
Citation: Ponce, S.; Murillo, H.A.;

Alexis, F.; Alvarez-Barreto, J.; Mora,

J.R. Green Synthesis of Nanoparticles

Mediated by Deep Eutectic Solvents

and Their Applications in Water

Treatment. Sustainability 2023, 15,

9703. https://doi.org/10.3390/

su15129703

Academic Editor: Agostina Chiavola

Received: 18 May 2023

Revised: 9 June 2023

Accepted: 15 June 2023

Published: 17 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sustainability

Review

Green Synthesis of Nanoparticles Mediated by Deep Eutectic
Solvents and Their Applications in Water Treatment
Sebastian Ponce * , Herman A. Murillo , Frank Alexis , José Alvarez-Barreto and José R. Mora *

Department of Chemical Engineering, Universidad San Francisco de Quito USFQ, Diego de Robles s/n y Av.
Interoceánica, Quito 170157, Ecuador; hmurillor@usfq.edu.ec (H.A.M.); falexis@usfq.edu.ec (F.A.);
jalvarezb@usfq.edu.ec (J.A.-B.)
* Correspondence: sponce@usfq.edu.ec (S.P.); jrmora@usfq.edu.ec (J.R.M.)

Abstract: The use of environmentally friendly deep eutectic solvents (DES) in green synthesis of
different types of nanoparticles has garnered increasing interest in recent years. The application of
these materials in water treatment, mainly by adsorption or degradation, is emerging as a sustainable
alternative to conventional methodologies. However, the information about the green synthesis of
nanoparticles (NPs) using DES is dispersed in the literature. This review is focused on compiling and
systematizing information regarding DES-mediated NP synthesis, the application of these NPs in
water treatment, and future perspectives of these technologies. DES represent an excellent alternative
to traditional solvents in NP synthesis due to their low toxicity, low cost, and being environmentally
friendly. The possible NP surface functionalization with DES is also attractive as it plays a pivotal role
in processes related to water treatment. Modification and synthesis of carbon nanotubes, graphene
oxides, magnetic iron oxides, among others, for the adsorption and degradation of organic dyes,
pharmaceuticals, metal ions, herbicides, pesticides, and other water contaminants found in recent
literature are presented in this work. Finally, the possibility to control NP size and shape can be
helpful in the design of new materials for a specific application.

Keywords: deep eutectic solvents; green synthesis; nanoparticles; nanomaterials; contaminant
adsorption; contaminant degradation; water treatment

1. Introduction

Water consumption for industrial activities triggers the depletion of hydric resources,
especially when wastewater is not properly treated before discharging it to water bodies. In
this context, many pollutants, such as acid and alkaline compounds, organic and inorganic
species, oil and fats, suspended solids, explosives, flammables, volatiles, corrosive materials,
and many others, can be found in waste water [1]. All these substances are considered
toxic pollutants and therefore must be removed or degraded. Conventional waste water
treatment technologies comprise different stages (i.e., primary, secondary, and tertiary),
including different operations. For instance, larger solids such as sediments or grit are
physically separated in the primary stages. Then, these primary effluents may undergo
biological treatment (e.g., anaerobic digestion) to eliminate organics and other nutrients,
representing one of the secondary treatment technologies. If toxic species persist, a tertiary
reduction is required (e.g., via coagulation and flocculation processes) [2].

Nevertheless, other non-traditional processes have also been developed to degrade
specific pollutants. Nanoparticle-assisted waste water treatment falls within these novel
strategies [3–6]. Adsorption experiments have been carried out using nanoparticles (NPs)
as adsorbents to replace common adsorbents such as activated carbon. Some disadvantages
were identified when using activated carbon, such as slow adsorption kinetics, expensive
operation, and problems related to regeneration [7]. In nanoparticles, various oxides (e.g.,
TiO2, Al2O3, ZnO, NiO, ZrO2, etc.) are prepared from precursors that undergo hydroly-
sis/alcoholysis reactions; from these, precipitate is formed, which is finally calcinated. Both
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physical and chemical methods have been used to produce metallic nanoparticles [8–10].
The most popular chemical methods include polyol, microemulsions, thermal decompo-
sition, sol-gel, and electrochemical synthesis [11]. The sol-gel method involves using a
colloidal solution (sol) that evolves into a gel-like network, including both a liquid and a
solid phase. For TiO2 NPs production, for instance, a sol-gel method is employed. A metal
alkoxide (e.g., titanium isopropoxide) is dissolved in isopropanol, under stirring, until a
homogeneous sol is obtained. Later, this sol must be aged under ambient conditions so that
a gel is formed and then air-dried to remove the solvent. Finally, the dry gel is calcinated at
700 ◦C to form a nanocrystalline powder [4].

In terms of waste water treatment, nanotechnology is also applied through so-called
advanced oxidation processes (AOPs). Nanoparticles’ size and shape-dependent properties
make them attractive in light-induced chemical reactions due to their optical properties
in an extensive spectral range (λ = 300–900 nm) [12,13]. AOPs are based on generating
potent oxidizing agents such as hydroxyl radicals (·OH) capable of decomposing dif-
ferent pollutants, even to mineralization. These radicals are formed by photo-induced
species (i.e., the electron-hole pairs) in the reaction medium when the semiconductor is
irradiated. Several approaches have been studied to form these oxidizing species, in-
cluding ozone-based methodologies, ultrasound treatment, photo-catalysis, Fenton and
photo-Fenton, etc. [14,15].

