based Filtration Device with Efficient Water Purification and Oil Reclamation by Deep Eutectic Solvent. J. Environ. Chem. Eng. 2022, 10, 108446. [Google Scholar] [CrossRef]
- Kuttiani Ali, J.; Abi Jaoude, M.; Alhseinat, E. Polyimide Ultrafiltration Membrane Embedded with Reline-Functionalized Nanosilica for the Remediation of Pharmaceuticals in Water. Sep. Purif. Technol. 2021, 266, 118585. [Google Scholar] [CrossRef]
- Lai, X.; Luo, G. Synthesis of Mesoporous α-MnO2 in Manganese(II)-Based Deep Eutectic Solvent and Their Application in the Absorption of Congo Red. Sep. Sci. Technol. 2019, 54, 1269–1277. [Google Scholar] [CrossRef]
- Bide, Y.; Shokrollahzadeh, S. Toward Tailoring of a New Draw Solute for Forward Osmosis Process: Branched Poly (Deep Eutectic Solvent)-Decorated Magnetic Nanoparticles. J. Mol. Liq. 2020, 320, 114409. [Google Scholar] [CrossRef]
- Gao, Z.; Xie, S.; Zhang, B.; Qiu, X.; Chen, F. Ultrathin Mg-Al Layered Double Hydroxide Prepared by Ionothermal Synthesis in a Deep Eutectic Solvent for Highly Effective Boron Removal. Chem. Eng. J. 2017, 319, 108–118. [Google Scholar] [CrossRef]
DES Type | Molar Ratio | Nanomaterial | Functionalization Methods | Remarks and Details | Application | Ref. | |
---|---|---|---|---|---|---|---|
Salt | HBD | (Salt:HBD) | |||||
ChCl | Urea | 1:2 | Modified magnetic chitosan NPs and beads | DES as a solvent for crosslinking of chitosan | Successful modification with thermal stability Improved adsorption sites morphology | Used for removal of malachite green dye from aqueous solution | [75] |
NI- | Ethylene Glycol | - | Ni2CO3(OH)2/SiO2 composites | Solvothermal methods by Ni-DES assisted | Good selectivity to anionic dyes | Used for removal of Congo red Maximum adsorption capacity of 2637 mg g−1 at neutral pH and 303 K | [77] |
Cetyltrimethylammonium bromide | Acetic acid | 1:1 | Modified cerium oxide NPs | DES as a promoter and stabilizer of NPs formation | Highly stable and highly crystalline mesoporous ceria NPs Small size with uniform surface | Photo-degradation of Flumequine 94% removal of flumequine | [79] |
MgCl2·6H2O | Urea | 1:1 | MgAl-layered double hydroxide | One-step solvothermal method based on DES | The presence of DES improved contaminants removal not only related to electrostatic attraction but also to ion exchange between Cl−1 and dyes | Use for removing methyl orange, Congo red, indigo carmine Excellent uptake capacities of about 1051.87, 889.76, 512.55 mg g−1, respectively | [80] |
AlCl3·6H2O | 1:3 | ||||||
ChCl | Ethylene glycol | 1:2 | Nanosized TiO2 | Electrochemical synthesis using DES as a solvent | Faradaic efficiencies of a minimum of 92% Narrow size distribution (8–18 nm) and high surface area (70–90 m2 g−1) | Degradation of Orange II under UV and visible light irradiation | [84] |
Urea | |||||||
Tetrabutylammonium bromide | |||||||
Ethanol | |||||||
ChCl | Ethylene glycol | 1:2 | SiO2 nanoparticles | DES coating of SiO2 nanoparticles | Polyimide membranes embedded with DES@SiO2 SiO2 NPs kept their original microstructure and spherical morphology | Membranes used for phenol removal Exceptional water permeate flow of 300 L m−2 h−1 and 96% removal efficiency | [76] |
ChCl | Oxalic acid | 1:1 | Natural wood slice treated by DES, then decorated with Pd NPs | DES treatment of wood slices | Highly active wood by selective removal of lignin and hemicellulose using one-step DES | Used for removal of oil (98.9% separation efficiency) and reducing methylene blue (99.8% conversion) | [85] |