In this sense, TiO2-based photo-catalysis is one of the most investigated techniques
because the material is relatively cheap, abundant, non-toxic, insoluble in water, and re-
sistant to most chemicals [16]. It implies the generation of hydroxyl radicals via UV light
absorption by a semiconductor material (mainly anatase-based TiO2 nanoparticles), show-
ing an appropriate band gap to form the aforementioned ·OH in an aqueous medium [16].
In terms of real applications, taking advantage of the UV radiation derived from solar
light can be one of the main reasons for the photocatalytic treatment of certain pollutants.
A vast number of pollutants have been treated using this route: dyes from textile indus-
try [17], cyanide in mining effluents [18], phenol in seawater [19], etc. Due to its versatility,
photo-catalysis is currently applied for waste water treatment and gaseous pollutants, as
indicated in [20], for NOX removal.

Even though the photocatalytic activity of semiconductor NPs has been widely demon-
strated, many drawbacks are associated with this technology application at an industrial
scale. First, the semiconductor’s crystalline phase plays a key role in the way ·OH radicals
are generated. For instance, Hwang et al. [21] indicated that for TiO2, anatase works better
during photocatalytic mineralization of non-adsorbing organic pollutants than rutile. It
therefore limits NP synthesis towards a suitable crystalline phase. On the other hand, NPs
must be separated from effluent after treatment, adding extra filtration costs. This problem
has been addressed by providing different support materials showing larger particle sizes,
such as activated carbon [22], a polymer matrix [23], or converted biomass-based supports
such as biochar [24] or hydrochar [25]. Moreover, the other significant problem herein
is that electron-hole pairs can be recombined, limiting ·OH production. Semiconductor
doping by metal or non-metal species has been applied, and later found unfavorable due
to the high temperatures needed (e.g., 400–850 ◦C), among other issues that make doping
difficult for industrial applications [26]. On the other hand, another strategy is gaining
interest to enhance photocatalytic activity of semiconductors by lowering the electron-hole
pair recombination, which lies in the addition of deep eutectic solvents (DES) during
NP synthesis.

DES have emerged as possible solvents for green synthesis with many studies and
applications, primarily since 2001, when the first paper by Abbott et al. [27] was published,
highlighting this type of solvent. Since then, approximately 7700 journal articles and
914 patents have been published mentioning DES (see Figure 1). The two most explored
applications of these solvents, over the years, are focused on synthetic media and metal
processing; however, recently, new applications have been discussed [28–30]. Based on
their physical properties, DES are related to the well-known ionic liquids (ILs), and the
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differences between these two liquids have also been widely discussed in the literature [31].
DES usually comprise hydrogen bond acceptors (nonsymmetrical ions) and hydrogen
bond donors (HBD) or metal salts. Depending on the chemical characteristics of these
two components, they are classified as type I, II, III, or IV. The common component of
type I to III is the presence of a Cat+X-, being Cat+, a cation formed mainly by quaternary
ammonium ions, and X-, a Lewis base (commonly, a halide anion). The other component
gives the difference in these types of DES; whereas for type I, anhydrous metal chloride is
employed, for type II, hydrated metal halides are used. For type III, an organic molecule
containing polar functional groups with high electronegative atoms (acting as HBD), such
as oxygen and nitrogen, is employed; the most common functional groups considered
here are alcohols, carboxylic acids, and amides. In these systems, the most used Cat+X- is
choline chloride acting as a hydrogen bond acceptor (HBA) due to the free electron pair
available in the OH group. Type IV DES can be formed from the combination of some
transition metal salts, which can be used as HBA, with some organic molecules, mainly
amides and alcohols [31]. A DES in the liquid phase is obtained by preparing the mixture
in a well-defined molar proportion (at the eutectic point). For example, a DES from the
choline chloride and urea mixture, is formed at a recommended molar ratio of 1:2 (choline
chloride: urea) [31].
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Figure 1. Published papers and patents according to the search: S1: “Nanoparticles”, S2: “deep
eutectic solvents”, and S3: “deep eutectic solvents” AND “nanoparticles”. Data source: Scopus.

Since 2011, the so-called natural deep eutectic solvents (NADES) have been pre-
pared using organic compounds essentially found in natural sources. Choline bitartrate,
betaine, proline, and choline acetate (HBAs), combined with citric acid, lactic acid, ethy-
lene glycol, glycerol, clavulanic acid, imidazole, L-lactic acid, malic acid, or glycolic acid
(HBDs) are usually obtained. These NADES can be included in the described DES type III
classification [32].

DES have gained attention from the research community given their potential use as
solvents with more attractive chemical properties than traditional alternatives, highlighting
low vapor pressure, non-flammability, and the possibility of being liquid in a wide range of
temperatures. DES are also considered to be easy to recycle compared with other solvents
(such as ionic liquids). For example, they have been used to extract polysaccharides up until
six experimental runs. In recent years, magnetic deep eutectic solvent preparation has been
reported, using the magnetic properties for easy separation from the reaction media [31].
The possibility of preparing DES with non-toxic HBDs and HBAs is also attractive for the
environmentally friendly applications of these solvents.
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Based on the available information in the literature, the present review aims to provide
comprehensive details about the use of Deep Eutectic Solvents (DES) for synthesizing
nanoparticles and their application in water treatment processes, with a primary focus
on contaminant absorption and/or degradation. This emerging technology appears to be
promising and attractive due to its potential for green processes that involve the use of
non-toxic and environmentally friendly reactants.

2. DES in Nanoparticles Synthesis

During the last decade, the application of DES in various synthetic fields has emerged,
including nanoparticle synthesis. The use of DES in the initial stage of NP synthesis (see
Figure 2) offers several advantages over traditional methods, such as co-precipitation [33,34],
sol-gel [11], solvothermal methods [35], green synthesis, and photochemical synthesis [36].
The well-known low toxicity, wide range of operation temperatures, and DES high thermal
stability of the DES are taken into account when selecting the appropriate route for NP
synthesis [37].
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In NP synthesis, DES are used to replace traditional, most commonly used
solvents [38–40], resulting in important advantages that can be listed as follows:

• DES are low in cost and easy to produce.
• Functionalizing nanoparticles with DES is an efficient and environmentally friendly

method for the surface and properties modification of the material. By using a DES, it is
possible to attach various functional groups to the NP´s surface. Functionalization can
change the nanoparticle’s surface reactivity or add functionality for further processing
or characterization.

• DES are effective in the removal of surface contaminants from NPs.
• DES help to stabilize NPs and keep them from clumping together.
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DES have been used in the synthesis of various types of nanoparticles, including
gold [41], silver [42], copper [43], iron oxide [44], and zinc oxide [45]. Depending on
the synthesis method used, the nanoparticle properties are controlled. For example,
Adhikari et al. [42] used choline chloride-glycerol DES to synthesize silver nanoparti-
cles; for the synthesis, the authors employed microwave radiation for chemical reduction
by using oleylamine as capping agent and reducing agent at the same time. The forma-
tion of the nanoparticles was extremely fast at only 30 s at 100 ◦C. As a result, the study
reported that the DES-based method resulted in smaller, more uniform nanoparticles than
traditional methods. In general terms, the synthesis of nanoparticles using DES involves
the reduction of metal ions in the presence of a reducing agent [46]; the DES is the solvent
used to dissolve the metal precursor, and the reducing agent is added to the solution. The
reduction process is initiated by heating the solution, and the resulting nanoparticles are
collected by centrifugation, filtration, or other separation techniques.

The nanoparticles synthesized and mediated by using DES are characterized by their
size, shape, and chemical composition. Various techniques, such as transmission elec-
tron microscopy (TEM), X-ray diffraction (XRD), dynamic light scattering (DLS), Fourier
transform infrared spectroscopy (FTIR), and UV-visible spectroscopy have been used
to determine size, morphology, crystallinity, optical properties, and to obtain informa-
tion about NP surface functionalization [38,47]. These techniques are essential in un-
derstanding the properties of the synthesized NPs, which determine their suitability for
various applications.

One of the most promising applications of nanoparticles synthesized using DES is in
water treatment [38,48]. NPs from iron oxide, titanium dioxide, and silver have removed
pollutants such as heavy metals, organic compounds, and bacteria from water [49]. The
unique properties of nanoparticles, such as their high surface area and reactivity, make
them highly effective in removing or degrading pollutants from water. The main advantage
of the DES in preparing nanoparticles is based on their large variety of chemical donors
to obtain suspensions of metal nanoparticles [37]. For example, Mehrabi et al. (2020)
used a mixture of quaternary ammonium with a compound containing carboxylic acid
groups to synthesize magnetic nanoparticles onto graphene oxide, which were used to
remove lead (II) and methylene blue from water [50]. The study reported that NPs showed
high efficiency for removing pollutants and had low toxicity, making them a promising
candidate for water treatment. Consequently, the application of nanoparticles synthesized
using DES in water treatment is a promising area of research that can potentially address
the global water contamination crisis.

3. Application of DES NPs in Waste Water Treatment

As described in Section 2, DES has been used in several applications in nanotechnology.
They help to obtain well-defined materials for biomedicine, metallurgy, electrodeposition,
separations, and gas capture, among others. However, just in the last few years, attention
has been directed towards materials for waste water treatment. The literature describes the
preparation and modification of nanoparticle systems for water treatment in which DES are
used as raw materials, reducing agents, stabilizers, and surface modifiers. They are usually
applied as adsorbents and photo-degradation catalysts of organic dyes, pharmaceuticals,
metal ions, herbicides, pesticides, and other water contaminants. Methods of synthesis us-
ing DES that compete with their counterparts obtained by conventional methods, classified
according to the type of nanomaterial, will be described in the following sections.

3.1. DES-Modified Carbon Nanotubes for Waste Water Treatment

Among other nanomaterials, CNTs have garnered particular attention in waste water
treatment, mainly for the adsorption of different contaminants. Several methods for surface
functionalization of carbon nanotubes with DES are described in the literature, which result
in enhancing adsorption capabilities of the materials compared to those synthesized with
conventional methods (please see Table 1 for a summary of publications dealing with DES
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and CNTs). Figure 3 shows a schematic representation of the most common methods for
carbon nanotube functionalization. In summary, two ways are usually applied: (i) direct
functionalization of pristine carbon nanotubes (P-CNTs), and (ii) DES functionalization
after activation methods (i.e., oxidation and acidification).
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For instance, AlOmar et al. [51] compared both functionalization methods on com-
mercial multi-wall carbon nanotubes (MWCNTs). A mixture of three different salts and
glycerol was used. For the second route, KMNO4 and HNO3 were used via ultrasonication
and refluxing for oxidation and acidification of P-CNTs, respectively. Characterization
showed efficient treatment and functionalization of CNTs. Figure 4 (above) shows the
XRD patterns of pristine (P) and modified (K: KMNO4 oxidation, B: BTBC-glycol, M:
MTPB-glycol) -CNTs. P-CNTs show typical peaks at 2θ 26◦ and 42◦, which correspond to
the hexagonal graphite structure and the concentric cylinder structure. Those peaks are
reduced after oxidation with KMNO4, which destroys the hexagonal graphite structure of
CNTs by wrapping them. DES functionalization further increased the wrapping around
the CNTs’ edges. Moreover, Figure 4 (below) shows the presence of MNO2 embedded
inside the CNT structure. Similarly, the same research group synthesized six different DES
systems based on choline chloride and six hydrogen bond donors (glycerol, ethylene glycol,
triethylene glycol, diethylene glycol, urea, and maleic acid) for comparison [52].