ChCl | Urea | 1:2 | ChCl-U@SiO2 and mixed with polyimide membranes | DES-functionalized silica particles | Silica-modified particles improved hydrophilicity, mechanical properties, porosity, and average pore size of membranes | Removal of ibuprofen and paracetamol | [86] |
ChCl | Methacrylic acid | 1:2 | Levofloxacin-imprinted NPs | Eco-friendly surfactant and functional monomer | DES-LIN showed good re-usability for water decontamination | Used for removing levofloxacin | [81] |
ChCl | Ethylene glycol | 1:2 | Nickel nanorods-coated meshes | Electrodeposition in a DES | Nickel NPs can be uniformly and densely coated | Treatment of corrosive, oily waste water | [78] |
MnCl2·4H2O | Acetamide | 1:7 | Mesoporous α-MnO2 | DES as solvent and reducing agent | Materials with a large specific surface area | Used for adsorption of Congo red Best sample remove 93% of Congo red in 30 min Maximum adsorption capacity 54 mg g−1 | [87] |
Cetyltrimethylammonium bromide | Acetic acid | 1:1 | Nitrogen-doped Ceria nanoparticles | DES as solvent and reducing agent | High photocatalytic efficiency Uniform surface, small size, and highly crystalline structure | Used for the photocatalytic degradation of sulfamethoxazole | [82] |
ChCl | Glycidol | 1:1.5 | Branched poly (DES)@Fe3O4 | DES functionalization | NPs with ionic groups and superhydrophilic properties | Used for forward osmosis, desalination | [88] |
ChCl | Ethylene glycol | 1:2 | Nanostructured MnxOy | DES as an eco-friendly solvent and reducing agent | EG-based materials show higher flux and rejection for cationic dye removal | Manganese oxide-based membrane filtration Methylene blue removal | [48] |
Glucose | 1:2 | ||||||
Ethylene glycol: glucose | 1:1:1 | ||||||
ChCl | Urea | 1:1.5 | Ultrathin Mg-Al-layered double hydroxide | DES as ionothermal solvent for NPs synthesis | Small-sized and ultrathin I-LDH nanosheets | Used for borate removal Best conditions: dosage = 7.5 g L−1, pH = 7, stirring = 100 rpm, T = 25 °C | [89] |
CoCl2·6H2O/FeCl3 | Urea | 1:1 | Metal-doped carbon nitrides nanosheets | Metal–DES system as solvent | Unique micro-nano foam structures | Used for photo-Fenton degradation of organic pollutants Dyes (RhB, MB, and CR) and antibiotics (TC, NOR, and ENR) | [83] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ponce, S.; Murillo, H.A.; Alexis, F.; Alvarez-Barreto, J.; Mora, J.R. Green Synthesis of Nanoparticles Mediated by Deep Eutectic Solvents and Their Applications in Water Treatment. Sustainability 2023, 15, 9703. https://doi.org/10.3390/su15129703
Ponce S, Murillo HA, Alexis F, Alvarez-Barreto J, Mora JR. Green Synthesis of Nanoparticles Mediated by Deep Eutectic Solvents and Their Applications in Water Treatment. Sustainability. 2023; 15(12):9703. https://doi.org/10.3390/su15129703
Chicago/Turabian StylePonce, Sebastian, Herman A. Murillo, Frank Alexis, José Alvarez-Barreto, and José R. Mora. 2023. "Green Synthesis of Nanoparticles Mediated by Deep Eutectic Solvents and Their Applications in Water Treatment" Sustainability 15, no. 12: 9703. https://doi.org/10.3390/su15129703
APA StylePonce, S., Murillo, H. A., Alexis, F., Alvarez-Barreto, J., & Mora, J. R. (2023). Green Synthesis of Nanoparticles Mediated by Deep Eutectic Solvents and Their Applications in Water Treatment. Sustainability, 15(12), 9703. https://doi.org/10.3390/su15129703