According to several authors, DES functionalization adds more oxygen-containing
groups (e.g., hydroxyl, carboxyl, and carbonyl groups), enhancing CNTs’ dispersion, pu-
rity, and the absolute value of zeta potential and specific surface area, without changing
their structure [53,54]. In all contributions, functionalized P-CNTs showed an enhanced
adsorption capacity of contaminants such as organic dyes (methyl orange (MO) [53], Eosin
Y [55]), phenolic compounds [54], and metal ions (mercury [56], arsenic [51], lead [52], and
nickel [57]).
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Furthermore, Ibrahim et al. [53] demonstrated a superior adsorption capacity of methyl
orange via a choline chloride-ethylene glycol-CNTs (P-ChCl-CNTs) treated material com-
pared to its pristine (P-CNTs) version and other adsorbents published in the literature
(P-CNTs = 110.45 mg g−1, P-ChCl-CNTs = 310.2 mg g−1, MWCNTs produced by chem-
ical vapor deposition = 35–64.7 mg g−1 [58], mesoporous carbon = 294.1 mg g−1 [59],
nanoparticles of copper oxide = 121.5 mg g−1 [60], among others). The same group applied
a feedforward backpropagation neural network technique to predict the adsorption of
2,4 dichlorophenol (2,4-DCP) via DES-functionalized multi-wall CNTs. The impact of
operational parameters such as pH, adsorbent dosage, and contact time was optimized
to identify a material with a maximum adsorption capacity of 390.35 mg g−1 [54]. For a
detailed list of examples, please refer to Table 1.

Table 1. DES-functionalized carbon nanotubes for adsorption of contaminants.

DES Type Molar Ratio
Nanomaterial Functionalization/Solvent

Methods
Remarks and Details Application Ref.

Salt HBD (Salt:HBD)

ChCl EG 1:2
CNTs

Sonication with DES
Oxidation with

KMnO4 + sonication
with DES

Significant purification
of CNTs.

Addition of more
oxygen-containing groups

Increment of the
surface area

Novel adsorbents for methyl orange removal
Optimal conditions: pH = 2.0, adsorbent
dosage > 10 mg, contact time > 60 min.

[53]

N,N-diethylethanolammonium
chloride EG 1:3

Tetra-n-butyl ammonium
bromide (TBAB) Glycerol 1:4 MWCNT

Oxidation with
KMnO4 + sonication

with DES
High adsorption efficiency

Highly efficient adsorbent for nickel removal

115.8 mg g−1 and 93% of adsorption capacity
and maximum removal percentage, respectively.

[57]

ChCl EG 1:2 CNTs Acidification with
H2SO4 + mixed with DES

Functionalization without
CNT structure damage

Adsorbent for 2,4-DCP from water
Maximum adsorption capacity 390.35 mg g−1

A neuronal network model was applied to
predict 2,4-DCP adsorption

[54]

Methyl-triphenylphosphonium
bromide (MTPB) Glycerol

1:3
CNTs

Oxidation with
KMnO4 + Sonication

with DES
Acidification with

HNO3 + sonication with DES

Significant surface
area increment

Novel adsorbents for As3+

Maximum adsorption capacity 23.4 mg g−1 for
KMNO4 and MTPB DES-functionalized CNTs

[51]
Benzyltriphenylphosphonium

chloride (BTPC) 1:16

ChCl

Glycerol 1:2

CNTs

Oxidation with
KMnO4 + sonication with

DESAcidification with
HNO3/H2SO4 +

sonication with DES

Uptake capacities were
optimized by RSM-CCD

experimental design

Novel adsorbent for Pb(II) removal
Optimum conditions: pH = 5, dosage = 5 mg,

contact time = 15 min
Maximum adsorption capacity of 288.4 mg g−1

[52]

Ethylene glycol 1:2

Triethylene
glycol 1:3

Diethylene glycol 1:3

Urea 1:2

Maleonic acid 1:1

Tetra-n-butyl ammonium
bromide (TBAB) Glycerol 1:1–1:10 CNTs

Oxidation with
KMnO4 + Sonication with

DESAcidification with
HNO3+ Sonication with DES

Significantly increase in
CNT surface area from 123

to 204 m2 g−1

Presence of new
functional groups

Novel adsorbents for Hg2+ removal

Maximum adsorption capacity 177.76 mg g−1

Optimal removal conditions: pH = 6.4,
adsorbent dosage = 6.0 mg,

contact time = 45 min

[56]

Cetyltrimethylammonium
bromide Glycerol 1:2 CNT/ZnCo2O4 DES functionalization

The material can be reused
up to 5 times with little or

no destruction

Eosin dye adsorption in an aqueous medium
Adsorption was favored between pH range 2–7 [55]

3.2. DES-Modified Graphene Oxide for Waste Water Treatment

The application of graphene oxide nanomaterials (GON) has also been studied involv-
ing DES in recent years (please see Table 2 for a summary of publications dealing with DES
and GON). Different from their application in CNT functionalization, DES can be used as
coupling and surface functionalization agents for GON. As coupling agents, ChCl-based
DES have been used to add magnetic nanoparticles onto graphene oxide layers, providing
synergistically enhanced adsorption for removal of lead (II), methylene blue (MB) [50], and
mercury [61] from waste water. Chen et al. [61], prepared magnetic composites from GO
following the synthesis method shown in Figure 5 (left). This study confirmed the influence
of DES on the homogeneity and size distribution of iron oxide NPs over the GO surface
(see Figure 5 (right)). Figure 5a shows GO as a thin layer structure, while Figure 5b depicts
the Fe3O4 (M) loaded on the GO surface and modified with 3-(Trimethoxysilyl)-Propyl
Methacrylate (γ-MPS) in Figure 5c. Figure 5d shows that M-GO-γ-MPS was surrounded by
a gray and semitransparent liquid, possibly due to the surrounding DES layer.
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On the other hand, GO nanosheets have also been doped with ZnO and Ni3V2O8 for
the photocatalytic degradation of cefixime trihydrate (CFX) [62], and anionic (MB, MO)
and cationic dyes (crystal violet (CV)) [63], respectively. For instance, the optimal CFX
photo-degradation efficiency reached 86% with a catalyst dose of 0.532 g L−1, an initial CFX
concentration of 20.13 mg L−1, and a pH of 4.03, under UVA irradiation. Authors discussed
the possible mechanism of photo-degradation, where the electron-hole pair determines
the activity of the catalyst, which seemed to be increased by the presence of DES during
synthesis. On the other hand, the efficiency of the N-doped Ni3V2O8 reduced graphene
oxide hybrid was higher under visible light irradiation than UV light, with degradation
values of 94.6 and 96.7% for MO and CV, respectively.

Table 2. DES used as a coupling agent in synthesizing graphene oxide nanomaterials for adsorption
or degradation of contaminants.

DES Type Molar Ratio
Nanomaterial Functionalization/Solvent

Methods
Remarks and Details Application Ref.

Salt HBD (Salt:HBD)

ChCl Urea 1:2 Fe3O4, graphene
oxide nanosheets

DES as coupling agent for
GO-Fe3O4 nanohybrids (GO
to Fe3O4 mass ratios of 1:1,

1:2, 1:5)

Successful coupling of GO and
Fe3O4 NPs

Used for the removal of organic
dyes and lead (II)

Complete removal of 25 mg L−1

of MB within 5 min
Lead (II): maximum adsorption

capacity of 120.5 mg g−1

[50]

ChCl Oxalic acid 1:2 Ni3V2O8, N-doped
reduced graphene oxide DES as a coupling agent

Improved structural and
morphological characteristics.

Enhanced activity for H2 evolution
and dye degradation

Increased band gap and conductivity

The efficiency of degradation
under Vis was higher than under

UV irradiation (94.6 and 96.7%
removal capacity for MO and

CV, respectively)

[63]

ChCl Itaconic acid/3-mercaptopropionic
acid 2:1:1 Magnetic graphene

nanoparticles
THS-DES@M-GO
functionalization

Addition of -SH groups
Composites have good stability and

are easily regenerated

Better removal of Hg2+ than not
functionalized particlesMaximum

adsorption capacity of

215.1 mg g−1

[61]

ChCl Ethylene glycol 1:2 GO nanosheets, ZnO All materials mixed Efficient photocatalyst under
UVA irradiation

Cefixime trihydrate degradation
(86.2% removal at 4.03 pH) [62]

3.3. DES for Iron Oxide Nanoparticles for Waste Water Treatment

DES have also been used as ionothermal solvents and functionalization agents to syn-
thesize magnetic iron oxide NPs. Various target pollutants for adsorption and degradation
(pharmaceuticals [64,65], pesticides [66,67], organic dyes [68–71], heavy metal ions [72],
etc.) are found in the literature (please see Table 3 for a summary of studies concerning
DES and iron oxide nanoparticles). For example, Wei et al. [64] used seven DES based
on quaternary ammonium salts and lactic acid or glycolic acid to synthesize magnetic
metal-organic framework composites for the adsorption of pharmaceuticals and personal
care products (see synthesis, adsorption, desorption and reuse experiments scheme in
Figure 6). According to the authors, the proper use of DES can produce adsorbents with
selective adsorption ability for target analytes. Husin et al. [65] showed that the presence
of ChCl-BuIM during nanohybrid formation resulted in a strong generation of stable com-
plexes through π−π interactions and hydrogen bonding between the composite materials
and naproxen from waste waters. Baghaei et al. used DES to functionalize pre-synthesized
cobalt ferrite nanoparticles in a different approach. These nano-adsorbents were applied
for the determination of heavy metal ions (e.g., Zn(II), Ni(II), Cu(II), Pb(II), and Hg(II)) in
water and fruit juice samples.

Moreover, DES have also been used for the ionothermal synthesis of Fe3O4 metal
NPs. These materials worked as Fenton-like catalysts for the degradation of Rhodamine B,
showing higher adsorption capacities than undoped materials [69,70]. Magnetic monoliths
composed of polyacrylamide-
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sorbed pharmaceuticals 
and personal care prod-
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electrostatic interaction, 
chelation, hydrophobic 

interaction, π-π stacking, 
and hydrogen bonding. 

Used in the 
adsorption of 

PPCPs  
PPCP: solu-

tions of 
mefenamic 
acid, ibu-

profen, indo-
methacin and 

diclofenac 

[64] 

Tetrabutylammo-
nium chloride 

(TBAC) 
1:2 

Benzyltribu-
tylammonium 

chloride (BTBAC) 
1:2 

Benzyl tributyl 
ammonium bro-
mide (BTBAB) 

1:2 

Dodecyltribu-
tylammonium 1:2 

-Fe2O3 nanoparticles have successfully adsorbed an organic
dye such as MB, reaching maximum adsorption capacity as high as 350 mg g−1 [71].
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Table 3. Magnetic iron oxide nanoparticles and DES for adsorption and degradation of contaminants.

DES Type Molar Ratio
Nanomaterial Functionalization/Solvent

Methods
Remarks and Details Application Ref.

Salt HBD (Salt:HBD)

Tetraethylammonium
chloride (TEAC)

Lactic acid

1:2

Magnetic (Fe3O4)
metal-organic framework

(MUiO-66-NH2) composites

Previous EDC/NHS chemistry
treatment then stirred

with DES

Good adsorption
capacity, prominent

anti-interference ability and
outstanding renewability

and re-usability
DES-MUiO-66-NH2 adsorbed
pharmaceuticals and personal
care products (PPCPs) through

electrostatic interaction, chelation,
hydrophobic interaction, π-π

stacking, and hydrogen bonding.

Used in the adsorption of PPCPs
PPCP: solutions of mefenamic acid,

ibuprofen, indomethacin
and diclofenac

[64]

Tetrabutylammonium
chloride (TBAC) 1:2

Benzyltributylammonium
chloride (BTBAC) 1:2

Benzyl tributyl
ammonium bromide

(BTBAB)
1:2

Dodecyltributylammonium
chloride (DTBAC) 1:2

Tetrabutylammonium
chloride (TBAC) Glycolic acid 1:2

Benzyltributylammonium
chloride (BTBAC) 1:2

ChCl BuIM 1:1 Fe3O4@MIP DES as co-monomer for
template pre-polymerization

The presence of ChCl-BuIM
resulted in the strong formation
of stable complexes through the
π−π interaction and hydrogen

bonding between adsorbents and
adsorbatesMultilayer
adsorption occurred

Used as adsorbent for naproxen
They could be applied to imprint

other non-steroidal
anti-inflammatory drugs

[65]

ChCl p-aminophenol 1:2 Cobalt ferrite nanoparticles
Pre-treated of NPs

with sodium
dodecyl + DES sonication

DES had two important roles; as a
coating for the nanoparticles and

as a complexing agent

Used as nano-sorbent for the
extraction of Zn(II), Ni(II), Cu(II),

Pb(II), and Hg(II)
[72]

ChCl Citric acid 2:1 Iron oxide NPs DES as a non-toxic solvent for
NP synthesis

Superparamagnetic Fe3O4
nanocubes

DES played a crucial role in the
control of size and morphology

Used for photo-degradation of
Rhodamine B

94% dye degradation in 180 min
under UV irradiation

Stable up to five successive cycles

[68]
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Table 3. Cont.

DES Type Molar Ratio
Nanomaterial Functionalization/Solvent

Methods Remarks and Details Application Ref.
Salt HBD (Salt:HBD)

ChCl Urea 1:2 Cu-Fe3O4 metal NPs DES as a non-toxic solvent for
NP synthesis

Evidence of substitution of Fe2+

with Cu2+ at octahedral sites
Cu2+ ions enhance the

regeneration of Fenton active

species Fe2+ by reduction of Fe3+

Higher peroxidase-like activity

Exemplary degradation of
Rhodamine B

Faster decomposition compared to
undoped materials

(0.584 vs. 0.153 h−1, respectively)
Enhanced H2O2-activation at pH = 7

and 25 ◦C

[69]

ChCl Urea 1:2 Fe3O4 magnetic NPs Oxidative precipitation +
ionothermal synthesis

Magnetic NPs as efficient and
stable catalysts

A Fenton-like catalyst for
Rhodamine B degradation

First order rate constant
0.0376 min−1)

>98% degradation efficiency of
Rhodamine B in 2 h

[70]

D-L-menthol

Pyruvic acid 1:2

Magnetic monoliths composed
of polyacrylamide-
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nium chloride 

(TBAC) 
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tylammonium 

chloride (BTBAC) 
1:2 

Benzyl tributyl 
ammonium bro-
mide (BTBAB) 

1:2 

Dodecyltribu-
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–
Fe2O3 NPs

Green internal phase for the
formulation of high internal

phase formulations

Allowed formulation of stable
emulsions used as templates in

the fabrication of polyacrylamide
macroporous materials

Used for methylene blue adsorption
Maximum adsorption capacity

reported (>350 mg g−1)
Reusable materials for more than

6 adsorption-desorption cycles

[71]Acetic acid 1:1

Lactic acid 1:2

Lauric acid 2:1

Dimethyl ammonium
chloride 4-chlorophenol 1:5 Fe3O4@PDA DES functionalization

This method has low limit of
detection (LOD), good

repeatability, high
pre-concentration factor, and

extraction recoveries

For detecting sulfonylurea herbicides
in water samples [66]

Menthol Acrylic acid 2:1 Magnetic poly (AA-menthol
DES) hydrogel

DES used as a
functional monomer

Hydrogels with large specific
surface area and

enhanced selectivity
Its use can be considered a green

extraction technique
The average enrichment factor

(58) indicates the effectiveness of
the hydrogel for extracting

the analytes.
Low LODs and a relatively wide
linear range show the sensitivity

of this method

Use for pesticides extraction, such as
including lindane, alachlor, aldrin,

bromophos methyl, heptachlor
epoxide, α-endosulfan,

hexaconazole, dieldrin, endrin, β-
endosulfan, diazinon, endosulfan

sulfate, bromopropylate,
fenpropathrin, tetradifon, and

fenvalerate

[67]

ChCl Urea 1:2 Spherical Fe3O4
magnetic NPs DES for co-precipitation

Spherical Fe3O4 magnetic NPs
(Fe3O4-DES) with an average

particle size of ca. 10.5 nm

Compared to Fe3O4 made in water,
Fe3O4-DES nanoparticles show

significantly improved adsorption

capacity of Cu2þ after surface
modification with EDTA

(28.0 vs. 21.0 mg/
gFe3O4) and are easy to be

recovered by an external magnet

[73]

ChCl Sucrose 2:1 Iron nanoparticles (Fe NPs) DES as a stabilizing and
capping agent

Synthesis of amorphous Fe
NPsusing cane sugar-based DES
as a bio-reductant and a capping

agent by a one-pot
co-precipitation method

The nanocatalyst displays excellent
dye degradation efficiency (96.06%)

within 30 min
[74]

3.4. Miscellaneous Materials

Finally, Table 4 shows various types of DES used in synthesis and functionaliza-
tion of different nanomaterials (e.g., chitosan NPs [75], TiO2, SiO2 NPs [76,77], nickel
nanorods [78], and many others) for environmental applications. The contaminants treated
include a range of dyes, pharmaceuticals, and other pollutants. For example, malachite
green dye [75], Congo red [77], flumequine [79], methyl orange, indigo carmine [80], sul-
famethoxazole [81], among others, were removed from aqueous solutions using various
types of DES- functionalized nanomaterials. Levofloxacin-imprinted nanoparticles were
used to remove levofloxacin, while mesoporous α-MnO2 adsorbs Congo red. Nitrogen-
doped ceria nanoparticles [82] were used to degrade sulfamethoxazole through photo-
catalysis, and ultrathin double-layered Mg-Al hydroxide was used to remove borate [80].
Furthermore, through photo-Fenton degradation, a metal–DES system was used to degrade
organic pollutants such as Rhodamine B and methylene blue [83].

The common properties among the examples include successful modification with
thermal stability, improved adsorption site morphology, good selectivity to anionic dyes,
highly stable and crystalline mesoporous structures, and small size with uniform surface
due to the presence of DES, for improved contaminant removal. Additionally, materials
such as polyimide membranes embedded with DES@SiO2, silica-modified particles, and
wood with selective removal of lignin and hemicellulose using DES showed improved me-
chanical properties, porosity, and hydrophilicity [76]. The materials also demonstrated high
photocatalytic efficiency, high flux, and rejection for cationic dyes. In some cases, materials
such as nickel NPs and DES-LIN showed good re-usability for water decontamination.
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Table 4. Miscellaneous materials and DES for adsorption and degradation of contaminants.

DES Type Molar Ratio
Nanomaterial Functionalization Methods Remarks and Details Application Ref.

Salt HBD (Salt:HBD)

ChCl Urea 1:2 Modified magnetic chitosan
NPs and beads

DES as a solvent for
crosslinking of chitosan

Successful modification with
thermal stability

Improved adsorption
sites morphology

Used for removal of malachite green
dye from aqueous solution [75]

NI- Ethylene Glycol - Ni2CO3(OH)2/SiO2
composites

Solvothermal methods by
Ni-DES assisted Good selectivity to anionic dyes

Used for removal of Congo red
Maximum adsorption capacity of

2637 mg g−1 at neutral pH and
303 K

[77]

Cetyltrimethylammonium
bromide Acetic acid 1:1 Modified cerium oxide NPs DES as a promoter and

stabilizer of NPs formation

Highly stable and highly
crystalline mesoporous ceria NPs
Small size with uniform surface

Photo-degradation of Flumequine
94% removal of flumequine [79]

MgCl2 ·6H2O
Urea

1:1 MgAl-layered double
hydroxide

One-step solvothermal
method based on DES

The presence of DES improved
contaminants removal not only
related to electrostatic attraction
but also to ion exchange between

Cl−1 and dyes

Use for removing methyl orange,
Congo red, indigo carmine

Excellent uptake capacities of about
1051.87, 889.76,

512.55 mg g−1, respectively

[80]

AlCl3 ·6H2O 1:3

ChCl

Ethylene glycol

1:2 Nanosized TiO2
Electrochemical synthesis

using DES as a solvent

Faradaic efficiencies of a
minimum of 92%

Narrow size distribution
(8–18 nm) and high surface area

(70–90 m2 g−1)

Degradation of Orange II under UV
and visible light irradiation

[84]
Urea

Tetrabutylammonium
bromide

Ethanol

ChCl Ethylene glycol 1:2 SiO2 nanoparticles DES coating of
SiO2 nanoparticles

Polyimide membranes embedded
with DES@SiO2

SiO2 NPs kept their original
microstructure and

spherical morphology

Membranes used for phenol removal
Exceptional water permeate flow of

300 L m−2 h−1 and 96%
removal efficiency

[76]

ChCl Oxalic acid 1:1
Natural wood slice treated by
DES, then decorated with Pd

NPs
DES treatment of wood slices

Highly active wood by selective
removal of lignin and

hemicellulose using one-step DES

Used for removal of oil (98.9%
separation efficiency) and reducing
methylene blue (99.8% conversion)

[85]

ChCl Urea 1:2 ChCl-U@SiO2 and mixed with
polyimide membranes

DES-functionalized
silica particles

Silica-modified particles
improved hydrophilicity,

mechanical properties, porosity,
and average pore size

of membranes

Removal of ibuprofen
and paracetamol [86]

ChCl Methacrylic acid 1:2 Levofloxacin-imprinted NPs Eco-friendly surfactant and
functional monomer

DES-LIN showed good
re-usability for water

decontamination
Used for removing levofloxacin [81]

ChCl Ethylene glycol 1:2 Nickel nanorods-coated
meshes Electrodeposition in a DES Nickel NPs can be uniformly and

densely coated
Treatment of corrosive, oily waste

water [78]

MnCl2 ·4H2O Acetamide 1:7 Mesoporous α-MnO2
DES as solvent and reducing

agent
Materials with a large specific

surface area

Used for adsorption of Congo red
Best sample remove 93% of Congo

red in 30 min
Maximum adsorption capacity

54 mg g−1

[87]

Cetyltrimethylammonium
bromide Acetic acid 1:1 Nitrogen-doped Ceria

nanoparticles
DES as solvent and

reducing agent

High photocatalytic efficiency
Uniform surface, small size, and

highly crystalline structure

Used for the photocatalytic
degradation of sulfamethoxazole [82]

ChCl Glycidol 1:1.5 Branched poly (DES)@Fe3O4 DES functionalization NPs with ionic groups and
superhydrophilic properties

Used for forward
osmosis, desalination [88]

ChCl

Ethylene glycol 1:2

Nanostructured MnxOy DES as an eco-friendly solvent
and reducing agent

EG-based materials show higher
flux and rejection for cationic

dye removal

Manganese oxide-based
membrane filtration

Methylene blue removal
[48]Glucose 1:2

Ethylene glycol:
glucose 1:1:1

ChCl Urea 1:1.5 Ultrathin Mg-Al-layered
double hydroxide

DES as ionothermal solvent
for NPs synthesis

Small-sized and ultrathin I-LDH
nanosheets

Used for borate removal
Best conditions: dosage = 7.5 g L−1,
pH = 7, stirring = 100 rpm, T = 25 ◦C

[89]

CoCl2 ·6H2O/FeCl3 Urea 1:1 Metal-doped carbon
nitrides nanosheets Metal–DES system as solvent Unique micro-nano foam

structures

Used for photo-Fenton degradation
of organic pollutants

Dyes (RhB, MB, and CR) and
antibiotics (TC, NOR, and ENR)

[83]

4. Future Perspectives

The use of environmentally friendly solvents, such as deep eutectic solvents (DES),
in synthesizing different types of nanoparticles has gained significant attention from the
research community in recent years. DES are attractive due to their vast chemical diversity,
minimum toxicity, low cost, and sustainable properties, making them a promising alterna-
tive to conventional solvents. Furthermore, DES can be easily synthesized from natural
and renewable resources, adding to their eco-friendly appeal.

One of the significant advantages of synthesizing nanoparticles mediated by DES is
the possibility for greater control of particle size and shape. This control can be crucial
in designing materials with specific properties for selected applications. DES can also act
as stabilizers during the synthesis process, improving the overall quality of the nanopar-
ticles. The application of DES-mediated nanoparticles in water treatment has also been
of increasing interest. Surface modification of nanoparticles with DES can enhance their
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adsorption capacity, allowing for more effective removal of contaminants from polluted
water. Moreover, the use of DES in the degradation of pollutants through catalytic reactions
has shown great potential for sustainable water treatment technologies.

Despite the advantages of using DES in synthesizing and applying nanoparticles for
water treatment, information on this topic is still dispersed throughout the literature. Con-
sequently, comprehensive reviews such as this one are crucial for consolidating information
and advancing research in the field. Looking forward, the potential of DES-mediated
nanoparticles in water treatment is vast. Further research is needed to optimize synthesis
and application of these nanoparticles for more efficient and sustainable water treatment
technologies. Additionally, the functionalization of nanoparticles with DES can lead to
novel materials with unique properties and applications beyond water treatment, but
some challenges remain such as thermal instability and high viscosity. Another important
challenge is related to costs; despite being considered low cost, DES may imply higher
initial investments in large scale process, and additional costs associated with re-using
the solvent. However, as more technologies surrounding DES are implemented, larger
industrial development may be boosted, which could potentially help lower the costs in
the long term. It was summarized all these features and future perspectives for DES and
nanoparticles in Figure 7.
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In conclusion, with further research and development, for extending the scope to
more nanoparticle systems and better controlling NPs’ properties, the potential industrial
applications of DES-mediated nanoparticles are eminent and promising. They would
represent a valuable contribution to the development of sustainable technologies, including,
water treatment.
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